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Abstract

Let G = Cn1
⊕· · ·⊕Cnr with 1 < n1 | · · · |nr be a finite abelian group,

d∗(G) = n1 + · · ·+nr − r, and let d(G) denote the maximal length of a zero-

sum free sequence over G. Then d(G) ≥ d∗(G), and the standing conjecture

is that equality holds for G = Cr
n. We show that equality does not hold for

C2 ⊕ Cr
2n, where n ≥ 3 is odd and r ≥ 4. This gives new information on the

structure of extremal zero-sum free sequences over Cr
2n.

1. Introduction

Let G be an additively written finite abelian group, G = Cn1
⊕ · · · ⊕ Cnr

its direct decomposition into cyclic groups, where r = r(G) is the rank of G and

1 < n1 | · · · |nr, and set

d∗(G) =

r
∑

i=1

(ni − 1) , with d∗(G) = 0 for G trivial.
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We denote by d(G) the maximal length of a zero-sum free sequence over G. Then

D(G) = d(G)+1 is the Davenport constant of G (equivalently, D(G) is the smallest

integer ℓ ∈ N such that every sequence S over G of length |S| ≥ ℓ has a non-trivial

zero-sum subsequence). The Davenport constant has been studied since the 1960s,

and it naturally occurs in various branches of combinatorics, number theory, and

geometry. There is a well-known chain of inequalities

d∗(G) ≤ d(G) ≤ (nr − 1) + nr log
|G|

nr

, (∗)

which obviously is an equality for cyclic groups ([14, Theorem 5.5.5]). Furthermore,

equality on the left side holds for p-groups, groups of rank two and others (see [12,

Sections 2.2 and 4.2] for a survey, and [3], [25], [2], [26], [7], [24], [19] for recent

progress). In contrast to these results, there are only a handful of explicit families

of examples showing that d(G) > d∗(G) can happen, but the phenomenon is not

understood at all. The two main conjectures regarding D(G) state that equality

holds in the left side of (∗) for groups of rank three and for groups of the form Cr
n.

In addition to the direct problem, the associated inverse problem with respect

to the Davenport constant—which asks for the structure of maximal zero-sum free

sequences—has attracted considerable attention in the last decade. An easy exercise

shows that a zero-sum free sequence of maximal length over a cyclic group consists

of one element with multiplicity d(G). A conjecture on the structure of such se-

quences over groups of the form Cn ⊕ Cn was first stated in [8, Section 10]. After

various partial results, this conjecture was settled recently: even for general groups

of rank two the structure of minimal zero-sum sequences with maximal length was

completely determined (see [11], [23], [20]). Apart from groups of rank two (and

apart from the trivial case of elementary 2-groups) such a structural result is known

only for groups of the form C2
2 ⊕ C2n (see [22]).

The inverse results for groups of rank two support the conjecture that d∗(G) =

d(G) holds for groups of rank three (which is outlined in [22]). Much less is known for

groups of the form Cr
n. There is a covering result ([9, Theorem 6.6]), which slightly

supports the conjecture that d∗(G) = d(G) holds, and there is recent work by B.

Girard ([16], [18]) on the order of elements occurring in zero-sum free sequences of

maximal length.

In this paper, we present a series of groups of rank five, namely Gn = C2⊕C4
2n

with n ≥ 3 odd, such that d(Gn) > d∗(Gn) (see Theorem 3.1). This is the first

series of groups for which equality in the left side of (∗) fails and which is somehow

close to the form Cr
n (all groups known so far satisfying d∗(G) < d(G) are quite

different). Moreover, these examples shed new light on recent conjectures by B.

Girard concerning the structure of extremal sequences (see Corollary 3.2 and the

subsequent remark). A computer based search in the group C2⊕C4
10 was substantial

for our work. This will be outlined in Section 4.
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2. Preliminaries

Our notation and terminology are consistent with [10] and [14]. We briefly

gather some key notions and fix the notation concerning sequences over finite abelian

groups. Let N denote the set of positive integers, P ⊂ N the set of prime numbers,

and let N0 = N∪ {0}. For a, b ∈ Z, we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. Throughout,

all abelian groups will be written additively, and for n ∈ N, we denote by Cn a

cyclic group with n elements.

Let G be a finite abelian group. For a subset A ⊂ G, we set −A = {−a | a ∈

A}. An s-tuple (e1, . . . , es) of elements of G is said to be independent (or more

briefly, the elements e1, . . . , es are said to be independent) if ei 6= 0 for all i ∈ [1, s]

and, for every s-tuple (m1, . . . ,ms) ∈ Zs,

m1e1 + · · ·+mses = 0 implies m1e1 = · · · = mses = 0 .

An s-tuple (e1, . . . , es) of elements of G is called a basis if it is independent

and G = 〈e1〉 ⊕ · · · ⊕ 〈es〉. For a prime p ∈ P, we denote by Gp = {g ∈

G | ord(g) is a power of p} the p-primary component of G, and by rp(G), the p-

rank of G (which is the rank of Gp).

Let F(G) be the free abelian monoid with basis G. The elements of F(G) are

called sequences over G. We write sequences S ∈ F(G) in the form

S =
∏

g∈G

gvg(S) , with vg(S) ∈ N0 for all g ∈ G .

We call vg(S) the multiplicity of g in S, and we say that S contains g if vg(S) > 0.

A sequence S1 is called a subsequence of S if S1 |S in F(G) (equivalently, vg(S1) ≤

vg(S) for all g ∈ G). If a sequence S ∈ F(G) is written in the form S = g1 · · · gl,

we tacitly assume that l ∈ N0 and g1, . . . , gl ∈ G.

For a sequence

S = g1 · · · gl =
∏

g∈G

gvg(S) ∈ F(G),

we call

|S| = l =
∑

g∈G

vg(S) ∈ N0 the length of S,

σ(S) =

l
∑

i=1

gi =
∑

g∈G

vg(S)g ∈ G the sum of S, and

Σ(S) =
{

∑

i∈I

gi | ∅ 6= I ⊂ [1, l]
}

⊂ G the set of subsums of S.
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The sequence S is called

• a zero-sum sequence if σ(S) = 0,

• zero-sum free if there is no non-trivial zero-sum subsequence, and

• a minimal zero-sum sequence if 1 6= S, σ(S) = 0, and every S′|S with 1 ≤

|S′| < |S| is zero-sum free.

3. The main theorem and its corollary

Theorem 3.1. Let G = Ci
2 ⊕ C5−i

2n with i ∈ [1, 4] and n ≥ 3 odd. Then

d(G) > d∗(G).

Before we start the proof of Theorem 3.1, we would like to remark that its

statement easily extends to groups of higher rank. Indeed, let G = Cn1
⊕ · · · ⊕Cnr

with 1 < n1 | · · · |nr and let ∅ 6= I ⊂ [1, r]. If

d(⊕i∈ICni
) > d∗(⊕i∈ICni

),

then a straightforward construction shows that d(G) > d∗(G) (see [14, Proposition

5.1.11]). Thus the interesting groups G with d(G) > d∗(G) are those with small

rank. Recall that there is no known group G of rank three with d(G) > d∗(G), and

there is only one series of groups G of rank four such that d(G) > d∗(G) (see [15,

Theorem 3]).

Proof of Theorem 3.1. For i ∈ {3, 4}, this follows from [15, Theorem 4],

and, for i = 2, from [8, Theorem 3.3]. Suppose that i = 1 and let (e1, . . . , e5) be a

basis of G with ord(e1) = 2 and ord(e2) = · · · = ord(e5) = 2n. We define

g1 = e1 + e2, g2 = e1 + e3, g3 = e1 + e4, g4 = e1 + e5,

g5 =
3n− 1

2
e2 +

3n+ 1

2
e3 +

3n+ 1

2
e4 +

3n+ 1

2
e5,

g6 =
3n− 1

2
e2 +

3n+ 1

2
e3 +

3n− 1

2
e4 +

n+ 1

2
e5,

g7 =
3n+ 3

2
e2 +

n+ 1

2
e3 +

n− 1

2
e4 +

n+ 1

2
e5,

g8 =
n− 1

2
e2 +

n+ 1

2
e3 +

3n+ 1

2
e4 +

n− 1

2
e5,

g9 =
n− 1

2
e2 +

n+ 1

2
e3 +

n+ 1

2
e4 +

n+ 1

2
e5,

g10 =
3n+ 1

2
e2 +

3n+ 1

2
e3 +

n+ 1

2
e4 +

3n+ 1

2
e5,

g11 =
n+ 3

2
e2 +

3n+ 1

2
e3 +

3n+ 1

2
e4 +

3n− 1

2
e5,

g12 = e1 +
n+ 1

2
e2 +

n− 1

2
e3 +

n+ 1

2
e4 +

3n+ 1

2
e5,
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and assert that

U = g2n−2
1 g2n−3

2 g2n−2
3 g2n−2

4 g5g6g7g8g9g10g11g12

is a minimal zero-sum sequence. Obviously, U is a zero-sum sequence of length

|U | = 8n−1 = d∗(G)+2. Thus it suffices to show that S∗ = g−1
12 U is zero-sum free.

Let

S = gl11 · · · gl1111

be a zero-sum subsequence of g−1
12 U , where li = vgi(S) for all i ∈ [1, 11]. Thus

l1 ∈ [0, 2n− 2], l2 ∈ [0, 2n− 3], l3 ∈ [0, 2n− 2], l4 ∈ [0, 2n− 2], and li ∈ {0, 1} for

all i ∈ [5, 11]. We have to show that |S| = l1 + · · ·+ l11 = 0.

Since σ(S) = 0, we obtain the following system of initial congruences:

l1 + l2 + l3 + l4 ≡ 0mod2 , (1)

l1 +
3n− 1

2
l5 +

3n− 1

2
l6 +

3n+ 3

2
l7+

+
n− 1

2
l8 +

n− 1

2
l9 +

3n+ 1

2
l10 +

n+ 3

2
l11 ≡ 0mod2n, (2)

l2 +
3n+ 1

2
l5 +

3n+ 1

2
l6 +

n+ 1

2
l7+

+
n+ 1

2
l8 +

n+ 1

2
l9 +

3n+ 1

2
l10 +

3n+ 1

2
l11 ≡ 0mod2n, (3)

l3 +
3n+ 1

2
l5 +

3n− 1

2
l6 +

n− 1

2
l7+

+
3n+ 1

2
l8 +

n+ 1

2
l9 +

n+ 1

2
l10 +

3n+ 1

2
l11 ≡ 0mod2n, (4)

l4 +
3n+ 1

2
l5 +

n+ 1

2
l6 +

n+ 1

2
l7+

+
n− 1

2
l8 +

n+ 1

2
l9 +

3n+ 1

2
l10 +

3n− 1

2
l11 ≡ 0mod2n. (5)

By subtracting equation (2) from (3), subtracting (4) from (3), and subtract-

ing (5) from (3), we obtain

l1 ≡ l2 + l5 + l6 + l8 + l9 + (n− 1)(l7 + l11)mod 2n, (6)

l3 ≡ l2 + l6 + l7 + n(l8 + l10)mod 2n, and (7)

l4 ≡ l2 + nl6 + l8 + l11 mod2n. (8)

Next we form a congruence modulo 2, namely

0≡ l1 + l2 + l3 + l4

≡ l2 + l5 + l6 + l8 + l9+

l2+

l2 + l6 + l7 + l8 + l10+

l2 + l6 + l8 + l11

≡ l5 + l6 + l7 + l8 + l9 + l10 + l11 mod 2.
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Therefore we get l5 + l6 + l7 + l8 + l9 + l10 + l11 ∈ {0, 2, 4, 6}. If l5 + l6 + l7 + l8 +

l9 + l10 + l11 = 0, then σ(S) = 0 implies immediately that l1 = l2 = l3 = l4 = 0 and

thus |S| = 0. Thus we suppose that l5 + · · ·+ l11 ∈ {2, 4, 6}.

Adding (3) and (5) and inserting (8), we obtain that

2l2 + (n+ 1)(l5 + l6 + l7 + l8 + l9 + l10 + l11) ≡ 0mod2n.

Thus we get that either

l5 + · · ·+ l11 = 2 and hence l2 = n− 1

or

l5 + · · ·+ l11 = 4 and hence l2 = n− 2

or

l5 + · · ·+ l11 = 6 and hence l2 ∈ {n− 3, 2n− 3} .

We distinguish these four cases.

Case 1. l5 + · · ·+ l11 = 2 and l2 = n− 1.

Case 1.1. l6 = 1. If l8 + l11 = 2, then l5 = l7 = l9 = l10 = 0, l1 = l3 = 0, and

l4 = 1, a contradiction to (1). If l8 + l11 = 0, then l4 = 2n− 1, a contradiction to

l4 ∈ [0, 2n− 2]. Thus we get l8 + l11 = 1. If l8 = 1, then l5 = l7 = l9 = l10 = l11 = 0

and l1 = n+1, a contradiction to (2). If l8 = 0, then l11 = 1, l5 = l7 = l9 = l10 = 0,

and l1 = 2n− 1, a contradiction to l1 ∈ [0, 2n− 2].

Case 1.2. l6 = 0. If l8 + l10 = 2, then l5 = l7 = l9 = l11 = 0 and l1 = n, a

contradiction to (2). Suppose that l8+ l10 = 0. Then l4 = n−1+ l11, l3 = n−1+ l7,

and l1 = (n − 1)(1 + l7 + l11) + l5 + l9. If l7 + l11 = 1, then l1 = 2n − 2 + l5 + l9
and hence l1 = 2n− 2, a contradiction to (1). If l7 + l11 = 0, then l5 = l9 = 1 and

l1 = n+ 1, a contradiction to (2). If l7 + l11 = 2, then l5 = l9 = 0 and l1 = n− 3, a

contradiction to (2).

Suppose that l8 + l10 = 1. Then l3 ≡ 2n− 1+ l7mod 2n, which implies l7 = 1

and l3 = 0. Then l1 ≡ 2n−2+ l5+ l6+ l8+ l9mod 2n, which implies l8 = 0, l10 = 1,

and l1 = 2n− 2, a contradiction to (2).

Case 2. l5 + · · ·+ l11 = 4 and l2 = n− 2.

Case 2.1. l6 = 1. If l8 + l11 = 1, then l4 = 2n − 1, a contradiction to

l4 ∈ [0, 2n−2]. Suppose that l8+ l11 = 0. If l7 = 1, then l1 ≡ 2n−2+ l5+ l9mod 2n.

Since l1 ∈ [0, 2n− 2] and l5 + · · ·+ l11 = 4, it follows that l5 = l9 = 1 and l1 = 0, a

contradiction to (2). If l7 = 0, then l5 = l6 = l9 = l10 = 1 and l3 ≡ 2n− 1mod2n,

a contradiction to l3 ∈ [0, 2n− 2].

Suppose that l8 + l11 = 2. If l7 = 1, then l5 = l9 = l10 = 0 and l1 = n− 2, a

contradiction to (2). If l7 = 0, then l3 ≡ n− 1+n(1+ l10)mod 2n and thus l10 = 1,

l5 = l9 = 0, and l1 ≡ 2n− 1mod2n, a contradiction to l1 ∈ [0, 2n− 2].

Case 2.2. l6 = 0. If l8 + l10 = 0, then l5 = l7 = l9 = l11 = 1 and l1 = n− 2, a

contradiction to (2). Suppose that l8 + l10 = 1. If l7 = 1, then l3 ≡ 2n− 1mod2n,
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a contradiction to l3 ∈ [0, 2n − 2]. If l7 = 0, then l5 = l9 = l11 = 1 and l1 ≡

2n − 1 + l8 mod 2n, which implies that l8 = 1, l10 = 0, and l1 = 0, a contradiction

to (2).

Suppose that l8 + l10 = 2. If l7 + l11 = 0, then l5 = l9 = 1 and l1 = n+ 1, a

contradiction to (2). If l7+ l11 = 2, then l5 = l9 = 0 and l1 = n− 3, a contradiction

to (2). If l7 + l11 = 1, then l5 + l9 = 1 and l1 ≡ 2n− 1mod 2n, a contradiction to

l1 ∈ [0, 2n− 2].

Case 3. l5 + · · · + l11 = 6 and l2 = n − 3. If 0 ∈ {l5, l7, l8, l9, l10}, then

l4 ≡ 2n− 1mod2n, a contradiction to l4 ∈ [0, 2n− 2]. If l6 = 0, then l1 = n− 2, a

contradiction to (2). If l11 = 0, then l1 = 0, a contradiction to (2).

Case 4. l5 + · · · + l11 = 6 and l2 = 2n − 3. If l5 = 0 or l11 = 0, then l3 ≡

2n−1mod2n, a contradiction to l3 ∈ [0, 2n−2]. If l6 = 0, then l4 ≡ 2n−1mod2n, a

contradiction to l4 ∈ [0, 2n− 2]. If l10 = 0, then l1 ≡ 2n− 1mod2n, a contradiction

to l1 ∈ [0, 2n− 2]. If l7 = 0, then l1 = n; if l8 = 0, then l1 = 2n− 2; if l9 = 0, then

l1 = 2n− 2. All these three cases give a contradiction to (2).

In two recent papers, B. Girard states a conjecture on the structure of extremal

zero-sum free sequences. We recall the required terminology.

Let G = Cq1 ⊕· · ·⊕Cqs be the direct decomposition of the group G into cyclic

groups of prime power order, where s = r∗(G) =
∑

p∈P
rp(G) is the total rank of G,

and set

k∗(G) =

s
∑

i=1

qi − 1

qi
, with k∗(G) = 0 for G trivial.

For a sequence S = g1 · · · gl over G,

k(S) =

l
∑

i=1

1

ord(gi)

denotes its cross number, and

k(G) = max{k(U) |U ∈ F(G) zero-sum free} ∈ Q

is the little cross number of G. If (e1, . . . , es) is a basis of G with ord(ei) = qi for

all i ∈ [1, s], then S =
∏s

i=1 e
qi−1
i is zero-sum free and hence k∗(G) = k(S) ≤ k(G).

Equality holds in particular for p-groups, and there is no known group H with

k∗(H) < k(H). We refer to [14, Chapter 5] for more information on the cross

number and to [17], [13] for recent progress. Now we formulate the conjecture of B.

Girard (see [16, Conjecture 1.2] and [18, Conjecture 2.1]).
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Conjecture. (B. Girard) If G ∼= Cn1
⊕ · · · ⊕ Cnr

with 1 < n1 | · · · |nr and

S ∈ F(G) is zero-sum free with |S| ≥ d∗(G), then

k(S) ≤
r

∑

i=1

ni − 1

ni

.

The conjecture holds true for cyclic groups, p-groups (see [16, Proposition 2.3])

and for groups of rank two (this follows from [16, Theorem 2.4] and the character-

ization of all minimal zero-sum sequences of maximal length, [23], [11]). Suppose

that G = Cr
n. If true, the conjecture would imply that d(G) = d∗(G) and, more-

over, that all elements occurring in a zero-sum free sequence of length d∗(G) have

maximal order n ([16, Proposition 2.1]).

Corollary 3.2. Let G = Cr
2n with n ≥ 3 odd and r ≥ 5. Then there exists a

zero-sum free sequence T ∈ F(G) and an element g ∈ G with ord(g) = n such that

vg(T ) = n− 1 , |T | = d∗(G) − (n− 2) and k(T ) = r
2n− 1

2n
+

1

2n
.

In particular, if n = 3 and r = 5, then |T | = d∗(G) − 1, k(T ) > r(2n − 1)/(2n),

and there is no zero-sum free sequence T ∗ ∈ F(G) such that T ∗ = g1g2T
′ and

T = (g1 + g2)T
′, where g1, g2 ∈ G and T ′ ∈ F(G).

Proof. Let (e′1, e2, . . . , er) be a basis of G with ord(e′1) = ord(e2) = · · · =

ord(er) = 2n. Let e1 = ne′1 and S∗ ∈ F(〈e1, e2, e3, e4, e5〉) be as constructed in the

proof of Theorem 3.1. Then

|S∗| = 8n− 2 and k(S∗) =
|S|

2n
.

Since ord(2e′1) = n and 〈2e′1, e6, . . . , er〉 ∩ 〈e1, . . . , e5〉 = {0}, the sequence

T = (2e′1)
n−1S∗

r
∏

i=6

e2n−1
i

is zero-sum free and has the required properties.

In the case n = 3 and r = 5, we have checked numerically—by a variant of the

SEA (see Algorithm 1) with reduced search depth—that there is no such sequence

T ∗, and the remaining assertions follow from the general case of the corollary.
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Remark 3.3. Thus, for the group G = C5
6 , the sequence T given in Corollary

3.2 shows that the Conjecture is sharp, in the sense that the assumption |S| ≥ d∗(G)

cannot be weakened to |S| ≥ d∗(G)− 1. But it shows much more.

Suppose that G is cyclic of order |G| = n ≥ 3. A simple argument shows that

d(G) = d∗(G) = n − 1 and every zero-sum free sequence S of length |S| = n − 1

has the form S = gn−1 for some g ∈ G with ord(g) = n. It was a well-investigated

problem in Combinatorial Number Theory to extend this structural result to shorter

zero-sum free sequences. In 2007, S. Savchev and F. Chen could finally show that,

for every zero-sum free sequence S of length |S| > (n+ 1)/2, there is a g ∈ G such

that S = (n1g) · · · (nlg), where l = |S| ∈ N, 1 = n1 ≤ · · · ≤ nl, n1 + · · ·+nl = m <

ord(g) and Σ(S) = {g, 2g, . . . ,mg} (see [21] and [12, Theorem 5.1.8]). Thus S is

obtained by taking some factorization (gn1) · · · (gnl) = gm−1 of the sequence gm−1

and replacing each gni by σ(gni) = nig for i ∈ [1, l]. By Corollary 3.2, such a result

does not hold for C5
6 , not even for zero-sum free sequences of length d∗(G)− 1.

4. Description of the computational approach

Computational methods have already been used successfully for a variety of

zero-sum problems (see recent work of G. Bhowmik, Y. Edel, C. Elsholtz, I. Halupc-

zok, J.-C. Schlage-Puchta et al. [6], [4], [5], [1]). Inspired by former work in the

groups C2
2 ⊕C3

2n for n ≥ 3 odd, we found many examples of zero-sum free sequences

S over G = C2 ⊕ C4
6 of length |S| = d∗(G) + 1. These were used as starting points

in a computer based search in the group C2 ⊕C4
10, which will be explained in detail

below.

The Sequence Extension Algorithm (SEA) (see Algorithm 1) uses a smart

brute force approach, where the computation time is significantly reduced by algo-

rithmic short-cuts, efficient data structures for set testing, and fast look-up tables

for group operations. The program was implemented in the C/C++ programming

language. Furthermore, MPI parallelization was used to enable the execution of

the program on cluster computers and supercomputers with thousands of comput-

ing cores. The parallelization scheme is a simple master-slave algorithm, where the

master thread partitions the outermost loop over all group elements and sends out

these work items to the available pool of slave threads. In this scheduler, a dynamic

policy with chunk size one is used; that is, the master thread sends out only one

work item to the next slave thread available. Although this leads to some communi-

cation overhead between the master and the slave threads, it is quite reasonable as

the necessary computation time for one work item can vary by a factor of more than

25000, i.e., from less than a second up to a few hours. The first major algorithmic

short-cut is restricting the search to ascending sequences with respect to coordinates

in a basis and lexicographic ordering, thus omitting all permutations arising from

the same sequence. The second short-cut is keeping track of all group elements not
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in the set of negative subsums in additional vectors—namely G1, G2, G3, G4, and

G5 in the SEA (see Algorithm 1).

These vectors are used to massively speed up the Sumset Computation Algo-

rithm (SCA) (see Algorithm 2) by avoiding many unnecessary tests.

Typically, the vectors Gi, for i ∈ [1, 5], consist of only a few hundred group elements

while #G = 20000—this means a speed up by a factor of about 20 to 200 in each
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step of the descending inner loops in the SCA (see Algorithm 2). As a last step of

optimization, we pre-compute a look-up table for subtraction in G, which is stored in

a very specific way such that we can use it for the tests in the SCA (see Algorithm 2)

and benefit from data caching and pre-fetching on modern CPUs while accessing

the elements in a single line of the look-up table.

The computations for the test sequences a, b, c, and d on the cineca super-

computer used 64 threads with a single master and 63 slaves. The parallel efficiency

of the algorithm, due to the independent nature of the computations, proved to

be very good. The cineca supercomputer is an IBM pSeries 575 Infiniband cluster

with 168 computing nodes and 5376 computing cores. Every node has eight IBM

Power6 4.7 GHz quad-core CPUs with simultaneous multi-threading (SMT) and

128 GB of shared memory. Performance tests of the parallel algorithm showed that

the best configuration to run a single work item on is a single computing node with

64 threads with SMT enabled. Single node work loads were also scheduled typically

within a day on the cineca supercomputer. The complete run of all test sets a, b, c,

and d took about a week on the cineca supercomputer with an equivalent of nearly

100,000 SMT CPU core hours computation time. The run time of a work item on a

single computing node was limited to six hours wall clock time by batch processing

system policy. Nevertheless, most work items finished within these time restrictions,

namely, 206 out of 324, and the ones that did not finish had most of the time only

very few elements left to check, so we decided not to reschedule these work items

for completion. The full statistics of the computations is given in Table 1.

Test Set Test Sequences Complete Hits Extensions Compute Time

a 81 27 0 0 28,366

b 81 52 5 92 26,670

c 81 52 5 252 26,688

d 81 75 4 196 15,808

324 206 14 540 97,534

Statistics of the four test runs a, b, c, and d on the cineca supercomputer.

The compute time is given in hours w.r.t. a single IBM Power6 4.7 GHz

SMT CPU core.
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