-{% for mu in mu_array -%}
-μ={{ mu | round: 4 }}{% unless forloop.last %} · {% endunless -%}
+
Movies (ensemble averages)
+
+|----------|
+| R1 {% for mu in mu_array -%}
+| [μ={{ mu | round: 4 }}]({{ prefix }}/σ²={{ sigma }}/μ={{ mu }}/movie_without_g.mp4){% if forloop.last -%} | {% endif -%}
{% endfor %}
Graphs
+
+|----------|
{% for run in (1..5) -%}
-
- Run {{ run }}:
- {% for mu in mu_array -%}
- μ={{ mu | round: 4 }}{% unless forloop.last %} · {% endunless -%}
+| R{{ run }} {% for mu in mu_array -%}
+| [μ={{ mu | round: 4 }}]({{ prefix }}/σ²={{ sigma }}/μ={{ mu }}/micro-{{ run }}/graph_LFR.png){% if forloop.last -%} | {% endif -%}
{% endfor %}
-
{% endfor %}
-
Dynamics
-{:.manual_center_1500}
+
Dynamics
-
Graph properties
-{:.manual_center_1500}
+Convergence rates are computed over the time span marked in blue in the first plot.
-
g(t=0), 1 row per run, p increasing →
+**Parameters:**
+
+- $\mu$: LFR mixing parameter
+- $T^*$: time to consensus = $-1/\log(\vert\lambda_2\vert) \cdot \delta t$, where $\lambda_2$ is the second largest eigenvalue of the transition matrix for the associated time discrete model. See [here](https://doi.org/10.1016/j.ins.2019.02.028).
+- [assortativity](https://en.wikipedia.org/wiki/Assortativity)
+- [clustering coeff.](https://en.wikipedia.org/wiki/Clustering_coefficient)
+
+
+![convergence]({{ prefix }}/σ²={{ sigma }}/comparison.svg){:.manual_center_1500}
+
+