Fa ~ EY
./greetings.cpp Wed Jan 07 11:21:15 2026 1

1: #include

2: #include

3: #include

4: #include

5: #include // MPI
6: #include

7: using namespace std;

8

9: // see http://www.open-mpi.org/doc/current
10: // for details on MPI functions

11:

12: void greetings (MPI_Comm const &icomm)

13: {

14: int myrank, numprocs;

15: MPI_Comm_rank (icomm, &myrank); // my MPI-rank

16: MPI_Comm_size (icomm, &numprocs); // #MPI processes

17: char *name = new char [MPI_MAX_ PROCESSOR_NAME],

18: *chbuf = new char [MPI_MAX PROCESSOR_NAME];

19:

20: int reslen, ierr;

21: MPI_Get_processor_name (name, &reslen);

22

23: if (O0==myrank) {

24: cout << << myrank << << name << endl;

25: for (int i = 1; i < numprocs; ++i) {

26: MPI_Status stat;

27: stat .MPI_ERROR = 0; // MUS T be initialized!!

28

29: ierr = MPI_Recv (chbuf, MPI_MAX_ PROCESSOR_NAME, MPI_CHAR, MPI_ANY_SOURCE,
MPI_ANY_ TAG, icomm, é&stat);

30: assert (O==ierr);

31:

32: cout << << stat.MPI_SOURCE << << chbuf;

33: int count;

34: MPI_Get_count (&stat, MPI_CHAR, &count); // size of received data

35: cout << << count << << endl;

36: // stat.Get_error() // Error code

37: }

38: }

39: else {

40: int dest = 0;

41 : ierr = MPI_Send (name, strlen(name) + 1, MPI_CHAR, dest, myrank, icomm);

42 assert (O==ierr);

43: }

44 . delete [] chbuf;

45: delete [] name;

46: return;

47: }

48:

49:

50: void greetings_cpp (MPI_Comm const &icomm)

51: {

52: int myrank, numprocs;

53: MPI_Comm_rank (icomm, &myrank); // my MPI-rank

54: MPI_Comm_size (icomm, &numprocs); // #MPI processes

55: string name (MPI_MAX_PROCESSOR_NAME,), // C++

56: recvbuf (MPI_MAX_PROCESSOR_NAME,) ; // C++: receive buffer, don’t chan
ge size

57:

58: int reslen, ierr;

59: MPI_Get_processor_name (name.data(), &reslen);

60: name.resize (reslen); // C++

61:

62: if (O0==myrank) {

63: cout << " << myrank << << name << endl;

64: for (int i = 1; i < numprocs; ++i) {

65: MPI_Status stat;

66: stat .MPI_ERROR = 0; // MUS T be initialized!!

Mobile User

./greetings.cpp Wed Jan 07 11:21:15 2026 2

67:

68: //ierr = MPI_Recv (recvbuf.data (), MPI_MAX PROCESSOR_NAME, MPI_ CHAR, MPI _
ANY SOURCE, MPI_ ANY TAG, icomm, &stat);

69: ierr = MPI_Recv (recvbuf.data(), MPI_MAX PROCESSOR_NAME, MPI_CHAR, i, i,
icomm, &stat);

70: assert (O==ierr);

71:

72 int count;

73: MPI_Get_count (&stat, MPI_CHAR, &count); // size of received data

74: string const chbuf (recvbuf, 0, count) ; // C++

75: cout << << stat.MPI_SOURCE << << chbuf;

76: cout << << count << << endl;

77 : // stat.Get_error() // Error code

78 : }

79: }

80: else {

81: int dest = 0;

82: ierr = MPI_Send(name.data(), name.size(), MPI_CHAR, dest, myrank, icomm);

83: assert (O==ierr);

84: }

85: return;

86: }

Mobile User

./greetings.h Wed Jan 07 11:21:15 2026 1

/7 general header for all functions in directory

#ifndef GREETINGS_FILE
#define GREETINGS_FILE

#include <mpi.h>

Vadd Each process finds out its host, sends this information
to root process 0 which prints this information for each process.
@param[in] icomm the MPI process group that is used.

*/

void greetings (MPI_Comm const &icomm) ;
void greetings_cpp (MPI_Comm const &icomm);

#endif

./main.cpp Wed Jan 07 11:21:15 2026 1

1: // MPI code in C++.
2: // See [Gropp/Lusk/Skjellum, "Using MPI", p.33/41 etc.]
3: // and /opt/mpich/include/mpil2c++/comm.h for details
4:
5: #include "greetings.h"
6: #include <iostream> // MPI
7: #include <mpi.h>
8: using namespace std;
9:
10: int main (int argc, char *argv[])
11: |
12: MPI_Comm icomm = MPI_COMM_WORLD;
13: MPI_Init (&argc, &argv); // E2
14:
15: int myrank, numprocs;
16: MPI_Comm_rank (icomm, &myrank); // my MPI-rank, process-—ID
17: MPI_Comm_size (icomm, &numprocs); // number of all processes
18:
19: // cout << "\n Process nr. " << myrank << " says, there are " << numprocs <<
" processes running.\n \n"; //
20:
21: // E3
22 if (O0==myrank) {
23: cout << "\n Process nr. " << myrank << " says, there are " << numprocs << "
processes running.\n \n";
24: }
25:
26: //greetings (icomm) ;
27: greetings_cpp (icomm); // E4
28:
29:
30: MPI_Finalize(); // E2
31:
32: return 0;
33: }
34:

35:

