ES ~E8

icomm) ;

<< endl;}

icomm)

./main.cpp Wed Jan 07 11:21:15 2026 1
1: // MPI code in C++.
2: // See [Gropp/Lusk/Skjellum, "Using MPI", p.33/41 etc.]
3: // and /opt/mpich/include/mpil2c++/comm.h for details
4
5: #include "vec_func.h"
6: #include <iostream> // MPI
7: #include <mpi.h>
8: using namespace std;
9:
10: int main(int argc, char *argv([])
11: {
12: MPI_Comm icomm = MPI_COMM_WORLD;
13: MPI_TInit (&argc, é&argv);
14:
15: int myrank;
16: MPI_Comm_rank (icomm, &myrank);
17:
18: // E5
19: vector<double> x (10, 3);
20: if (myrank==0) {cout << endl << "E5" << endl;}
21: vecdebug (x, icomm) ;
22
23: // E6
24: vector<double> y (10,1.0/3);
25: double res = par_scalar(x,y,icomm) ;
26: if (myrank==0)
27 {
28: cout << endl << endl << "E6" << endl;
29: cout << "<x,y> = " << res << endl << endl;
30: }
31:
32: // E7
33: vector<double> a{myrank*10, myrank*10-1, myrank*10-2};
34: if (myrank==0) {cout << "E7\n" << "original vector" << endl;}
35: vecdebug (a, icomm);
36: double min_val, max_val;
37: min_max_exch(a, min_val, max_val, icomm) ;
38: if (myrank==0) {cout << "min = " << min_val << "\tmax = " << max_val << endl
<< endl << "wvector after changing min-max" << endl;}
39: vecdebug (a, icomm) ;
40:
41: // E8
42 int n = 20;
43: vector<double> c(n);
44 for(size_t 1i=0; i<n; ++1)
45: {
46: c[i] = myrank*100 +(i%5)*10+i;
47 : }
48: vector<double> recv(n);
49: v MPI_Alltoall(c.data(), 5, MPI_DOUBLE, recv.data(), 5, MPI_DOUBLE,
50: if (myrank==0) {cout << endl << "Ex 8\n" << "Alltoall" << endl;}
51: vecdebug (recv, icomm) ;
52:
53: \/ MPI_Alltoall (MPI_IN_PLACE, 0O, MPI_DATATYPE_NULL, c.data(), 5, MPI_DOUBLE,
’
54: if (myrank==0) {cout << endl << "Ex 8\n" << "Alltoall - IN_PLACE"
55: vecdebug (c, icomm) ;
56:
57:
58:
59: MPI_Finalize();
60:
6l: return 0;
62: }
63:

64:

Mobile User

. /vec_func. cpp Wed Jan 07 11:21:15 2026 1

1: #include "vec_func.h"

2: #include <cassert>

3: #include <cstring>

4: #include <iostream>

5: #include <mpi.h> // MPI
6: #include <string>

7: using namespace std;

8

9: // see http://www.open-mpi.org/doc/current
10: // for details on MPI functions

12: wvoid vecdebug (vector<double> const & x, const MPI_Comm &icomm)
13: {

14: int myrank, size;

15: MPI_Comm_rank (icomm, &myrank);

16: MPI_Comm_size (icomm, &size);

17: int ierr;

19: int n = x.size();

21: int take_process; 0 s ¢ . S{

22 for (int i=0; i<size; ++1i) [Sl2e 'ﬂ[@m ous

23: {

24: MPI_Barrier (icomm) ;

25: if (myrank == 0) // only one process for input

26: {

27: cout << "\nChoose next process for printing vector (0-3): ";
28: cout.flush () ;

29: cin >> take_process; // no check for wrong input

30: }

32: ierr = MPI_Bcast (&take_process, 1, MPI_INT, 0, icomm); // broadcast
value of "take_process" to all processes —> all know what’s going on

33: // information comes from process 0

34: assert (ierr == 0);

35:

36: MPI_Barrier (icomm) ;

37:

38: if (take_process == myrank)

39: {

40: for (int k=0; k<n; ++k)

41: {

42 cout << "x " << k << " = " << x[k] << " (" << myrank
<< ")ANET;

43: cout.flush{();

44 // 1in brackets we have the actual process

45: }

46: cout << endl;

47 . cout.flush{();

48: }

49:

50: MPI_Barrier (icomm) ;

51: }

52: // to avoid some output chaos with cout you could also do it with MPI_Send a
nd MPI_ Recv

53:

54: return;

55: }

56:

57:

58: double par_scalar (vector<double> const & x, vector<double> const & y, const MPI_Comm
&icomm)

59: {

60: assert (x.size()==y.size());
61:

62: double sum_local = 0;

63: double sum_global = 0;

64:

Mobile User

. /vec_func. cpp

65:
66:
67:
68:
69:
70:

Wed Jan 07 11:21:15 2026 2

for(size_t k=0; k<x.size(); ++k)

{
sum_local += x[k]*y[k];

} J

auto ierr = MPI_Allreduce (&sum_local, &sum_global, 1, MPI_DOUBLE, MPI_SUM, i

comm) ; // reduce local sums to global sum
71: assert (ierr == 0);

72
73:
74: }
75:
76:

return sum_global;

77: void min_max_exch (vector<double> &x, double &min_val, double &max_val, const MPI_Com

m &icomm)

78: |
79: int myrank;
80: MPI_Comm_rank (icomm, &myrank);
81: int local_n = x.size(); >
82: int global_offset = myrank * local_n; // for interchanging
83: v
84 : struct {double value; int index;} local_min, local_max, global_min, global_m
ax; // global index
85:
86: local _min.value = x[0];
87: local_max.value = x[0];
88: local _min.index = global_offset;
89: local _max.index = global_offset;
90:
91: // finding local min/max with the corresponding global index
92: for (int i = 1; i < local_n; ++1i)
93: {
94 : if (x[i] < local_min.value)
95: {
96: local_min.value = x[i];
97: local _min.index = global_offset + i;
98: }
99: if (x[i] > local_max.value)
100: {
101: local_max.value = x[i];
102: local_max.index = global_offset + i;
103: }
104: }
105:
106: // reduction to the global one including the global index (need it later for
interchanging)
107: MPTI_Allreduce(&local_min, &global _min, 1, MPI_DOUBLE_INT, MPI_MINLOC, icomm)
; V
’
108: MPI_Allreduce(&local_max, &global_max, 1, MPI_DOUBLE_INT, MPI_MAXLOC, icomm)
14
109: min_val = global_min.value;
110: max_val = global_max.value;
111:
112: // calculating the process and the local index for interchanging the min and
max value
113: int rank_min = global_min.index / local_n;
114: int rank_max = global_max.index / local_n;
115: int local min_idx = global_min.index % local_n;
116: int local max_idx = global_max.index % local_n;
117:
118: // interchanging
119: if (rank_min != rank_max)
120: {
121: double recv_value;
122: if (myrank == rank_min)
123: {
124: MPI_Sendrecv(&x[local _min_idx], 1, MPI_DOUBLE, rank_max, 0, &recv_va

lue, 1, MPI_DOUBLE, rank_max, 0, icomm, MPI_STATUS_IGNORE) ; // from last it gets receiv

Mobile User

. /vec_func. cpp Wed Jan 07 11:21:15 2026 3

ed, first send it to

125: x[local_min_idx] = recv_value;

126: }

127:

128: if (myrank == rank_max) V4

129: {

130: MPI_Sendrecv (&x[local_max_idx], 1, MPI_DOUBLE, rank_min, 0, &recv_va
lue, 1, MPI_DOUBLE, rank_min, 0, icomm, MPI_STATUS_IGNORE) ;

131: x[local_max_idx] = recv_value;

132: }

133:

134: }

135: else // min and max value are on same process

136: {

137: swap (x[local _min_idx], x[local_max_idx]);

138: }

139: \/

140:

return;
141: }

Mobile User

./vec_func.h Wed Jan 07 11:21:15 2026 1

1: // general header for all functions in directory

2:

3: #pragma once

4:

5: #include <mpi.h>

6: #include <vector>

7

8: /** Debug and print the vector with MPI, you can choose the process which should

present its values

9: @param[in] X vector to print

10: @param[in] icomm the MPI process group that is used.
11: */
12: void vecdebug(std::vector<double> const & x, const MPI_Comm &icomm);
13:
14: /** Calculate the scalar product of two vectors (MPI)

15: @param[in] X vector

16: @param[in] y vector

17: @param[in] icomm the MPI process group that is used.
18: @return sum euclidean scalar product

19: #*/

20: double par_scalar (std::vector<double> const & x, std::vector<double> const & y, cons
t MPI_Comm &icomm) ;

21:

22:

23: /*#* Determine min and max value of the vector and exchanging those two values
24 @param[in,out] x vector

25: @param[in,out] min_val

26: @param[in,out] max_val

27: @param[in] icomm the MPI process group that is used.

28: */

29: void min_max_exch (std: :vector<double> &x, double &min_val, double &max_val, const MP
I_Comm &icomm) ;

30:

31:

