
adapt_h.m Wed Jan 14 20:51:48 2026 1

1: % h-adaptivity

2: % for a given mesh and solution we generate a new adapted

mesh by splitting

3: % the elements with large errors into two new elements

4:

5: function mesh = adapt_h(nodes,u,lambda)

6: n_nodes = length(nodes);

7: flux_jumps = jumps_flux(nodes,u,lambda);

8: alpha = 0.5; % parameter for choosing elements to r

efine

9: crit_error = alpha*max(abs(flux_jumps));

10: mesh = nodes; % will be the new nodes/mesh

11: % finding elements to refine

12: for i=2:n_nodes-1

13: if abs(flux_jumps(i)) > crit_error

14: mesh = [mesh, nodes(i-1)+(nodes(i)-nodes(i-1))

/2, nodes(i)+(nodes(i+1)-nodes(i))/2];

15: end

16: end

17: mesh = unique(mesh);

18: end

Mobile User

adapt_r.m Wed Jan 14 20:51:48 2026 1

1: % r-adaptivity

2: % for a given mesh and solution we generate a new adapted

mesh by moving

3: % the existing nodes within the mesh; they get moved to a

position in order

4: % to equally distribute the error over the intervall

5: % we use the De Boor’s algorithm (Huang, Russell; Adaptive

 Moving Mesh

6: % Methods; $ 2.2.1)

7:

8: function mesh = adapt_r(nodes,u,lambda)

9: n_nodes = length(nodes);

10: flux_jumps = abs(jumps_flux(nodes,u,lambda));

11: p = 1/2*(flux_jumps(1:end-1) + flux_jumps(2:end)); %

has values for each element

12: h_vec = nodes(2:end) - nodes(1:end-1);

13: P = cumsum(h_vec’.*p);

14: P = [0;P];

15: xi = linspace(0,1,n_nodes);

16: mesh = nodes;

17: for j=2:n_nodes-1

18: idx_k = find(xi(j)*P(end) <= P, 1, ’first’);

19: if idx_k > 1

20: x_j = nodes(idx_k-1) + xi(j)*(P(end)-P(idx_k -

1))/p(idx_k -1);

21: mesh(j) = x_j;

22: end

23: end

24: end

Mobile User

assembling.m Wed Jan 14 20:51:48 2026 1

1: % assembling of the stiffness matrix and the load vector f

or a given mesh

2: % in 1D

3:

4: function [K,f_vec] = assembling(nodes,lambda,f)

5: n_nodes = length(nodes);

6: K = zeros(n_nodes);

7: f_vec = zeros(n_nodes,1);

8: h_diff_vec = nodes(2:end) - nodes(1:end-1); % step wid

th

9: for k = 1:n_nodes-1

10: % stiffness matrix

11: lambda_int = integral(lambda, nodes(k), nodes(k+1)

);

12: K_loc = lambda_int/h_diff_vec(k)^2*[1,-1;-1,1];

13: K(k:k+1,k:k+1) = K(k:k+1,k:k+1) + K_loc;

14: % right hand side

15: phi_left = @(x) (nodes(k+1)-x)/h_diff_vec(k).*f(x)

;

16: phi_right = @(x) (x-nodes(k))/h_diff_vec(k).*f(x);

17: f_loc = [integral(phi_left,nodes(k),nodes(k+1)); i

ntegral(phi_right,nodes(k),nodes(k+1))];

18: f_vec(k:k+1) = f_vec(k:k+1) + f_loc;

19: end

20: end

Mobile User

ex_6_a.m Wed Jan 14 20:51:48 2026 1

1: % Sheet 6 / Ex A

2: clf, clear, close all

3:

4: % you need to play around with the parameters (enough star

ting nodes,

5: % refinements etc)

6:

7: %p_vec = [5,10,20,100];

8: p = 100; % choose your p

9: n_nodes = 10; % number of nodes on the coarse mesh (eve

n - x=0 not included, odd - x=0 included)

10: nodes = linspace(-1,1,n_nodes);

11: f = @(x) 2*p^3.*x./(p^2.*x.^2+1).^2;

12: u_exact = @(x) atan(p*x);

13: lambda = @(x) 1+0*x;

14:

15: % h-adaptivity

16: it_h = 4; % number of refinements with h-adaptivity

17: for it = 1:it_h

18: [K,f_vec] = assembling(nodes,lambda,f);

19: % adaption for boundary (dirichlet left)

20: f_vec(1) = f_vec(1) + K(1,1)*1e6*(-atan(p));

21: K(1,1) = K(1,1)*(1+1e6);

22: % adaption for boundary (neumann right)

23: f_vec(end) = f_vec(end) + p/(p^2+1);

24:

25: % solving the system

26: u = K\f_vec;

27:

28: % adapting the mesh

29: if it < it_h

30: nodes = adapt_h(nodes,u,lambda);

31: end

32: end

33:

34: figure(1)

35: hold on

36: plot(nodes,u,’-o’)

37: fplot(u_exact,[-1,1])

38: title([’h-adapt: u_h, u for p=’ num2str(p) ’ after ’ num2s

tr(it_h) ’ refinements, nstart=’ num2str(n_nodes) ’, nend=’ num2s

tr(length(nodes))]);

39: xlabel(’x values’);

40: ylabel(’u’);

41: legend(’u_h’, ’u’);

42: grid on;

43: hold off

44: file_name_1 = [’ex_6_A_h-adap_p’ num2str(p) ’_ref’ num2str

(it_h) ’_n_nodes’ num2str(n_nodes) ’.jpg’];

45: saveas(figure(1), file_name_1);

Mobile User

ex_6_a.m Wed Jan 14 20:51:48 2026 2

46:

47:

48: % r-adaptivity

49: n_nodes_r = 20; % number of nodes on the coarse mesh (e

ven - x=0 not included, odd - x=0 included)

50: nodes_r = linspace(-1,1,n_nodes_r);

51: it_r = 3; % number of refinements with r-adaptivity

52: for it = 1:it_r

53: [K,f_vec] = assembling(nodes_r,lambda,f);

54: % adaption for boundary (dirichlet left)

55: f_vec(1) = f_vec(1) + K(1,1)*1e6*(-atan(p));

56: K(1,1) = K(1,1)*(1+1e6);

57: % adaption for boundary (neumann right)

58: f_vec(end) = f_vec(end) + p/(p^2+1);

59:

60: % solving the system

61: u_r = K\f_vec;

62:

63: % adapting the mesh

64: if it < it_r

65: nodes_r = adapt_r(nodes_r,u_r,lambda);

66: end

67: end

68:

69: figure(2)

70: hold on

71: plot(nodes_r,u_r,’-o’)

72: fplot(u_exact,[-1,1])

73: title([’r-adapt: u_h, u for p=’ num2str(p) ’ after ’ num2s

tr(it_r) ’ refinements and n=’ num2str(n_nodes_r)]);

74: xlabel(’x values’);

75: ylabel(’u’);

76: legend(’u_h’, ’u’);

77: grid on;

78: hold off

79: file_name_2 = [’ex_6_A_r-adap_p’ num2str(p) ’_ref’ num2str

(it_r) ’_n_nodes’ num2str(n_nodes_r) ’.jpg’];

80: saveas(figure(2), file_name_2);

ex_6_b.m Wed Jan 14 20:51:48 2026 1

1: % Sheet 6 / Ex B

2: clf, clear, close all

3:

4: % you need to play around with the parameters (enough star

ting nodes,

5: % refinements etc)

6:

7: n_nodes = 10; % number of nodes on the coarse mesh

8: nodes = linspace(0,1,n_nodes);

9: f = @(x) 0;

10: lambda = @(x) (x<1/sqrt(2))*1 + (x>=1/sqrt(2))*10;

11:

12: % h-adaptivity

13: it_h = 10; % number of refinements with h-adaptivity

14: for it = 1:it_h

15: [K,f_vec] = assembling(nodes,lambda,f);

16: % adaption for dirichlet boundary

17: K(1,1) = K(1,1)*(1 + 1e6);

18: f_vec(end) = K(end,end)*1e6;

19: K(end,end) = K(end,end)*(1 + 1e6);

20:

21: % solving the system

22: u = K\f_vec;

23:

24: % adapting the mesh

25: if it < it_h

26: nodes = adapt_h(nodes,u,lambda);

27: end

28: end

29:

30: figure(1)

31: hold on

32: plot(nodes,u,’-o’)

33: title([’h-adapt: u_h after ’ num2str(it_h) ’ refinements,

nstart=’ num2str(n_nodes) ’, nend=’ num2str(length(nodes))]);

34: xlabel(’x values’);

35: ylabel(’u’);

36: grid on;

37: hold off

38: file_name_1 = [’ex_6_B_h-adap_ref’ num2str(it_h) ’_n_nodes

’ num2str(n_nodes) ’.jpg’];

39: saveas(figure(1), file_name_1);

40:

41:

42: % r-adaptivity

43: n_nodes_r = 10; % number of nodes on the coarse mesh

44: nodes_r = linspace(0,1,n_nodes_r);

45: it_r = 3; % number of refinements with r-adaptivity

46: for it = 1:it_r

47: [K,f_vec] = assembling(nodes_r,lambda,f);

ex_6_b.m Wed Jan 14 20:51:48 2026 2

48: % adaption for dirichlet boundary

49: K(1,1) = K(1,1)*(1 + 1e6);

50: f_vec(end) = K(end,end)*1e6;

51: K(end,end) = K(end,end)*(1 + 1e6);

52:

53: % solving the system

54: u_r = K\f_vec;

55:

56: % adapting the mesh

57: if it < it_r

58: nodes_r = adapt_r(nodes_r,u_r,lambda);

59: end

60: end

61:

62: figure(2)

63: hold on

64: plot(nodes_r,u_r,’-o’)

65: title([’r-adapt: u_h after ’ num2str(it_r) ’ refinements a

nd n=’ num2str(n_nodes_r)]);

66: xlabel(’x values’);

67: ylabel(’u’);

68: grid on;

69: hold off

70: file_name_2 = [’ex_6_B_r-adap_ref’ num2str(it_r) ’_n_nodes

’ num2str(n_nodes_r) ’.jpg’];

71: saveas(figure(2), file_name_2);

ex_6_c.m Wed Jan 14 20:51:48 2026 1

1: % Sheet 6 / Ex C

2: clf, clear, close all

3:

4: % you need to play around with the parameters (enough star

ting nodes,

5: % refinements etc)

6:

7: p = 70; % parameter

8: %p = -70;

9:

10: n_nodes = 10; % number of nodes on the coarse mesh

11: nodes = linspace(0,1,n_nodes);

12: f = @(x) 0;

13: lambda = @(x) 1+0*x;

14:

15: % h-adaptivity

16: it_h = 10; % number of refinements with h-adaptivity

17: for it = 1:it_h

18: [K,f_vec] = assembling(nodes,lambda,f);

19: % need to add the term for phi’*phi (convection term)

20: conv_loc = p/2*[-1,-1;1,1];

21: for k=1:length(nodes)-1

22: K(k:k+1,k:k+1) = K(k:k+1,k:k+1) + conv_loc;

23: end

24:

25: % adaption for dirichlet boundary

26: K(1,1) = K(1,1)*(1 + 1e6);

27: f_vec(end) = K(end,end)*1e6;

28: K(end,end) = K(end,end)*(1 + 1e6);

29:

30: % solving the system

31: u = K\f_vec;

32:

33: % adapting the mesh

34: if it < it_h

35: nodes = adapt_h(nodes,u,lambda);

36: end

37: end

38:

39: figure(1)

40: hold on

41: plot(nodes,u,’-o’)

42: title([’h-adapt: u_h after ’ num2str(it_h) ’ refinements,

nstart=’ num2str(n_nodes) ’, nend=’ num2str(length(nodes))]);

43: xlabel(’x values’);

44: ylabel(’u’);

45: grid on;

46: hold off

47: file_name_1 = [’ex_6_C_h-adap_ref’ num2str(it_h) ’_n_nodes

’ num2str(n_nodes) ’.jpg’];

Mobile User

ex_6_c.m Wed Jan 14 20:51:48 2026 2

48: saveas(figure(1), file_name_1);

49:

50:

51: % r-adaptivity

52: n_nodes_r = 20; % number of nodes on the coarse mesh

53: nodes_r = linspace(0,1,n_nodes_r);

54: it_r = 3; % number of refinements with r-adaptivity

55: for it = 1:it_r

56: [K,f_vec] = assembling(nodes_r,lambda,f);

57: % need to add the term for phi’*phi (convection term)

58: conv_loc = p/2*[-1,-1;1,1];

59: for k=1:length(nodes_r)-1

60: K(k:k+1,k:k+1) = K(k:k+1,k:k+1) + conv_loc;

61: end

62:

63: % adaption for dirichlet boundary

64: K(1,1) = K(1,1)*(1 + 1e6);

65: f_vec(end) = K(end,end)*1e6;

66: K(end,end) = K(end,end)*(1 + 1e6);

67:

68: % solving the system

69: u_r = K\f_vec;

70:

71: % adapting the mesh

72: if it < it_r

73: nodes_r = adapt_r(nodes_r,u_r,lambda);

74: end

75: end

76:

77: figure(2)

78: hold on

79: plot(nodes_r,u_r,’-o’)

80: title([’r-adapt: u_h after ’ num2str(it_r) ’ refinements a

nd n=’ num2str(n_nodes_r)]);

81: xlabel(’x values’);

82: ylabel(’u’);

83: grid on;

84: hold off

85: file_name_2 = [’ex_6_C_r-adap_ref’ num2str(it_r) ’_n_nodes

’ num2str(n_nodes_r) ’.jpg’];

86: saveas(figure(2), file_name_2);

jumps_flux.m Wed Jan 14 20:51:48 2026 1

1: % calculation of the flux jumps according to the chosen me

sh

2: % nodes - corresponding to the mesh

3: % u - approximation

4: % flux_jumps - jump of the flux in each node of the mesh i

ncluding the

5: % paramter function lambda

6:

7: function flux_jumps = jumps_flux(nodes, u, lambda)

8: n_nodes = length(nodes);

9: flux_jumps = zeros(n_nodes,1);

10: diff_u = u(2:end) - u(1:end-1);

11: diff_x = nodes(2:end) - nodes(1:end-1);

12: eps = 1e-8;

13: for i = 2:n_nodes-1

14: flux_jumps(i) = diff_u(i)/diff_x(i)*lambda(nodes(i

)+eps) - diff_u(i-1)/diff_x(i-1)*lambda(nodes(i)-eps);

15: end

16: end

Mobile User

