adapt .py Wed Jan 07 11:31:07 2026 1

1: import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as integrate

# ———— TODO: order p? ———-—
def phi(k, mesh, x):
if x > meshl[k-1] and x < mesh[k]:

2

3

4:

5: # Basis functions

6.

-

8:

9: return (x-mesh[k-1]) / (mesh[k] - mesh[k-1])

10: elif x > mesh[k] and x < mesh[k+1]:

11: return (mesh[k+1]-x) / (mesh[k+1l] - mesh[k])
12: elif x == meshl[k]:

13: return 1

14: else:

15: return 0

16: def phi_prime(k, mesh, x): k//
17: if x > mesh[k-1] and x < mesh[k]:

18: return 1 / (mesh[k] - mesh[k-1])

19: elif x > mesh[k] and x < mesh[k+1]:

20: return -1 / (mesh[k+1l] - mesh[k])

21: elif x == meshl[k]:

22 return print ("oh no")

23: else:

24: return 0

25:

26: # vertex flux jump between elements
27: def flux_jumps (mesh, u):

28: m = len (mesh)

29:

30: r = (u[2:]-ull:-1]) / (mesh[2:]-mesh[1l:-1])

31: 1 = (u[l:-1]1-uf[:-2]) / (mesh[l:-1]-mesh[:-2])

32: jumps = np.zeros (m) # 0 jump at bnd?

33: Jumps[1l:-1] = r - 1

34:

35: jumps [0] = Jjumps|[1] # or same jump at bnd?
36: jumps [-1] = jumps[-2] # or same jump at bnd?
37: return jumps

38:

39: # h—adaptivity (refine neighboring elments, if flux jump over certain threshold)
40: def adapt_h (mesh, jumps):

41: new_mesh = [mesh[0]]

42: Jjumps = jumps[l:-1] # only interior jumps (excluding bnd no
des needed for De Boor)

43

44 # define threshold

45: threshold = 0.5 * np.max (np.abs (jumps))

46: # mark elements

47 : marked_nodes = np.abs(jumps) > threshold

48: marked_el = np.zeros(len(mesh)-1, dtype=bool)

49: for i, refine in enumerate (marked_nodes) :

50: if refine:

51: marked_el[i] = True

52: marked_el[i+1] = True

53:

54: # make new mesh

55: for k, refine in enumerate (marked_el) :

56: 1 = mesh[k]

57: r = meshl[k+1]

58: if refine:

59: new_mesh.extend(np.linspace(l, r, 3)[1l:])

60: else:

6l: new_mesh.append(r)

62:

63: return np.asarray (new_mesh, dtype=float)

64:

65: # r—adaptivity (one iteration of De Boor’s algorithm, moving mesh nodes for equidist
ributing mesh)
66: def adapt_r (mesh, rho):


Mobile User


adapt .py Wed Jan 07 11:31:07 2026 2

67: m = len (mesh)

68:

69: p =0.5* (rho[:-1] + rho[l:]) # pliecewise constant function on

elements

70:

71: P = np.zeros (m)

72 for i in range(l,m):

73: P[i] = P[i-1] + (mesh[i]-mesh[i-1])*p[i-1] # approx integral of p, from nod
e 0 to node 1

74 Pb = P[-1] # integral of p, over whole mesh

75:

76: new_mesh = mesh.copy ()

77 for j in range(l, m-1):

78: xi_J = (3)/ (m-1)

79: k = np.searchsorted (P, xi_j*Pb) # search k s.t.: P[node k-1] < x
i_j*Pb < P[node k]

80: k = max(k,1) # 1f k=0

81: new_mesh[j] = mesh[k-1] + 2*(xi_3j*Pb — P[k-1]) / (rhol[k-1]+rho[k]) # new
node j

82: return new_mesh \/
83:


Mobile User


task_a.py Wed Jan 07 11:31:07 2026 1
1l: import numpy as np
2: from adapt import *
3:
4: # PDE:
5: # -u’’(x) = f(x) x in (-1,1)
6: # u(-1) = —arctan(p)
T # u’ (1) =p / (pr2 + 1)
8: #
9: # weak form
10: # int u’v’ dx = int f(x) * v(x) dx + p/(p"2+1) * v (1)
11: #
12:
13: # rhs
14: def £(x):
15: return 2 * p**3 * x / (p**2 * x**2 + 1)**2
16:
17: # Stiffness and Load
18: def K_loc(k, mesh):
19: K_loc = np.zeros((2,2))
20: K_loc[0,0] = integrate.quad(lambda x: phi_prime (k-1, mesh, x)**2, mesh[k-1], mes
h[k]) [0]
21: K_loc[1l,0] = integrate.quad(lambda x: phi_prime(k-1, mesh, x)*phi_prime (k, mesh,
x), mesh[k-1], mesh[k]) [0]
22: K_loc[0,1] = integrate.quad(lambda x: phi_prime (k, mesh, x)*phi_prime(k-1, mesh,
x), mesh[k-1], mesh[k]) [0]
23: K_loc[l,1] = integrate.quad(lambda x: phi_prime (k, mesh, x)**2, mesh[k-1], mesh|[
k]) [0]
24 return K_1loc
25: def F_loc(k, mesh): J/
26: F_loc = np.zeros(2)
27: F_loc[0] = integrate.quad (lambda x: f(x) * phi(k-1, mesh, x), mesh[k-1], mesh[k]
) [0]
28: F_loc[l] = integrate.quad(lambda x: f(x) * phi(k, mesh, x), mesh[k-1], mesh[k]) [
0]
29: return F_1loc
30:
31: # Assembling
32: def Assemble (mesh):
33: m = len (mesh)
34: n = m-1
35:
36: K = np.zeros((m,m))
37: F = np.zeros (m)
38: for k in range(l,m):
39: K[lk-1:k+1,k-1:k+1] += K_loc(k, mesh)
40: F[k-1:k+1] += F_loc(k, mesh)
41 :
42: # Boundary conditions
43: # Dirichlet: u(-1) = —-arctan(p)
44 : K[0,:] =0
45 K[0,0] =1
46: F[O] = —-np.arctan (p)
47 : # Neumann: u’ (1) =p / (p*2 + 1)
48 F[-1] += p/(p**2+1) * phi(n, mesh, 1)
49: return K,F
50:
51: def plotting(mesh, u, comment):
52: exact_x = np.linspace(-1,1,1000)
53: exact = np.arctan (p*exact_x)
54: plt.plot (exact_x, exact, , linewidth=1, color= , label= )
55: plt.title(f )
56: plt.xlabel ( )
57: plt.ylabel ( )
58: plt.plot (mesh, u, , label= )
59: plt.xticks (mesh, labels=[])
60: plt.legend()
61: plt.grid(True)
62: plt.tight_layout ()


Mobile User


task_a.py

Wed Jan 07 11:31:07 2026 2

S HH W

S H ¥

with 0 as node
# without 0 as node

# with 0 as node
# without 0 as node

assemble
solve

flux jumps
plotting

h-adaptivity
# r—adaptivity (positive

assemble

solve

flux jumps

# plotting each iteratio

plotting

63: plt.savefig("task_a.png", dpi=300)

64: plt.show ()

65: return 0

66:

67 : HHEHFFFFFFAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAAHHHHHFFFFFFFAAAAAAAAAAAAAAAAAAAAAAA
68:

69: # parameters

70: p_list = [5,10,20,100]

71: for p in p_list:

72

73: # h-adaptivity

74 : mesh = np.array([-1.0, -0.2, 0, 0.7, 1.01)
75: # mesh = np.array([-1.0,-0.131,0.372,1.0])
76:

77 # r—adaptivity

78 # mesh = np.linspace(-1, 1, 11)

79: # mesh = np.linspace(-1, 1, 10)

80:

81: m = len (mesh)

82: n = m-1

83:

84: K, F = Assemble (mesh)

85: u = np.linalg.solve (K, F)

86: Jjumps = flux_jumps (mesh, u)

87: plotting (mesh, u, "before adapting")

88:

89: iterations = 6

90: for it in range (iterations):

91: mesh = adapt_h (mesh, jumps)

92: # mesh = adapt_r (mesh, np.abs (jumps))

density (jumps)!)

93: m = len (mesh)

94 : n = m-1

95:

96: K, F = Assemble (mesh)

97 : u = np.linalg.solve (K, F)

98: Jjumps = flux_jumps (mesh, u)

99: # plotting(mesh, u, f"iteration {it+1}")

n

100:
101: # print (jumps)
102: plotting (mesh, u, f'"after {iterations} iterations")
103:

104:



task_b.py

O Jo Ul wdh K

Ne)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22
23:
24
25:
26:
1],
27:
, mesh,
28:
, mesh,
29:

Wed Jan 07 11:31:07 2026 1
import numpy as np
from adapt import *
# PDE:
# —(lambda (x)u’ (x))’ = 0 x in (0,1)
# u(0) = 0
# u(l) =1
# lambda (x) = ’ 1 x in (0,1/sqrt (2))
# | 10 x in (1/sqrt(2),1)
# rhs
def £ (x)

return 0

def lam(x):
if x >= 0 and x <= 1/np.sqrt(2):
return 1
elif x <= 1 and x > 1/np.sqrt(2):
return 10
else:
return print (

# Stiffness and Load
def K_loc(k, mesh):
K_loc = np.zeros((2,2))
K_loc[0,0] = integrate.quad(lambda

mesh[k]) [0]

K_loc[1l,0] = integrate.quad (lambda
mesh[k-1], mesh([k]) [0]
K_loc[0,1] = integrate.quad(lambda
mesh[k-1], mesh([k]) [0]
K_loc[l,1] = integrate.quad(lambda

X),

X),

, mesh[k]) [0]

30:
31:
32:
33:
) [0]
34:
0]
35:
36:
37:
38:
39:
40:
41 :
42
43:
44
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:

return K_1loc
def F_loc(k, mesh):

F_loc = np.zeros(2)
F_loc[0] = integrate.quad(lambda x:
F_loc[l] = integrate.quad(lambda x:

return F_1loc

# Assembling
def Assemble (mesh) :

m = len (mesh)

n = m-1

K = np.zeros((m,m))
F = np.zeros (m)

for k in range(l,m):

Klk-1:k+1,k-1:k+1]

Fl[k-1:k+1] += F_loc(k, mesh)

# Boundary conditions

# Dirichlet: u(0) = 0
K[0,:] =0

K[0,0] = 1

F[O0] =0

# Dirichlet: u(l) =1
K[-1,:] =0

K[-1,-1] =1

F[-1] =1

return K, F

def plotting (mesh, u, comment):
exact_x = [0, 1/np.sqrt(2), 1]
exact = [0, 10/ (np.sqrt(2)+9), 1]

plt.plot (exact_x, exact, ,

linewidth=1,

v/

lam(x) *phi_prime (k-1, mesh, x)**2, mesh[k-

lam(x) *phi_prime (k-1, mesh, x)*phi_prime (k

lam(x) *phi_prime (k, mesh, x)*phi_prime (k-1

+= K_loc (k, mesh)

lam(x) *phi_prime (k, mesh, x)**2, mesh[k-1]

f(x) * phi(k-1, mesh, x), mesh[k-1], mesh[k]

f(x) * phi(k, mesh, x), mesh[k-1], mesh[k]) [
color= , label= )


Mobile User


task_b.py Wed Jan 07 11:31:07 2026 2

63: plt.title(f"n = {(n} | {comment}")

64: plt.xlabel ("x'")

65: plt.ylabel ("u(x)")

66: plt.plot (mesh, u, "-o", label="u_h")

67: plt.xticks (mesh, labels=[])

68: plt.legend()

69: plt.grid(True)

70: plt.tight_layout ()

71: plt.savefig("task_b.png", dpi=300)

72 plt.show ()

73: return 0

74 :

15: #####HFAAFAEFARFRRARRFARFRRFRRARRFRRARRA AR AR AR AR AR AR AR AR AR AR AR A HAAH

76:

77: mesh = np.linspace(0, 1, 10)

78: m = len (mesh)

79: n = m-1

80:

81l: K, F = Assemble (mesh) # assemble

82: u = np.linalg.solve (K, F) # solve

83: jumps = flux_jumps (mesh, u) # flux jumps

84: plotting(mesh, u, "before adapting") # plotting

85:

86: iterations = 3

87: for it in range(iterations):

88: # mesh = adapt_h (mesh, jumps) # h—adaptivity

89: mesh = adapt_r (mesh, np.abs(jumps)) # r—adaptivity (positive densi
ty (jumps)!)

90: m = len (mesh)

91: n =m-1

92:

93: K, F = Assemble (mesh) # assemble

94: u = np.linalg.solve (K, F) # solve

95: Jjumps = flux_jumps (mesh, u) # flux jumps

96: # plotting (mesh, u, f"iteration {it+1}") # plotting each iteration

97:

98: # print (jumps)

99: plotting(mesh, u, f"after {iterations} iterations") # plotting

100:



task_c.py Wed Jan 07 11:31:07 2026 1
1l: import numpy as np
2: from adapt import *
3:
4: # Peclet problem:
5: # -u’’(x) + pu’(x) =0 x in (0,1)
6: # u(0) = 0
T # u(l) =1
8:
9: # rhs
10: def £ (x):
11: return 0
12:
13: # Stiffness and Load
14: def K_loc(k, mesh):
15: K_loc = np.zeros((2,2))
16: K_loc[0,0] = integrate.quad (lambda phi_prime (k-1, mesh, x)**2, mesh[k-1], mes
h[k]) [0]
17: K_loc[1l,0] = integrate.quad(lambda phi_prime (k-1, mesh, x)*phi_prime(k, mesh,
x), mesh[k—-1], mesh[k]) [0]
18: K_loc[0,1] = integrate.quad(lambda phi_prime (k, mesh, x)*phi_prime(k-1, mesh,
x), mesh[k-1], mesh[k]) [0]
19: K_loc[l,1] = integrate.quad (lambda phi_prime (k, mesh, x)**2, mesh[k-1], mesh|
k1) [0]
20:
21: K_loc[0,0] += p*integrate.quad(lambda x: phi_prime (k-1, mesh, x) * phi(k-1, mesh
, X), mesh[k-1], mesh[k]) [0]
22 K_loc[l,0] += p*integrate.quad(lambda x: phi_prime (k-1, mesh, x) * phi(k, mesh,
x), mesh[k-1], mesh[k]) [0]
23: K _loc[0,1] += p*integrate.quad(lambda x: phi_prime (k, mesh, x) * phi(k-1, mesh,
x), mesh[k-1], mesh[k]) [0]
24 K_loc[l,1] += p*integrate.quad(lambda x: phi_prime (k, mesh, x) * phi(k, mesh, x)
, meshl[k-1], mesh[k]) [0]
25: return K_loc
26: def F_loc(k, mesh):
27: F_loc = np.zeros(2)
28: F_loc[0] = integrate.quad(lambda x: f(x) * phi(k-1, mesh, x), mesh[k-1], mesh[k]
) [0]
29: F_loc[l] = integrate.quad(lambda x: f(x) * phi(k, mesh, x), mesh[k-1], mesh[k]) [
0]
30: return F_loc
31:
32: # Assembling
33: def Assemble (mesh):
34: m = len (mesh)
35: n = m-1
36:
37: K = np.zeros((m,m))
38: F = np.zeros (m)
39: for k in range(l,m):
40: K[lk-1:k+1,k-1:k+1] += K_loc(k, mesh)
41 F[k-1:k+1] += F_loc(k, mesh)
42
43: # Boundary conditions
44 ;. # Dirichlet: u(0) = 0
45: K[0,:] =0
46: K[0,0] =1
47 F[O] =0
48: # Dirichlet: u(l) = 1
49: K[-1,:]1 =0
50: K[-1,-1] =1
51: F[-1] =1
52: return K,F
53:
54: def plotting(mesh, u, comment):
55: exact_x = np.linspace(0,1,1000)
56: exact = (np.exp(p*exact_x)-1)/ (np.exp(p)-1)
57: plt.plot (exact_x, exact, , linewidth=1, color= , label= )
58: plt.title(f )



task_c.py Wed Jan 07 11:31:07 2026 2

59: plt.xlabel ("x")

60: plt.ylabel ("u(x)")

61: plt.plot (mesh, u, "—-o", label="u_h")

62: plt.xticks (mesh, labels=[])

63: plt.legend()

64: plt.grid(True)

65: plt.tight_layout ()

66: plt.savefig("task_c.png", dpi=300)

67: plt.show ()

68: return 0

69:

TO: #H#HHHHHHHHAHAHHHFFFFAFFAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHHAAHHHHHHH A A

71:

72: # parameters

73: p_list = [-70, 70]

74: for p in p_list:

75: mesh = np.linspace (0, 1, 30)

76: m = len (mesh)

77 : n = m-1

78:

79: K, F = Assemble (mesh) # assemble

80: u = np.linalg.solve(K, F) # solve

81: Jjumps = flux_jumps (mesh, u) # flux jumps

82: plotting(mesh, u, "before adapting") # plotting

83:

84: # NOTE: mesh very different every iteration for adapt_r()

85: iterations = 21

86: for it in range (iterations):

87: # mesh = adapt_h (mesh, jumps) # h-adaptivity

88: mesh = adapt_r (mesh, np.abs(jumps)) # r—adaptivity (positive d
ensity (jumps)!)

89: m = len (mesh)

90: n = m-1

91:

92: K, F = Assemble (mesh) # assemble

93: u = np.linalg.solve (K, F) # solve

94 : Jjumps = flux_jumps (mesh, u) # flux jumps

95: # plotting(mesh, u, f"iteration {it+1}") # plotting each iteratio
n

96:

97: # print (jumps)

98: plotting(mesh, u, f'"after {iterations} iterations'") # plotting

99:

100:



