
./greetings.cpp Wed Jan 07 11:21:15 2026 1

1: #include "greetings.h"

2: #include <cassert>

3: #include <cstring>

4: #include <iostream>

5: #include <mpi.h> // MPI

6: #include <string>

7: using namespace std;

8:

9: // see http://www.open-mpi.org/doc/current

10: // for details on MPI functions

11:

12: void greetings(MPI_Comm const &icomm)

13: {

14: int myrank, numprocs;

15: MPI_Comm_rank(icomm, &myrank); // my MPI-rank

16: MPI_Comm_size(icomm, &numprocs); // #MPI processes

17: char *name = new char [MPI_MAX_PROCESSOR_NAME],

18: *chbuf = new char [MPI_MAX_PROCESSOR_NAME];

19:

20: int reslen, ierr;

21: MPI_Get_processor_name(name, &reslen);

22:

23: if (0==myrank) {

24: cout << " " << myrank << " runs on " << name << endl;

25: for (int i = 1; i < numprocs; ++i) {

26: MPI_Status stat;

27: stat.MPI_ERROR = 0; // M U S T be initialized!!

28:

29: ierr = MPI_Recv(chbuf, MPI_MAX_PROCESSOR_NAME, MPI_CHAR, MPI_ANY_SOURCE,

 MPI_ANY_TAG, icomm, &stat);

30: assert(0==ierr);

31:

32: cout << " " << stat.MPI_SOURCE << " runs on " << chbuf;

33: int count;

34: MPI_Get_count(&stat, MPI_CHAR, &count); // size of received data

35: cout << " (length: " << count << ")" << endl;

36: // stat.Get_error() // Error code

37: }

38: }

39: else {

40: int dest = 0;

41: ierr = MPI_Send(name, strlen(name) + 1, MPI_CHAR, dest, myrank, icomm);

42: assert(0==ierr);

43: }

44: delete [] chbuf;

45: delete [] name;

46: return;

47: }

48:

49:

50: void greetings_cpp(MPI_Comm const &icomm)

51: {

52: int myrank, numprocs;

53: MPI_Comm_rank(icomm, &myrank); // my MPI-rank

54: MPI_Comm_size(icomm, &numprocs); // #MPI processes

55: string name(MPI_MAX_PROCESSOR_NAME,’#’), // C++

56: recvbuf(MPI_MAX_PROCESSOR_NAME,’#’); // C++: receive buffer, don’t chan

ge size

57:

58: int reslen, ierr;

59: MPI_Get_processor_name(name.data(), &reslen);

60: name.resize(reslen); // C++

61:

62: if (0==myrank) {

63: cout << " " << myrank << " runs on " << name << endl;

64: for (int i = 1; i < numprocs; ++i) {

65: MPI_Status stat;

66: stat.MPI_ERROR = 0; // M U S T be initialized!!

Mobile User

./greetings.cpp Wed Jan 07 11:21:15 2026 2

67:

68: //ierr = MPI_Recv(recvbuf.data(), MPI_MAX_PROCESSOR_NAME, MPI_CHAR, MPI_

ANY_SOURCE, MPI_ANY_TAG, icomm, &stat);

69: ierr = MPI_Recv(recvbuf.data(), MPI_MAX_PROCESSOR_NAME, MPI_CHAR, i, i,

icomm, &stat);

70: assert(0==ierr);

71:

72: int count;

73: MPI_Get_count(&stat, MPI_CHAR, &count); // size of received data

74: string const chbuf(recvbuf,0,count); // C++

75: cout << " " << stat.MPI_SOURCE << " runs on " << chbuf;

76: cout << " (length: " << count << ")" << endl;

77: // stat.Get_error() // Error code

78: }

79: }

80: else {

81: int dest = 0;

82: ierr = MPI_Send(name.data(), name.size(), MPI_CHAR, dest, myrank, icomm);

83: assert(0==ierr);

84: }

85: return;

86: }

Mobile User

./greetings.h Wed Jan 07 11:21:15 2026 1

1: // general header for all functions in directory

2:

3: #ifndef GREETINGS_FILE

4: #define GREETINGS_FILE

5:

6: #include <mpi.h>

7:

8: /** Each process finds out its host, sends this information

9: to root process 0 which prints this information for each process.

10: @param[in] icomm the MPI process group that is used.

11: */

12:

13: void greetings(MPI_Comm const &icomm);

14: void greetings_cpp(MPI_Comm const &icomm);

15:

16: #endif

./main.cpp Wed Jan 07 11:21:15 2026 1

1: // MPI code in C++.

2: // See [Gropp/Lusk/Skjellum, "Using MPI", p.33/41 etc.]

3: // and /opt/mpich/include/mpi2c++/comm.h for details

4:

5: #include "greetings.h"

6: #include <iostream> // MPI

7: #include <mpi.h>

8: using namespace std;

9:

10: int main(int argc, char *argv[])

11: {

12: MPI_Comm icomm = MPI_COMM_WORLD;

13: MPI_Init(&argc, &argv); // E2

14:

15: int myrank, numprocs;

16: MPI_Comm_rank(icomm, &myrank); // my MPI-rank, process-ID

17: MPI_Comm_size(icomm, &numprocs); // number of all processes

18:

19: // cout << "\n Process nr. " << myrank << " says, there are " << numprocs <<

 " processes running.\n \n"; //

20:

21: // E3

22: if (0==myrank) {

23: cout << "\n Process nr. " << myrank << " says, there are " << numprocs << "

processes running.\n \n";

24: }

25:

26: //greetings(icomm);

27: greetings_cpp(icomm); // E4

28:

29:

30: MPI_Finalize(); // E2

31:

32: return 0;

33: }

34:

35:

