Wed Jan 14 20:51:48 2026 1

% h—adaptivity
2: % for a given mesh and solution we generate a new adapted

mesh by splitting

oo

0 J oy U1 bW

efine
9:
10:
11:
12:
13:
14:

/2, nodes (i

15:
16:
17:
18: end

the elements with large errors into two new elements

function mesh = adapt_h (nodes,u, lambda)

n_nodes = length (nodes);
flux_jumps = Jjumps_flux(nodes,u, lambda);
alpha = 0.5; % parameter for choosing elements to r

crit_error = alpha*max(abs (flux_jumps));
mesh = nodes; % will be the new nodes/mesh
% finding elements to refine

for i=2:n_nodes-1

if abs (flux_jumps(i)) > crit_error
mesh = [mesh, nodes(i-1)+ (nodes (i)-nodes (i-1))
)+ (nodes (i+1) —nodes (i)) /21; V//
end
end

mesh = unique (mesh) ;

chg é’orq/zr\c{kj a(%ca/l@

Mobile User

adapt_r.m Wed Jan 14 20:51:48 2026 1

1: r—adaptivity

2: for a given mesh and solution we generate a new adapted
mesh by moving

3: & the existing nodes within the mesh; they get moved to a
position in order

4: to equally distribute the error over the intervall

5: we use the De Boor’s algorithm (Huang, Russell; Adaptive
Moving Mesh

6: % Methods; S 2.2.1)

\© oo o\

oo oo

\o

7
8: function mesh = adapt_r (nodes,u, lambda)
9: n_nodes = length (nodes);
10: flux_jumps = abs (jumps_flux (nodes,u, lambda)) ;
11: p = 1/2* (flux_jumps (l:end-1) + flux_Jjumps (2:end)) ; %
has values for each element
12: h _vec = nodes(2:end) - nodes(l:end-1);
13: P = cumsum(h_vec’ .*p); V
14: P = [0;P];
15: xi = linspace (0,1,n_nodes);
16: mesh = nodes;
17: for j=2:n_nodes-1
18: idx_k = find(xi(j)*P(end) <= P, 1, "first’);
19: if idx_ k > 1
20: X_J = nodes (idx_k-1) + xi(3j)*(P(end)-P (idx_k -
1)) /p(idx_k -1);
21: mesh (j) = x_7J;
22 end
23: end

24: end

Mobile User

assembling.m Wed Jan 14 20:51:48 2026 1

l: % assembling of the stiffness matrix and the load vector f
or a given mesh

2: % in 1D
3:
4: function [K,f_vec] = assembling(nodes, lambda, f)
5: n_nodes = length (nodes);
6: K = zeros (n_nodes);
7 f vec = zeros(n_nodes,1);
8: h_diff vec = nodes(2:end) - nodes(l:end-1); % step wid
th
9: for k = 1:n_nodes-1
10: % stiffness matrix
11: lambda_int = integral (lambda, nodes(k), nodes (k+1)
)i
12: K_loc = lambda_int/h_diff vec(k)”"2*[1,-1;-1,11;
13: K(k:k+1,k:k+1) = K(k:k+1,k:k+1) + K_loc;
14: % right hand side
15: phi_left = @(x) (nodes(k+l)-x)/h_diff_ vec (k) .*f (x)
14
16: phi_right = Q@(x) (x—nodes(k))/h_diff_vec(k).*f(x);
17: f_loc = [integral (phi_left,nodes (k),nodes (k+1)); i
ntegral (phi_right, nodes (k) ,nodes (k+1))1;
18: f vec(k:k+1l) = f_vec(k:k+1l) + f_loc;
19: end
20: end

v

Mobile User

ex_6_a.m Wed Jan 14 20:51:48 2026 1

% Sheet 6 / Ex A
clf, clear, close all

S w N

% you need to play around with the parameters (enough star
ting nodes,

5: % refinements etc)

6:

7: %p_vec = [5,10,20,100];

8: p = 100; % choose your p

9: n_nodes = 10; % number of nodes on the coarse mesh (eve

n — x=0 not included, odd - x=0 included)

10: nodes = linspace(-1,1,n_nodes);
11: £ = @(x) 2*p"3.*x./(p"2.*x.72+1) ."2; V/
12: u_exact = @(x) atan(p*x);
13: lambda = Q@ (x) 1+0*x;
14:
15: % h—adaptivity
16: it_h = 4; % number of refinements with h-adaptivity
17: for it = 1l:it_h
18: [K, f_vec] = assembling(nodes, lambda, f) ;

19: % adaption for boundary (dirichlet left)
20: f_vec(l) = f_vec(l) + K(1,1)*1le6*(-atan(p));
21: K(1,1) = K(1,1)*(1+1eb6);
22: % adaption for boundary (neumann right)
23: f_vec(end) = f_vec(end) + p/(p"2+1);
24
25: % solving the system
26: u = K\f_vec;
27 :
28: % adapting the mesh
29: if it < it_h
30: nodes = adapt_h (nodes,u, lambda) ;
31: end
32: end
33:

34: figure(l)

35: hold on

36: plot (nodes,u,’ —o’")

37: fplot (u_exact,[-1,1])

38: title(["'h—adapt: u_h, u for p=’' num2str(p) ' after ' num2s
tr(it_h) ' refinements, nstart=’ num2str(n_nodes) ', nend=’ num2s
tr (length (nodes))]);

39: xlabel(’'x values'’);

40: ylabel('u’);

41: legend('u_h’, "u’);

42: grid on;

43: hold off

44: file_name_1 = ['ex_6_A h—-adap_p’ num2str(p) ’'_ref’ num2str
(it_h) ’_n_nodes’ num2str(n_nodes) ' .jpg’];

45: saveas (figure(l), file_name_1);

Mobile User

ex_6_a.m Wed Jan 14 20:51:48 2026 2

46:

47 :

48: % r—adaptivity

49: n_nodes_r = 20; % number of nodes on the coarse mesh (e
ven - x=0 not included, odd - x=0 included)

50: nodes_r = linspace(-1,1,n_nodes_r);

51: it_r = 3; % number of refinements with r—-adaptivity

52: for it = 1l:it_r

53: [K, f_vec] = assembling(nodes_r, lambda, f) ;

54: % adaption for boundary (dirichlet left)

55: f_vec(l) = f_vec(l) + K(1,1)*1leb6*(—atan(p));

56: K(1,1) = K(1,1)*(1+1eob6);

57: % adaption for boundary (neumann right)

58: f_vec(end) = f_vec(end) + p/(p"2+1);

59:

60: % solving the system

61: u_r = K\f_vec;

62:

63: % adapting the mesh

64 : if it < it_r

65: nodes_r = adapt_r (nodes_r,u_r, lambda) ;

66: end

67: end

68:

69: figure (2)

70: hold on

71: plot (nodes_r,u_r,’ —-o’)

72: fplot (u_exact,[-1,1])

73: title ([’ r—adapt: u_h, u for p=’' num2str(p) ' after ' num2s
tr(it_r) ' refinements and n=’ num2str (n_nodes_r)]);

74: xlabel ('x wvalues'’);

75: ylabel('u’);

76: legend('u_h’, "u’);

77: grid on;

78: hold off

79: file_name_2 = ['ex_6_A r—adap_p’ num2str(p) ’'_ref’ num2str
(it_r) ’'_n_nodes’ num2str(n_nodes_r) ’'.Jpg’];

80: saveas (figure(2), file_name_2);

ex_6_b.m

S w N

Wed Jan 14 20:51:48 2026 1

% Sheet 6 / Ex B
clf, clear, close all

je)

% you need to play around with the parameters (enough star

ting nodes,

5:
6:
7
8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22
23:
24 :
25:
26:
27:
28:
29:
30:
31:
32:
33:

je)

% refinements etc)

n_nodes = 10; % number of nodes on the coarse mesh
nodes = linspace(0,1,n_nodes);
f =0(x) 0;

lambda = @(x) (x<1l/sqgrt(2))*1 + (x>=1/sqgrt(2))*10;

% h—adaptivity

it_h = 10; % number of refinements with h-adaptivity
for it = 1:it_h
[K, f_vec] = assembling(nodes, lambda, f) ;

% adaption for dirichlet boundary
K(1,1) = K(1,1)*(1 + leo);

f _vec(end) = K(end,end) *1leb6;
K(end,end) = K(end,end)* (1 + 1leb6);

% solving the system
u = K\f_vec;

% adapting the mesh
if it < it_h
nodes = adapt_h (nodes,u, lambda) ;
end
end

figure (1)

hold on

plot (nodes,u, "—o")

title(['h—adapt: u_h after ' num2str(it_h) ’ refinements,

nstart=" num2str (n_nodes) ', nend=’' num2str (length (nodes))]);

34:
35:
36:
37:

38:

xlabel ('x values’);

ylabel ('u’);

grid on;

hold off

file_name_1 = ['ex_6_B_h-adap_ref’ num2str (it_h) ’'_n_nodes

" num2str (n_nodes) ' .9pg’]l;

39:
40:
471 :
42
43:
44 .
45:
46:
47 :

saveas (figure(l), file_name_1);

o

% r—adaptivity

n_nodes_r = 10; % number of nodes on the coarse mesh
nodes_r = linspace(0,1,n_nodes_r);
it_r = 3; % number of refinements with r—-adaptivity

for it = 1l:it_r
[K, f_vec] = assembling(nodes_r, lambda, f);

ex_6_b.m Wed Jan 14 20:51:48 2026 2

48: % adaption for dirichlet boundary
49: K(1,1) = K(1,1)*(1 + 1leo6);

50: f _vec(end) = K(end,end) *leb6;

51: K(end,end) = K(end,end)* (1 + 1leb);
52:

53: % solving the system

54: u_r = K\f_vec;

55:

56: % adapting the mesh

57: if it < it_r

58: nodes_r = adapt_r (nodes_r,u_r, lambda) ;
59: end

60: end

6l:

62: figure (2)

63: hold on

64: plot (nodes_r,u_r,’ —o’)

65: title ([’ r—adapt: u_h after ' num2str(it_r) ’ refinements a
nd n=" num2str (n_nodes_r)]);

66: xlabel (’'x wvalues’);

67: ylabel('u’);

68: grid on;

69: hold off

70: file_name_2 = ['ex_6_B_r—adap_ref’ num2str (it_r) ’'_n_nodes
" num2str (n_nodes_r) .Jeg’ 1

71: saveas (figure(2), file_name_2);

4

ex_6_c.m

S w N

Wed Jan 14 20:51:48 2026 1

% Sheet 6 / Ex C
clf, clear, close all

% you need to play around with the parameters (enough star

ting nodes,

5:
6:
7
8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22
23:
24 :
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
471 :
42

je)

% refinements etc)

p = 70; % parameter

gp = —=70;

n_nodes = 10; % number of nodes on the coarse mesh
nodes = linspace (0,1,n_nodes);

f = Q@(x) Oy

lambda = @(x) 1+0*x;

% h—adaptivity

it_h = 10; % number of refinements with h-adaptivity
for it = 1l:it_h
[K, f_vec] = assembling(nodes, lambda, f);

je)

% need to add the term for phi’*phi (convection term)
conv_loc = p/2*[-1,-1;1,11;
for k=1l:length (1rtodes)=1

K(k:k+1,k:k+1) = K(k:k+1l,k:k+1) + conv_loc;
end

C‘OV}CK/,(O

% adaption for dirichlet boundary
K(1,1) = K(1,1)*(1 + 1leb6);

f vec(end) = K(end,end) *leb;
K(end,end) = K(end,end)* (1 + 1leob);

% solving the system
u K\f_vec;

je)

% adapting the mesh
if it < it_h
nodes = adapt_h (nodes,u, lambda) ;
end
end

figure(l)

hold on

plot (nodes,u, " —o’)

title(["h—adapt: u_h after ' num2str(it_h) ' refinements,

nstart=" num2str (n_nodes) ', nend=’ num2str (length (nodes))]);

43:
44 .
45:
46:
47 :

xlabel ('x values’);

ylabel ("u’);

grid on;

hold off

file_name_1 = ["ex_6_C_h—-adap_ref’ num2str(it_h) ’'_n_nodes

" num2str (n_nodes) ' .9pg’l;

Mobile User

ex_6_c.m

nd

4

48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64 :
65:
66:
67:
68:
69:
70
71:
72
73:
74
75:
76:
77 :
78:
79:
80:
n=’'
81:
82:
83:
84 :
85:

num2str (n_nodes_r

86:

Wed Jan 14 20:51:48 2026 2

saveas (figure(l), file_name_1);

je)

% r—adaptivity
n_nodes_r = 20; % number of nodes on the coarse mesh
nodes_r = linspace(0,1,n_nodes_r);
it_r = 3; % number of refinements with r—-adaptivity
for it = 1l:it_r

[K, f_vec] = assembling(nodes_r, lambda, f) ;

% need to add the term for phi’ *phi (convection term)
conv_loc = p/2*[-1,-1;1,11;
for k=1l:length (nodes_r)-1

K(k:k+1,k:k+1) = K(k:k+1l,k:k+1) + conv_loc;
end

% adaption for dirichlet boundary
K(1,1) = K(1,1)*(1 + 1leb6);

f vec(end) = K(end,end) *leb6;
K(end,end) = K(end,end)* (1 + 1leob);

% solving the system
u_r = K\f_vec;
% adapting the mesh
if it < it_r
nodes_r = adapt_r(nodes_r,u_r, lambda);

end
end
figure (2)
hold on
plot (nodes_r,u_r, —o’)
title(['r—adapt: u_h after ' num2str(it_r) ' refinements a

num2str (n_nodes_r
xlabel ('x values’
ylabel ("u’);
grid on;
hold off
file_name_2

1)
;

)
)

= ["ex_6_C_r—adap_ref’ num2str(it_r) ’'_n_nodes
) ".Jpg’l;
saveas (figure (2), file_name_2);

Jjumps_flux.m Wed Jan 14 20:51:48 2026 1

l: % calculation of the flux jumps according to the chosen me
sh
2: % nodes - corresponding to the mesh
3: & u - approximation
4: % flux_jumps — jump of the flux in each node of the mesh 1
ncluding the
5: % paramter function lambda
6:
7: function flux_Jjumps = Jjumps_flux(nodes, u, lambda)
8: n_nodes = length (nodes);
9: flux_jumps = zeros(n_nodes,1l);
10: diff u = u(2:end) - u(l:end-1); oliff (a)
11: diff_x = nodes(2:end) - nodes(l:end-1);
12: eps = le-8§; s
13: for i = 2:n_node
14: flux_jumps (i) = diff_u(i)/diff_x (i) *lambda (nodes (i
)teps) — diff_u(i-1)/diff_x(i-1)*lambda (nodes (i) -eps);
15: end /

16: end

Mobile User

