
adapt.py Wed Jan 07 11:31:07 2026 1

1: import numpy as np
2: import matplotlib.pyplot as plt
3: import scipy.integrate as integrate
4:

5: # Basis functions
6: # ---- TODO: order p? ----
7: def phi(k, mesh, x):
8: if x > mesh[k-1] and x < mesh[k]:
9: return (x-mesh[k-1]) / (mesh[k] - mesh[k-1])
10: elif x > mesh[k] and x < mesh[k+1]:
11: return (mesh[k+1]-x) / (mesh[k+1] - mesh[k])
12: elif x == mesh[k]:
13: return 1
14: else:
15: return 0
16: def phi_prime(k, mesh, x):
17: if x > mesh[k-1] and x < mesh[k]:
18: return 1 / (mesh[k] - mesh[k-1])
19: elif x > mesh[k] and x < mesh[k+1]:
20: return -1 / (mesh[k+1] - mesh[k])
21: elif x == mesh[k]:
22: return print("oh no")
23: else:
24: return 0
25:

26: # vertex flux jump between elements
27: def flux_jumps(mesh, u):
28: m = len(mesh)

29:

30: r = (u[2:]-u[1:-1]) / (mesh[2:]-mesh[1:-1])

31: l = (u[1:-1]-u[:-2]) / (mesh[1:-1]-mesh[:-2])

32: jumps = np.zeros(m) # 0 jump at bnd?
33: jumps[1:-1] = r - l

34:

35: jumps[0] = jumps[1] # or same jump at bnd?
36: jumps[-1] = jumps[-2] # or same jump at bnd?
37: return jumps
38:

39: # h-adaptivity (refine neighboring elments, if flux jump over certain threshold)
40: def adapt_h(mesh, jumps):
41: new_mesh = [mesh[0]]

42: jumps = jumps[1:-1] # only interior jumps (excluding bnd no
des needed for De Boor)

43:

44: # define threshold
45: threshold = 0.5 * np.max(np.abs(jumps))

46: # mark elements
47: marked_nodes = np.abs(jumps) > threshold

48: marked_el = np.zeros(len(mesh)-1, dtype=bool)

49: for i, refine in enumerate(marked_nodes):
50: if refine:
51: marked_el[i] = True

52: marked_el[i+1] = True

53:

54: # make new mesh
55: for k, refine in enumerate(marked_el):
56: l = mesh[k]

57: r = mesh[k+1]

58: if refine:
59: new_mesh.extend(np.linspace(l, r, 3)[1:])

60: else:
61: new_mesh.append(r)

62:

63: return np.asarray(new_mesh, dtype=float)
64:

65: # r-adaptivity (one iteration of De Boor’s algorithm, moving mesh nodes for equidist
ributing mesh)

66: def adapt_r(mesh, rho):

Mobile User

adapt.py Wed Jan 07 11:31:07 2026 2

67: m = len(mesh)

68:

69: p = 0.5 * (rho[:-1] + rho[1:]) # piecewise constant function on
 elements

70:

71: P = np.zeros(m)

72: for i in range(1,m):
73: P[i] = P[i-1] + (mesh[i]-mesh[i-1])*p[i-1] # approx integral of p, from nod

e 0 to node i
74: Pb = P[-1] # integral of p, over whole mesh

75:

76: new_mesh = mesh.copy()

77: for j in range(1, m-1):
78: xi_j = (j)/(m-1)

79: k = np.searchsorted(P, xi_j*Pb) # search k s.t.: P[node k-1] < x
i_j*Pb < P[node k]

80: k = max(k,1) # if k=0
81: new_mesh[j] = mesh[k-1] + 2*(xi_j*Pb - P[k-1]) / (rho[k-1]+rho[k]) # new

node j
82: return new_mesh
83:

Mobile User

task_a.py Wed Jan 07 11:31:07 2026 1

1: import numpy as np
2: from adapt import *
3:

4: # PDE:
5: # -u’’(x) = f(x) x in (-1,1)
6: # u(-1) = -arctan(p)
7: # u’(1) = p / (p^2 + 1)
8: #
9: # weak form
10: # int u’v’ dx = int f(x) * v(x) dx + p/(p^2+1) * v(1)
11: #
12:

13: # rhs
14: def f(x):
15: return 2 * p**3 * x / (p**2 * x**2 + 1)**2
16:

17: # Stiffness and Load
18: def K_loc(k, mesh):
19: K_loc = np.zeros((2,2))

20: K_loc[0,0] = integrate.quad(lambda x: phi_prime(k-1, mesh, x)**2, mesh[k-1], mes
h[k])[0]

21: K_loc[1,0] = integrate.quad(lambda x: phi_prime(k-1, mesh, x)*phi_prime(k, mesh,
 x), mesh[k-1], mesh[k])[0]

22: K_loc[0,1] = integrate.quad(lambda x: phi_prime(k, mesh, x)*phi_prime(k-1, mesh,
 x), mesh[k-1], mesh[k])[0]

23: K_loc[1,1] = integrate.quad(lambda x: phi_prime(k, mesh, x)**2, mesh[k-1], mesh[
k])[0]

24: return K_loc
25: def F_loc(k, mesh):
26: F_loc = np.zeros(2)

27: F_loc[0] = integrate.quad(lambda x: f(x) * phi(k-1, mesh, x), mesh[k-1], mesh[k]
)[0]

28: F_loc[1] = integrate.quad(lambda x: f(x) * phi(k, mesh, x), mesh[k-1], mesh[k])[
0]

29: return F_loc
30:

31: # Assembling
32: def Assemble(mesh):
33: m = len(mesh)

34: n = m-1

35:

36: K = np.zeros((m,m))

37: F = np.zeros(m)

38: for k in range(1,m):
39: K[k-1:k+1,k-1:k+1] += K_loc(k, mesh)

40: F[k-1:k+1] += F_loc(k, mesh)

41:

42: # Boundary conditions
43: # Dirichlet: u(-1) = -arctan(p)
44: K[0,:] = 0

45: K[0,0] = 1

46: F[0] = -np.arctan(p)

47: # Neumann: u’(1) = p / (p^2 + 1)
48: F[-1] += p/(p**2+1) * phi(n, mesh, 1)

49: return K,F
50:

51: def plotting(mesh, u, comment):
52: exact_x = np.linspace(-1,1,1000)

53: exact = np.arctan(p*exact_x)

54: plt.plot(exact_x, exact, "--", linewidth=1, color="red", label="exact")
55: plt.title(f"p = {p} | n = {n} | {comment}")
56: plt.xlabel("x")
57: plt.ylabel("u(x)")
58: plt.plot(mesh, u, "-o", label="u_h")
59: plt.xticks(mesh, labels=[])

60: plt.legend()

61: plt.grid(True)

62: plt.tight_layout()

Mobile User

task_a.py Wed Jan 07 11:31:07 2026 2

63: plt.savefig("task_a.png", dpi=300)
64: plt.show()

65: return 0
66:

67: ##
68:

69: # parameters
70: p_list = [5,10,20,100]

71: for p in p_list:
72:

73: # h-adaptivity
74: mesh = np.array([-1.0, -0.2, 0, 0.7, 1.0]) # with 0 as node
75: # mesh = np.array([-1.0,-0.131,0.372,1.0]) # without 0 as node
76:

77: # r-adaptivity
78: # mesh = np.linspace(-1, 1, 11) # with 0 as node
79: # mesh = np.linspace(-1, 1, 10) # without 0 as node
80:

81: m = len(mesh)

82: n = m-1

83:

84: K, F = Assemble(mesh) # assemble
85: u = np.linalg.solve(K, F) # solve
86: jumps = flux_jumps(mesh, u) # flux jumps
87: plotting(mesh, u, "before adapting") # plotting
88:

89: iterations = 6

90: for it in range(iterations):
91: mesh = adapt_h(mesh, jumps) # h-adaptivity
92: # mesh = adapt_r(mesh, np.abs(jumps)) # r-adaptivity (positive

 density (jumps)!)
93: m = len(mesh)

94: n = m-1

95:

96: K, F = Assemble(mesh) # assemble
97: u = np.linalg.solve(K, F) # solve
98: jumps = flux_jumps(mesh, u) # flux jumps
99: # plotting(mesh, u, f"iteration {it+1}") # plotting each iteratio

n
100:

101: # print(jumps)
102: plotting(mesh, u, f"after {iterations} iterations") # plotting
103:

104:

task_b.py Wed Jan 07 11:31:07 2026 1

1: import numpy as np
2: from adapt import *
3:

4: # PDE:
5: # -(lambda(x)u’(x))’ = 0 x in (0,1)
6: # u(0) = 0
7: # u(1) = 1
8: # lambda(x) = | 1 x in (0,1/sqrt(2))
9: # | 10 x in (1/sqrt(2),1)
10:

11: # rhs
12: def f(x):
13: return 0
14:

15: def lam(x):
16: if x >= 0 and x <= 1/np.sqrt(2):
17: return 1
18: elif x <= 1 and x > 1/np.sqrt(2):
19: return 10
20: else:
21: return print("lambda undefined")
22:

23: # Stiffness and Load
24: def K_loc(k, mesh):
25: K_loc = np.zeros((2,2))

26: K_loc[0,0] = integrate.quad(lambda x: lam(x)*phi_prime(k-1, mesh, x)**2, mesh[k-
1], mesh[k])[0]

27: K_loc[1,0] = integrate.quad(lambda x: lam(x)*phi_prime(k-1, mesh, x)*phi_prime(k
, mesh, x), mesh[k-1], mesh[k])[0]

28: K_loc[0,1] = integrate.quad(lambda x: lam(x)*phi_prime(k, mesh, x)*phi_prime(k-1
, mesh, x), mesh[k-1], mesh[k])[0]

29: K_loc[1,1] = integrate.quad(lambda x: lam(x)*phi_prime(k, mesh, x)**2, mesh[k-1]
, mesh[k])[0]

30: return K_loc
31: def F_loc(k, mesh):
32: F_loc = np.zeros(2)

33: F_loc[0] = integrate.quad(lambda x: f(x) * phi(k-1, mesh, x), mesh[k-1], mesh[k]
)[0]

34: F_loc[1] = integrate.quad(lambda x: f(x) * phi(k, mesh, x), mesh[k-1], mesh[k])[
0]

35: return F_loc
36:

37: # Assembling
38: def Assemble(mesh):
39: m = len(mesh)

40: n = m-1

41:

42: K = np.zeros((m,m))

43: F = np.zeros(m)

44: for k in range(1,m):
45: K[k-1:k+1,k-1:k+1] += K_loc(k, mesh)

46: F[k-1:k+1] += F_loc(k, mesh)

47:

48: # Boundary conditions
49: # Dirichlet: u(0) = 0
50: K[0,:] = 0

51: K[0,0] = 1

52: F[0] = 0

53: # Dirichlet: u(1) = 1
54: K[-1,:] = 0

55: K[-1,-1] = 1

56: F[-1] = 1

57: return K,F
58:

59: def plotting(mesh, u, comment):
60: exact_x = [0, 1/np.sqrt(2), 1]

61: exact = [0, 10/(np.sqrt(2)+9), 1]

62: plt.plot(exact_x, exact, "--", linewidth=1, color="red", label="exact")

Mobile User

task_b.py Wed Jan 07 11:31:07 2026 2

63: plt.title(f"n = {n} | {comment}")
64: plt.xlabel("x")
65: plt.ylabel("u(x)")
66: plt.plot(mesh, u, "-o", label="u_h")
67: plt.xticks(mesh, labels=[])

68: plt.legend()

69: plt.grid(True)

70: plt.tight_layout()

71: plt.savefig("task_b.png", dpi=300)
72: plt.show()

73: return 0
74:

75: ##
76:

77: mesh = np.linspace(0, 1, 10)

78: m = len(mesh)

79: n = m-1

80:

81: K, F = Assemble(mesh) # assemble
82: u = np.linalg.solve(K, F) # solve
83: jumps = flux_jumps(mesh, u) # flux jumps
84: plotting(mesh, u, "before adapting") # plotting
85:

86: iterations = 3

87: for it in range(iterations):
88: # mesh = adapt_h(mesh, jumps) # h-adaptivity
89: mesh = adapt_r(mesh, np.abs(jumps)) # r-adaptivity (positive densi

ty (jumps)!)
90: m = len(mesh)

91: n = m-1

92:

93: K, F = Assemble(mesh) # assemble
94: u = np.linalg.solve(K, F) # solve
95: jumps = flux_jumps(mesh, u) # flux jumps
96: # plotting(mesh, u, f"iteration {it+1}") # plotting each iteration
97:

98: # print(jumps)
99: plotting(mesh, u, f"after {iterations} iterations") # plotting
100:

task_c.py Wed Jan 07 11:31:07 2026 1

1: import numpy as np
2: from adapt import *
3:

4: # Peclet problem:
5: # -u’’(x) + pu’(x) = 0 x in (0,1)
6: # u(0) = 0
7: # u(1) = 1
8:

9: # rhs
10: def f(x):
11: return 0
12:

13: # Stiffness and Load
14: def K_loc(k, mesh):
15: K_loc = np.zeros((2,2))

16: K_loc[0,0] = integrate.quad(lambda x: phi_prime(k-1, mesh, x)**2, mesh[k-1], mes
h[k])[0]

17: K_loc[1,0] = integrate.quad(lambda x: phi_prime(k-1, mesh, x)*phi_prime(k, mesh,
 x), mesh[k-1], mesh[k])[0]

18: K_loc[0,1] = integrate.quad(lambda x: phi_prime(k, mesh, x)*phi_prime(k-1, mesh,
 x), mesh[k-1], mesh[k])[0]

19: K_loc[1,1] = integrate.quad(lambda x: phi_prime(k, mesh, x)**2, mesh[k-1], mesh[
k])[0]

20:

21: K_loc[0,0] += p*integrate.quad(lambda x: phi_prime(k-1, mesh, x) * phi(k-1, mesh
, x), mesh[k-1], mesh[k])[0]

22: K_loc[1,0] += p*integrate.quad(lambda x: phi_prime(k-1, mesh, x) * phi(k, mesh,
x), mesh[k-1], mesh[k])[0]

23: K_loc[0,1] += p*integrate.quad(lambda x: phi_prime(k, mesh, x) * phi(k-1, mesh,
x), mesh[k-1], mesh[k])[0]

24: K_loc[1,1] += p*integrate.quad(lambda x: phi_prime(k, mesh, x) * phi(k, mesh, x)
, mesh[k-1], mesh[k])[0]

25: return K_loc
26: def F_loc(k, mesh):
27: F_loc = np.zeros(2)

28: F_loc[0] = integrate.quad(lambda x: f(x) * phi(k-1, mesh, x), mesh[k-1], mesh[k]
)[0]

29: F_loc[1] = integrate.quad(lambda x: f(x) * phi(k, mesh, x), mesh[k-1], mesh[k])[
0]

30: return F_loc
31:

32: # Assembling
33: def Assemble(mesh):
34: m = len(mesh)

35: n = m-1

36:

37: K = np.zeros((m,m))

38: F = np.zeros(m)

39: for k in range(1,m):
40: K[k-1:k+1,k-1:k+1] += K_loc(k, mesh)

41: F[k-1:k+1] += F_loc(k, mesh)

42:

43: # Boundary conditions
44: # Dirichlet: u(0) = 0
45: K[0,:] = 0

46: K[0,0] = 1

47: F[0] = 0

48: # Dirichlet: u(1) = 1
49: K[-1,:] = 0

50: K[-1,-1] = 1

51: F[-1] = 1

52: return K,F
53:

54: def plotting(mesh, u, comment):
55: exact_x = np.linspace(0,1,1000)

56: exact = (np.exp(p*exact_x)-1)/(np.exp(p)-1)

57: plt.plot(exact_x, exact, "--", linewidth=1, color="red", label="exact")
58: plt.title(f"p = {p} | n = {n} | {comment}")

task_c.py Wed Jan 07 11:31:07 2026 2

59: plt.xlabel("x")
60: plt.ylabel("u(x)")
61: plt.plot(mesh, u, "-o", label="u_h")
62: plt.xticks(mesh, labels=[])

63: plt.legend()

64: plt.grid(True)

65: plt.tight_layout()

66: plt.savefig("task_c.png", dpi=300)
67: plt.show()

68: return 0
69:

70: ##
71:

72: # parameters
73: p_list = [-70, 70]

74: for p in p_list:
75: mesh = np.linspace(0, 1, 30)

76: m = len(mesh)

77: n = m-1

78:

79: K, F = Assemble(mesh) # assemble
80: u = np.linalg.solve(K, F) # solve
81: jumps = flux_jumps(mesh, u) # flux jumps
82: plotting(mesh, u, "before adapting") # plotting
83:

84: # NOTE: mesh very different every iteration for adapt_r()
85: iterations = 21

86: for it in range(iterations):
87: # mesh = adapt_h(mesh, jumps) # h-adaptivity
88: mesh = adapt_r(mesh, np.abs(jumps)) # r-adaptivity (positive d

ensity (jumps)!)
89: m = len(mesh)

90: n = m-1

91:

92: K, F = Assemble(mesh) # assemble
93: u = np.linalg.solve(K, F) # solve
94: jumps = flux_jumps(mesh, u) # flux jumps
95: # plotting(mesh, u, f"iteration {it+1}") # plotting each iteratio

n
96:

97: # print(jumps)
98: plotting(mesh, u, f"after {iterations} iterations") # plotting
99:

100:

