./first.template/greetings.cpp

ge

29:

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41 :
42
43:
44 .
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
size
57:
58:
59:
60:
6l:
62:
63:
64:
65:
66:

#include
#include
#include
#include
#include
#include
using namespace std;

// see http://www.open—-mpi.org/doc/current
// for details on MPI functions

void greetings (MPI_Comm const &icomm)
{
int myrank, numprocs;
MPI_Comm_rank (icomm, &myrank);
MPI_Comm_size (icomm, &numprocs);

char *name = new char [MPI_MAX_ PROCESSOR_NAME],
*chbuf = new char [MPI_MAX PROCESSOR_NAME];

int reslen, ierr;
MPI_Get_processor_name (name, &reslen);

if (O0==myrank) {
cout << << myrank <<
for (int i = 1; i < numprocs; ++i)
MPI_Status stat;
stat .MPI_ERROR = 0;

// MPI

Wed Jan 07 11:31:07 2026

// my MPI-rank
// #MPI processes

<< name << endl;

{

// MUS T

be initialized!!

ierr = MPI_Recv (chbuf, MPI_MAX_ PROCESSOR_NAME, MPI_CHAR, MPI_ANY_SOURCE,
MPI_ANY_ TAG, icomm, é&stat);

assert (O==ierr);

cout << << stat.MPI_SOURCE <<

int count;
MPI_Get_count (&stat, MPI_CHAR,

&count) ;

cout << << count <<

// stat.Get_error()
}
}

else {
int dest = 0;
ierr = MPI_Send(name, strlen (name)

assert (O==ierr);

}

delete [] chbuf;
delete [] name;
return;

void greetings_cpp (MPI_Comm const &icomm)
{
int myrank, numprocs;
MPI_Comm_rank (icomm, &myrank);
MPI_Comm_size (icomm, &numprocs);
string name (MPI_MAX_PROCESSOR_NAME,)
recvbuf (MPI_MAX PROCESSOR_NAME,

int reslen, ierr;
MPI_Get_processor_name (name.data(), &re
name.resize (reslen);

if (O0==myrank) {
cout << << myrank <<
for (int i = 1; i < numprocs; ++i)
MPI_Status stat;
stat .MPI_ERROR = 0;

<< chbuf;

<< endl;

// Error code

// size of received data

+ 1, MPI_CHAR, dest, myrank, icomm) ;

14

)i

slen);

<<
{

// MU

// my MPI-rank

// #MPI processes

// C++

// C++: receive buffer,

// C++

name << endl;

S

T

be initialized!!

don’t chan

Mobile User

./first.template/greetings.cpp Wed Jan 07 11:31:07 2026 2

67:

68: ierr = MPI_Recv (recvbuf.data (), MPI_MAX_ PROCESSOR_NAME, MPI_CHAR, i, MPI
_ANY_TAG, icomm, &stat);

69: assert (O==ierr);

70:

71: int count;

72 MPI_Get_count (&stat, MPI_CHAR, &count); // size of received data

73: string const chbuf (recvbuf, 0, count); // C++

74 : cout << << stat.MPI_SOURCE << << chbuf;

75: cout << << count << << endl;

76: // stat.Get_error() // Error code

77 }

78 : }

79: else {

80: int dest = 0;

81: ierr = MPI_Send(name.data (), name.size(), MPI_CHAR, dest, myrank, icomm);

82: assert (O==ierr);

83: }

84: return;

85: }

Mobile User

./first .template/greetings.h Wed Jan 07 11:31:07 2026 1

/7 general header for all functions in directory

#ifndef GREETINGS_FILE
#define GREETINGS_FILE

#include <mpi.h>

Vadd Each process finds out its host, sends this information
to root process 0 which prints this information for each process.
@param[in] icomm the MPI process group that is used.

*/

void greetings (MPI_Comm const &icomm) ;
void greetings_cpp (MPI_Comm const &icomm);

#endif

./first.template/main.cpp Wed Jan 07 11:31:07 2026 1

1: // MPI code in C++.

2: // See [Gropp/Lusk/Skjellum, "Using MPI", p.33/41 etc.]
3: // and /opt/mpich/include/mpil2c++/comm.h for details
4:

5: #include "greetings.h"

6: #include <iostream> // MPI

7: #include <mpi.h>

8: using namespace std;

9:

10: int main(int argc, char *argv([])

11: {
12: MPI_Comm icomm = MPI_COMM_WORLD;
13: MPI_TInit (&argc, é&argv);
14: int myrank, numprocs;
15: // numprocs = 1; // delete this line when uncommenting the next line
16: MPI_Comm_rank (icomm, &myrank); // my MPI-rank
17: MPI_Comm_size (icomm, &numprocs);

18:

19: if (O0==myrank) {
20: cout << "\n There are " << numprocs << " processes running.\n \n";
21: }
22
23: // greetings (icomm) ;
24: greetings_cpp (icomm) ;
25:
26: if (0==myrank) cout << endl;
27:
28: MPI_Finalize();
29:

30: return 0;

31: }

32:

33:

