
./main.cpp Wed Jan 07 11:21:15 2026 1

1: // MPI code in C++.

2: // See [Gropp/Lusk/Skjellum, "Using MPI", p.33/41 etc.]

3: // and /opt/mpich/include/mpi2c++/comm.h for details

4:

5: #include "vec_func.h"

6: #include <iostream> // MPI

7: #include <mpi.h>

8: using namespace std;

9:

10: int main(int argc, char *argv[])

11: {

12: MPI_Comm icomm = MPI_COMM_WORLD;

13: MPI_Init(&argc, &argv);

14:

15: int myrank;

16: MPI_Comm_rank(icomm, &myrank);

17:

18: // E5

19: vector<double> x(10,3);

20: if(myrank==0) {cout << endl << "E5" << endl;}

21: vecdebug(x, icomm);

22:

23: // E6

24: vector<double> y(10,1.0/3);

25: double res = par_scalar(x,y,icomm);

26: if(myrank==0)

27: {

28: cout << endl << endl << "E6" << endl;

29: cout << "<x,y> = " << res << endl << endl;

30: }

31:

32: // E7

33: vector<double> a{myrank*10, myrank*10-1, myrank*10-2};

34: if(myrank==0) {cout << "E7\n" << "original vector" << endl;}

35: vecdebug(a, icomm);

36: double min_val, max_val;

37: min_max_exch(a, min_val, max_val, icomm);

38: if(myrank==0) {cout << "min = " << min_val << "\tmax = " << max_val << endl

<< endl << "vector after changing min-max" << endl;}

39: vecdebug(a, icomm);

40:

41: // E8

42: int n = 20;

43: vector<double> c(n);

44: for(size_t i=0; i<n; ++i)

45: {

46: c[i] = myrank*100 +(i%5)*10+i;

47: }

48: vector<double> recv(n);

49: MPI_Alltoall(c.data(), 5, MPI_DOUBLE, recv.data(), 5, MPI_DOUBLE, icomm);

50: if(myrank==0) {cout << endl << "Ex 8\n" << "Alltoall" << endl;}

51: vecdebug(recv, icomm);

52:

53: MPI_Alltoall(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, c.data(), 5, MPI_DOUBLE, icomm)

;

54: if(myrank==0) {cout << endl << "Ex 8\n" << "Alltoall - IN_PLACE" << endl;}

55: vecdebug(c, icomm);

56:

57:

58:

59: MPI_Finalize();

60:

61: return 0;

62: }

63:

64:

Mobile User

./vec_func.cpp Wed Jan 07 11:21:15 2026 1

1: #include "vec_func.h"

2: #include <cassert>

3: #include <cstring>

4: #include <iostream>

5: #include <mpi.h> // MPI

6: #include <string>

7: using namespace std;

8:

9: // see http://www.open-mpi.org/doc/current

10: // for details on MPI functions

11:

12: void vecdebug(vector<double> const & x, const MPI_Comm &icomm)

13: {

14: int myrank, size;

15: MPI_Comm_rank(icomm, &myrank);

16: MPI_Comm_size(icomm, &size);

17: int ierr;

18:

19: int n = x.size();

20:

21: int take_process;

22: for(int i=0; i<size; ++i)

23: {

24: MPI_Barrier(icomm);

25: if(myrank == 0) // only one process for input

26: {

27: cout << "\nChoose next process for printing vector (0-3): ";

28: cout.flush();

29: cin >> take_process; // no check for wrong input

30: }

31:

32: ierr = MPI_Bcast(&take_process, 1, MPI_INT, 0, icomm); // broadcast

value of "take_process" to all processes -> all know what’s going on

33: // information comes from process 0

34: assert(ierr == 0);

35:

36: MPI_Barrier(icomm);

37:

38: if(take_process == myrank)

39: {

40: for(int k=0; k<n; ++k)

41: {

42: cout << "x_" << k << " = " << x[k] << " (" << myrank

 << ")\t";

43: cout.flush();

44: // in brackets we have the actual process

45: }

46: cout << endl;

47: cout.flush();

48: }

49:

50: MPI_Barrier(icomm);

51: }

52: // to avoid some output chaos with cout you could also do it with MPI_Send a

nd MPI_Recv

53:

54: return;

55: }

56:

57:

58: double par_scalar(vector<double> const & x, vector<double> const & y, const MPI_Comm

 &icomm)

59: {

60: assert(x.size()==y.size());

61:

62: double sum_local = 0;

63: double sum_global = 0;

64:

Mobile User

./vec_func.cpp Wed Jan 07 11:21:15 2026 2

65: for(size_t k=0; k<x.size(); ++k)

66: {

67: sum_local += x[k]*y[k];

68: }

69:

70: auto ierr = MPI_Allreduce(&sum_local, &sum_global, 1, MPI_DOUBLE, MPI_SUM, i

comm); // reduce local sums to global sum

71: assert(ierr == 0);

72:

73: return sum_global;

74: }

75:

76:

77: void min_max_exch(vector<double> &x, double &min_val, double &max_val, const MPI_Com

m &icomm)

78: {

79: int myrank;

80: MPI_Comm_rank(icomm, &myrank);

81: int local_n = x.size();

82: int global_offset = myrank * local_n; // for interchanging

83:

84: struct {double value; int index;} local_min, local_max, global_min, global_m

ax; // global index

85:

86: local_min.value = x[0];

87: local_max.value = x[0];

88: local_min.index = global_offset;

89: local_max.index = global_offset;

90:

91: // finding local min/max with the corresponding global index

92: for (int i = 1; i < local_n; ++i)

93: {

94: if (x[i] < local_min.value)

95: {

96: local_min.value = x[i];

97: local_min.index = global_offset + i;

98: }

99: if (x[i] > local_max.value)

100: {

101: local_max.value = x[i];

102: local_max.index = global_offset + i;

103: }

104: }

105:

106: // reduction to the global one including the global index (need it later for

 interchanging)

107: MPI_Allreduce(&local_min, &global_min, 1, MPI_DOUBLE_INT, MPI_MINLOC, icomm)

;

108: MPI_Allreduce(&local_max, &global_max, 1, MPI_DOUBLE_INT, MPI_MAXLOC, icomm)

;

109: min_val = global_min.value;

110: max_val = global_max.value;

111:

112: // calculating the process and the local index for interchanging the min and

 max value

113: int rank_min = global_min.index / local_n;

114: int rank_max = global_max.index / local_n;

115: int local_min_idx = global_min.index % local_n;

116: int local_max_idx = global_max.index % local_n;

117:

118: // interchanging

119: if (rank_min != rank_max)

120: {

121: double recv_value;

122: if (myrank == rank_min)

123: {

124: MPI_Sendrecv(&x[local_min_idx], 1, MPI_DOUBLE, rank_max, 0, &recv_va

lue, 1, MPI_DOUBLE, rank_max, 0, icomm, MPI_STATUS_IGNORE); // from last it gets receiv

Mobile User

./vec_func.cpp Wed Jan 07 11:21:15 2026 3

ed, first send it to

125: x[local_min_idx] = recv_value;

126: }

127:

128: if (myrank == rank_max)

129: {

130: MPI_Sendrecv(&x[local_max_idx], 1, MPI_DOUBLE, rank_min, 0, &recv_va

lue, 1, MPI_DOUBLE, rank_min, 0, icomm, MPI_STATUS_IGNORE);

131: x[local_max_idx] = recv_value;

132: }

133:

134: }

135: else // min and max value are on same process

136: {

137: swap(x[local_min_idx], x[local_max_idx]);

138: }

139:

140: return;

141: }

Mobile User

./vec_func.h Wed Jan 07 11:21:15 2026 1

1: // general header for all functions in directory

2:

3: #pragma once

4:

5: #include <mpi.h>

6: #include <vector>

7:

8: /** Debug and print the vector with MPI, you can choose the process which should

 present its values

9: @param[in] x vector to print

10: @param[in] icomm the MPI process group that is used.

11: */

12: void vecdebug(std::vector<double> const & x, const MPI_Comm &icomm);

13:

14: /** Calculate the scalar product of two vectors (MPI)

15: @param[in] x vector

16: @param[in] y vector

17: @param[in] icomm the MPI process group that is used.

18: @return sum euclidean scalar product

19: */

20: double par_scalar(std::vector<double> const & x, std::vector<double> const & y, cons

t MPI_Comm &icomm);

21:

22:

23: /** Determine min and max value of the vector and exchanging those two values

24: @param[in,out] x vector

25: @param[in,out] min_val

26: @param[in,out] max_val

27: @param[in] icomm the MPI process group that is used.

28: */

29: void min_max_exch(std::vector<double> &x, double &min_val, double &max_val, const MP

I_Comm &icomm);

30:

31:

