ON THE ORDER OF ELEMENTS IN LONG MINIMAL ZERO-SUM SEQUENCES

Weidong Gao (Beijing) and Alfred Geroldinger (Graz)

[Communicated by: Attila Pethő]

Abstract

Let G be a finite abelian group and $S=\prod_{i=1}^{l} g_{i}$ a minimal zero-sum sequence in G of maximal length $|S|=l$. We study the order of the elements g_{1}, \ldots, g_{l}.

1. Introduction and Main Results

Let G be an additively written, finite abelian group. For every $n \in \mathbb{N}$ we denote by C_{n} the cyclic group with n elements. Then $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$ if $|G|>1$ and with $r=n_{1}=1$ if $|G|=1$. Furthermore, $r=r(G)$ is the rank of $G, n_{r}=\exp (G)$ is the exponent of G and we set $M(G)=1+\sum_{i=1}^{r}\left(n_{i}-1\right)$.

We study sequences in G and for convenience we recall some basic terminology (we use the same notations as in [GG99] and refer to this paper for details). Let $\mathcal{F}(G)$ denote the free abelian monoid with basis G and let $S=\prod_{i=1}^{l} g_{i} \in \mathcal{F}(G)$ be a sequence in G. Then $|S|=l \in \mathbb{N}_{0}$ is called the length of S and $\sigma(S)=\sum_{i=1}^{l} g_{i} \in G$ the sum of S. We say that S is a zero-sum sequence, if $\sigma(S)=0$ and that S is a minimal zero-sum sequence if no proper subsequence has sum zero. Davenport's constant $\mathcal{D}(G)$ of G is defined as the maximal length of a minimal zero-sum sequence in G.

It is a straightforward observation that $M(G) \leq \mathcal{D}(G)$. About thirty years ago J.E. Olson and D. Kruyswijk proved independently that equality holds for p groups and for groups G with rank $r(G) \leq 2$ (see [vEB69], [Ols69a], [Ols69b]). It is still unknown whether equality holds for all groups with rank three (for some recent development see [Gao00]), but for every $r \geq 4$ there are infinitely many groups G with rank r and with $M(G)<\mathcal{D}(G)$ (see [GS92]). However, up to now there is no satisfactory explanation neither for the phenomenon $M(G)=\mathcal{D}(G)$ nor for $M(G)<\mathcal{D}(G)$.

In recent work it has been tried to obtain some information about the structure of minimal zero-sum sequences whose length is equal or close to $\mathcal{D}(G)$ (see [GG99]). A good knowledge about the structure of such sequences is of high importance for

Key words and phrases: finite abelian groups, zero-sum sequences
applications in factorization theory (see [And97]). Furthermore, it will allow further progress in determining Davenport's constant (see [Gao00]) and will provide a new insight in the phenomenon $M(G)=\mathcal{D}(G)$.

Among others the following property of finite abelian groups has been studied:
Property : Every minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length $|S|=$ $\mathcal{D}(G)$ contains some element g with $\operatorname{ord}(g)=\exp (G)$.

We conjecture that every finite abelian group G has this property and in [GG99] this was proved for p-groups and for groups with rank $r(G) \leq 2$ among others. An analogous property plays an important role in the investigation of cross numbers of minimal zero-sum sequences (see [GS96], Lemma 1).

We discuss the following two refinements of the above question and ask for groups G satisfying one of the following two properties:

Property 1: Every minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length $|S|=$ $\mathcal{D}(G)$ consists entirely of elements g with $\operatorname{ord}(g)=\exp (G)$.

Property 2: There exists a minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length $|S|=\mathcal{D}(G)$ which consists entirely of elements g with $\operatorname{ord}(g)=\exp (G)$.

Let $G=C_{n}$ be cyclic of order n. Then it is well known, that every minimal zero-sum sequence of length $\mathcal{D}(G)=n$ has the form g^{n} for some element g of order n. Hence cyclic groups have Property 1. In this note we characterize groups of rank two and p-groups having Property 1 resp. Property 2.

TheOrem 1.1. Let $G=C_{m} \oplus C_{n}$ be a group with rank two where $1<m \mid n$.
(1) G has Property 1 if and only if $m=n$.
(2) G has Property 2 if and only if either m or $\frac{n}{m}$ is odd.

ThEOREM 1.2. Let $G=C_{p^{m_{1}}} \oplus \cdots \oplus C_{p^{m_{r}}}$ be a p-group where p is prime, $r \in \mathbb{N}$ and $1 \leq m_{1} \leq \cdots \leq m_{r}$.
(1) G has Property 1 if and only if $m_{1}=m_{r}$.
(2) G has Property 2 if and only if G is not a 2-group with even rank r and with $m_{r-1}<m_{r}$.

Furthermore, we give a complete characterization of all minimal zero-sum sequences with length $\mathcal{D}(G)$ in groups G of the form $G=C_{2} \oplus C_{2 n}$ (see Theorem 3.3). By the above Theorems these are the simplest groups which do not necessarily satisfy Property 2.

2. Preliminaries

Let G be a finite abelian group and $S=\prod_{i=1}^{l} g_{i} \in \mathcal{F}(G)$ a sequence in G. Our terminology is consistent with the one used in [GG99]. In particular, we denote by $1 \in \mathcal{F}(G)$ the empty sequence and by $\operatorname{supp}(S)=\left\{g_{i} \mid 1 \leq i \leq l\right\}$ the support of S (hence S contains some element $g \in G$ if and only if $g \in \operatorname{supp}(S)$). The sequence S is called

- zero-sumfree, if $\sum_{i \in I} g_{i} \neq 0$ for every non-empty subset $I \subset\{1, \ldots, l\}$. Clearly, S is zero-sumfree if and only if $-\sigma(S) \cdot S$ is a minimal zero-sum sequence.
- a short zero-sum sequence, if S is a zero-sum sequence with $1 \leq|S| \leq \exp (G)$.

Let $\eta(G)$ denote the smallest integer $\eta \in \mathbb{N}$ such that every sequence $S \in \mathcal{F}(G)$ with $|S| \geq \eta$ contains a short zero-sum subsequence.

Lemma 2.1. $\quad \eta\left(C_{n} \oplus C_{n}\right) \leq 3 n-2$ for every $n \geq 2$.

Proof. This was proved in [GG99] Lemma 4.3.
Let $\varphi: G \longrightarrow H$ be a group homomorphism. Then $\varphi(S)=\prod_{i=1}^{l} \varphi\left(g_{i}\right) \in$ $\mathcal{F}(H)$ is a sequence in H with length $|\varphi(S)|=|S|$ and $\operatorname{sum} \sigma(\varphi(S))=\varphi(\sigma(S)) \in H$.

Elements $e_{1}, \ldots, e_{r} \in G$ are called independent, if for every $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ the equation $\sum_{i=1}^{r} m_{i} e_{i}=0$ implies that $m_{i} e_{i}=0$ for every $1 \leq i \leq r$.

Furthermore, $\left(e_{1}, \ldots, e_{r}\right)$ is called a basis of G, if $G=\bigoplus_{i=1}^{r}\left\langle e_{i}\right\rangle, \operatorname{ord}\left(e_{i}\right)=n_{i}$ for every $1 \leq i \leq r$ and $1<n_{1}|\cdots| n_{r}$. Clearly, if $\left(e_{1}, \ldots, e_{r}\right)$ is a basis of G, then e_{1}, \ldots, e_{r} are independent elements.

LEMMA 2.2. Let G be an abelian group, $e_{1}, \ldots, e_{r} \in G$ independent elements with $\operatorname{ord}\left(e_{i}\right)=n_{i}$ for $1 \leq i \leq r$ and $e_{0}=\sum_{i=1}^{r} m_{i} e_{i}$ with $m_{1}, \ldots, m_{r} \in \mathbb{Z}$.
(1) $\operatorname{ord}\left(e_{0}\right)=\operatorname{lcm}\left\{\left.\frac{n_{i}}{\operatorname{gcd}\left\{m_{i}, n_{i}\right\}} \right\rvert\, 1 \leq i \leq r\right\}$.
(2) If $n_{1}=\cdots=n_{r}=n$, then $\operatorname{ord}\left(e_{0}\right)=\frac{n}{\operatorname{gcd}\left\{m_{1}, \ldots, m_{r}, n\right\}}$.

Proof. 1. For every $1 \leq i \leq r$ we have

$$
\operatorname{ord}\left(m_{i} e_{i}\right)=\frac{\operatorname{ord}\left(e_{i}\right)}{\operatorname{gcd}\left\{\operatorname{ord}\left(e_{i}\right), m_{i}\right\}}=\frac{n_{i}}{\operatorname{gcd}\left\{n_{i}, m_{i}\right\}}
$$

Since $m_{1} e_{1}, \ldots, m_{r} e_{r}$ are independent elements, it follows that

$$
\operatorname{ord}\left(e_{0}\right)=\operatorname{lcm}\left\{\operatorname{ord}\left(m_{1} e_{1}\right), \ldots, \operatorname{ord}\left(m_{r} e_{r}\right)\right\}
$$

and the assertion follows.
2. If $n_{1}=\cdots=n_{r}=n$, then
$\operatorname{ord}\left(e_{0}\right)=\operatorname{lcm}\left\{\left.\frac{n}{\operatorname{gcd}\left\{m_{i}, n\right\}} \right\rvert\, 1 \leq i \leq r\right\}=\frac{n}{\operatorname{gcd}\left\{m_{1}, \ldots, m_{r}, n\right\}}$.

3. Proof of Theorem 1.1

We start with a simple observation concerning the order of elements in long minimal zero-sum sequences.

Lemma 3.1. Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$. Then there exists a minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length $|S|=M(G)$ which contains some element g with $\operatorname{ord}(g)=n_{1}$.

Proof. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G and set $e_{0}=\sum_{i=1}^{r} e_{i}$. Then the sequence $\prod_{i=1}^{r} e_{i}^{n_{i}-1}$ is zero-sumfree whence $S=e_{0} \cdot \prod_{i=1}^{r} e_{i}^{n_{i}-1}$ is a minimal zerosum sequence with the required properties.

ThEOREM 3.2. Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ be a finite abelian group with $1<n_{1}|\cdots| n_{r}$. Then the following conditions are equivalent:
(1) There exists a minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length $|S|=M(G)$ such that $\operatorname{ord}(g)=\exp (G)$ for every $g \in \operatorname{supp}(S)$.
(2) $r=1$ or $\sum_{i=1}^{r-1}\left(n_{i}-1\right)$ is even or $\frac{n_{r}}{n_{r-1}}$ is odd.

Proof. 1. $\Longrightarrow 2$. Suppose that $r \geq 2, \sum_{i=1}^{r-1}\left(n_{i}-1\right)$ odd and $\frac{n_{r}}{n_{r-1}}$ is even. Then $H=\bigoplus_{i=1}^{r-1} C_{n_{i}}$ is non-trivial, $M(H)$ is even, $G=H \oplus\langle e\rangle$ with $\operatorname{ord}(e)=n_{r}=n$ and $l=M(G)=M(H)+n-1$ is odd. Let

$$
S=\prod_{i=1}^{l}\left(h_{i}+a_{i} e\right) \in \mathcal{F}(G)
$$

be a minimal zero-sum sequence with all $h_{i} \in H$ and all $a_{i} \in \mathbb{Z}$. Assume to the contrary that $\operatorname{ord}\left(h_{i}+a_{i} e\right)=n$ for every $1 \leq i \leq l$. If some a_{i} would be even, then $\frac{n}{2}\left(a_{i} e\right)=0, \frac{n}{2} h_{i}=0$ since n_{r-1} divides $\frac{n}{2}$ and thus $\frac{n}{2}\left(h_{i}+a_{i} e\right)=0$, a contradiction. Thus all a_{i} are odd whence $\sum_{i=1}^{l} a_{i}$ is odd. However, since S has sum zero, it follows that $\sum_{i=1}^{l} a_{i} \equiv 0 \bmod n$, a contradiction.
$2 . \Longrightarrow 1$. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G.
If $r=1$, then $S=e_{1}^{n_{1}}$ has the required properties.
Suppose $r \geq 2$ and choose integers $a_{i, j} \in \mathbb{Z}$ with $\operatorname{gcd}\left\{n_{r}, a_{i, j}\right\}=1$ for every $1 \leq i \leq r$ and every $1 \leq j \leq n_{i}-1$. Then the sequence

$$
\prod_{i=1}^{r-1} \prod_{j=1}^{n_{i}-1}\left(e_{i}+a_{i, j} e_{r}\right) \cdot e_{r}^{n_{r}-1}
$$

is zero-sumfree whence

$$
S=e_{0} \cdot \prod_{i=1}^{r-1} \prod_{j=1}^{n_{i}-1}\left(e_{i}+a_{i, j} e_{r}\right) \cdot e_{r}^{n_{r}-1}
$$

is a minimal zero-sum sequence with length $M(G)$ where

$$
e_{0}=\sum_{i=1}^{r-1} e_{i}+(1-a) e_{r} \quad \text { with } \quad a=\sum_{i=1}^{r-1} \sum_{j=1}^{n_{i}-1} a_{i, j}
$$

Since all $a_{i, j}$ are coprime to n_{r}, Lemma 2.2 implies that $\operatorname{ord}\left(e_{i}+a_{i, j} e_{r}\right)=n_{r}$. Hence it remains to show that $\operatorname{ord}\left(e_{0}\right)=n_{r}$. By Lemma 2.2 we have

$$
\begin{aligned}
\operatorname{ord}\left(e_{0}\right) & =\operatorname{lcm}\left\{\operatorname{ord}\left(e_{1}\right), \ldots, \operatorname{ord}\left(e_{r-1}\right), \operatorname{ord}\left((1-a) e_{r}\right)\right\} \\
& =\operatorname{lcm}\left\{n_{r-1}, \operatorname{ord}\left((1-a) e_{r}\right)\right\} \\
& =\operatorname{lcm}\left\{n_{r-1}, \frac{n_{r}}{\operatorname{gcd}\left\{n_{r}, 1-a\right\}}\right\} .
\end{aligned}
$$

If $\sum_{i=1}^{r-1}\left(n_{i}-1\right)=2 k$ for some $k \in \mathbb{N}$, then choose $k a_{i, j}$'s equal to 1 and k $a_{i, j}$'s equal to -1 . This implies that $a=0$ whence $\operatorname{ord}\left(e_{0}\right)=n_{r}$.

If $\frac{n_{r}}{n_{r-1}}$ is odd and $\sum_{i=1}^{r-1}\left(n_{i}-1\right)=2 k+1$ for some $k \in \mathbb{N}_{0}$, then choose $k+1 a_{i, j}$'s equal to -1 and $k a_{i, j}$'s equal to 1 . This implies that $1-a=2$ and $\operatorname{ord}\left(e_{0}\right)=n_{r}$.

Proof of Theorem 1.1. Let $G=C_{m} \oplus C_{n}$ with $1<m \mid n$.

1. If G has Property 1, then Lemma 3.1 implies that $m=n$. If $m=n$, then Property 1 holds by Proposition 6.3 in [GG99].
2. This follows from Theorem 3.2.

In cyclic groups and elementary 2-groups it is an easy exercise to determine all minimal zero-sum sequences of maximal lengths (see Propositions 2.2 and 4.1 in [GG99]). Apart from these trivial cases this has been done for no other series of groups. Here we establish an explicit characterization of all minimal zero-sum sequences of maximal lengths in groups G of the form $G=C_{2} \oplus C_{2 n}$. Such explicit characterizations are of great relevance in zero sum theory (see the literature and problems in [Alo99], [Car96], [CFS99] or the discussions around Property B in [Gao00] and [GG99]) and in factorization theory (see e.g. [CG97] and [GG00]). In particular, we shall (explicitely) see that in groups $G=C_{2} \oplus C_{4 k}$ all minimal zero-sum sequences with length $\mathcal{D}(G)$ contain elements of order less that $\exp (G)$.

Theorem 3.3. Let $G=C_{2} \oplus C_{2 n}$ for some $n \geq 2$ and $S \in \mathcal{F}(G)$ a minimal zero-sum sequence with length $|S|=\mathcal{D}(G)$. Then S has one of the following two forms:
(1) $S=g^{2 n-1} \cdot h \cdot(g-h)$ for some $g \in G$ with $\operatorname{ord}(g)=2 n$ and some $h \in G \backslash\langle g\rangle$.
(2) $S=e \cdot g^{v} \cdot(g+e)^{2 n-v}$ for some $g \in G$ with $\operatorname{ord}(g)=2 n, e \in G \backslash\langle g\rangle$ with $\operatorname{ord}(e)=2$ and v odd with $3 \leq v \leq 2 n-3$.

Conversely, every sequence of form 1. or 2 . is a minimal zero-sum sequence with length $\mathcal{D}(G)$.

Proof. It is easy to verify that a sequence of form 1 . or 2 . is a minimal zero-sum sequence with length $2 n+1=\mathcal{D}(G)$.

Let $\left(e_{1}, e_{2}\right)$ be a basis of $G, H=\left\langle 2 e_{2}\right\rangle \cong C_{n}, G / H=\left\{H=a_{0}, e_{1}+H=\right.$ $\left.a_{1}, e_{2}+H=a_{2}, e_{1}+e_{2}+H=a_{3}\right\} \cong C_{2} \oplus C_{2}$ and consider the exact sequence

$$
0 \longrightarrow H \hookrightarrow G \xrightarrow{\varphi} G / H \longrightarrow 0
$$

We write S in the form

$$
S=\prod_{i=0}^{3} S_{i}
$$

such that $\varphi\left(S_{i}\right)=a_{i}^{\left|S_{i}\right|}$ for every $0 \leq i \leq 3$.

1. We assert that $S_{0}=1 \in \mathcal{F}(G)$, the empty sequence. Assume to the contrary that $S=g \cdot T$ with $\varphi(g)=a_{0}$. Since by Lemma $2.1 \eta\left(C_{2} \oplus C_{2}\right) \leq 4$ and $|T|=2 n=2(n-2)+4$, there exist pairwise disjoint subsequences T_{1}, \ldots, T_{n-1} of T such that all $\varphi\left(T_{i}\right)$ are short zero-sum subsequences of $\varphi(T)$. Therefore $U=$ $g \cdot \prod_{i=1}^{n-1} \sigma\left(T_{i}\right) \in \mathcal{F}(H)$ and since $\mathcal{D}(H)=n$, it follows that U has a zero-sum subsequence. Therefore $V=g \cdot \prod_{i=1}^{n-1} T_{i}$ has a zero-sum subsequence. However, V is a subsequence of S with $|V|=1+\sum_{i=1}^{n-1}\left|T_{i}\right| \leq 1+2(n-1)<|S|$, a contradiction.
2. We assert that $\left|S_{i}\right| \equiv 1 \bmod 2$ for every $1 \leq i \leq 3$. For $i \in\{1,2,3\}$ set $\left|S_{i}\right|=2 q_{i}+r_{i}$ with $0 \leq r_{i} \leq 1$. Then $\varphi\left(S_{i}\right)=\left(a_{i}^{2}\right)^{\bar{q}_{i}} \cdot a_{i}^{r_{i}}$ and obviously, a_{i}^{2} is a short zero-sum subsequence of $\varphi\left(S_{i}\right)$. Therefore S contains $q=q_{1}+q_{2}+q_{3}$ pairwise disjoint subsequences T_{i} with $\left|T_{i}\right|=2$ and $\sigma\left(\varphi\left(T_{i}\right)\right)=0$. This implies that

$$
T=\prod_{i=1}^{q} \sigma\left(T_{i}\right) \in \mathcal{F}(H)
$$

Since $2 n+1=|S|=2 q+\sum_{i=1}^{3} r_{i}$, it follows that $\sum_{i=1}^{3} r_{i} \in\{1,3\}$. Assume to the contrary that $\sum_{i=1}^{3} r_{i}=1$. Then it follows that

$$
q=\frac{1}{2}\left(|S|-\sum_{i=1}^{3} r_{i}\right)=n
$$

whence T contains a zero-sum subsequence and the same is true for $U=\prod_{i=1}^{q} T_{i}$. However, U is a subsequence of S with $|U|=\sum_{i=1}^{q}\left|T_{i}\right| \leq 2 n<|S|$, a contradiction. Thus $\left|S_{i}\right|=2 q_{i}+1$ for every $1 \leq i \leq 3$ and $q=n-1$.
3. We assert that for every $1 \leq i \leq 3$ there is some $g_{i} \in \varphi^{-1}\left(a_{i}\right) \subset G$ such that $S_{i}=g_{i}^{\left|S_{i}\right|}$. Furthermore, if $\left|S_{1}\right| \geq 3$ and $\left|S_{2}\right| \geq 3$, then $2 g_{1}=2 g_{2}$.

Let $i \in\{1,2,3\}=\{i, j, k\}$. If $\left|S_{i}\right|=1$, there is nothing to prove. Suppose $S_{i}=\prod_{\nu=1}^{\left|S_{i}\right|} h_{\nu}$ with $\left|S_{i}\right|=2 q_{i}+1 \geq 3$. We shall verify that $h_{1}=h_{2}$.

First suppose that $\left|S_{i}\right| \geq 5$. For $1 \leq \nu \leq q_{i}$ the sequences $T_{\nu}=h_{2 \nu} \cdot h_{2 \nu+1}$ are pairwise distinct subsequences of S_{i} with $\sigma\left(T_{\nu}\right) \in H$. For $\mu \in\{j, k\}$ there are
q_{μ} such subsequences T_{ν} of S_{μ}. Set $S=T_{q+1} \cdot \prod_{\nu=1}^{q} T_{\nu}$. Then $q+1=n,\left|T_{n}\right|=3$ and $\varphi\left(T_{n}\right)$ has sum zero. Therefore

$$
T=\prod_{\nu=1}^{n} \sigma\left(T_{\nu}\right) \in \mathcal{F}(H)
$$

contains a zero-sum subsequence, and since S is a minimal zero-sum sequence, T is a minimal zero-sum sequence in a cyclic group of order n. Therefore, it follows that

$$
\begin{equation*}
\sigma\left(T_{1}\right)=\cdots=\sigma\left(T_{n}\right) \tag{1}
\end{equation*}
$$

In particular, we obtain that

$$
h_{2}+h_{3}=\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)=h_{4}+h_{5}
$$

Repeating this construction (with a new numeration of the h_{i} 's) we obtain that $h_{1}+h_{3}=h_{4}+h_{5}$. Thus we obtain that $h_{1}=h_{2}$.

Suppose now that $\left|S_{i}\right|=3$ and assume that $\left|S_{j}\right| \geq\left|S_{k}\right|$. We distinguish the cases $\left|S_{j}\right|=1$ and $\left|S_{j}\right| \geq 3$.

Suppose $\left|S_{j}\right|=1$. Then $\left|S_{k}\right|=1$ and $2 n+1=|S|=\sum_{\nu=1}^{3}\left|S_{\nu}\right|=5$ whence $n=2$. Thus we have $\varphi^{-1}\left(e_{1}+H\right)=\left\{e_{1}, e_{1}+2 e_{2}\right\}, \varphi^{-1}\left(e_{2}+H\right)=\left\{e_{2}, 3 e_{2}\right\}$ and $\varphi^{-1}\left(e_{1}+e_{2}+H\right)=\left\{e_{1}+e_{2}, e_{1}+3 e_{2}\right\}$. Assume to the contrary, that $\left|\operatorname{supp}\left(S_{i}\right)\right|>1$ whence $S_{i}=g \cdot g \cdot\left(g+2 e_{2}\right)$ for some $g \in \varphi^{-1}\left(a_{i}\right)$. This implies that S_{i} is not zero-sumfree, a contradiction.

Suppose $\left|S_{j}\right| \geq 3$. Then $q_{j}+q_{k}=q-q_{i}=n-2$ and $S_{j} \cdot S_{k}=a \cdot b \cdot T_{1} \cdot \ldots \cdot T_{n-2}$ with $\left|T_{\mu}\right|=2$ and $\sigma\left(T_{\mu}\right) \in H$. Setting

$$
S=T_{1} \cdot \ldots \cdot T_{n-2} \cdot \underbrace{\left(h_{1} \cdot h_{3}\right)}_{T_{n-1}} \cdot \underbrace{\left(a \cdot b \cdot h_{2}\right)}_{T_{n}}
$$

we infer as above that

$$
\begin{equation*}
\sigma\left(T_{1}\right)=\cdots=\sigma\left(T_{n}\right) \tag{2}
\end{equation*}
$$

In particular, we have $h_{1}+h_{3}=\sigma\left(T_{1}\right)$. Repeating the construction we obtain that $h_{2}+h_{3}=\sigma\left(T_{1}\right)$ which implies that $h_{1}=h_{2}$.

Thus we proved that for every $1 \leq i \leq 3$ there are $g_{i} \in G$ such that $S_{i}=g_{i}^{\left|S_{i}\right|}$. Looking at (1) and (2) again we see that $2 g_{1}=2 g_{2}$ provided $\left|S_{1}\right| \geq 3$ and $\left|S_{2}\right| \geq 3$. 4. Set

$$
g_{1}=e_{1}+2 a e_{2}, \quad g_{2}=(2 b+1) e_{2} \quad \text { and } \quad g_{3}=e_{1}+(2 c+1) e_{2}
$$

with $a, b, c \in\{0, \ldots, n-1\} \subset \mathbb{Z}$ and $\left|S_{i}\right|=v_{i}$ for $1 \leq i \leq 3$. Then

$$
S=g_{1}^{v_{1}} \cdot g_{2}^{v_{2}} \cdot g_{3}^{v_{3}}
$$

and we have

$$
\begin{gather*}
v_{1} 2 a+v_{2}(2 b+1)+v_{3}(2 c+1) \equiv 0 \quad \bmod 2 n \tag{3}\\
v_{1} \equiv v_{2} \equiv v_{3} \equiv 1 \quad \bmod 2 \tag{4}
\end{gather*}
$$

$$
\begin{equation*}
|S|=v_{1}+v_{2}+v_{3}=2 n+1 \tag{5}
\end{equation*}
$$

We assert that $1 \in\left\{v_{1}, v_{2}, v_{3}\right\}$. Assume to the contrary that $v_{i}>1$ for every $1 \leq i \leq 3$. Then $v_{i} \geq 3$ for every $1 \leq i \leq 3$. Thus 3 . implies that $2 g_{1}=2 g_{2}=2 g_{3}$ whence

$$
4 a \equiv 4 b+2 \equiv 4 c+2 \quad \bmod 2 n
$$

Therefore, n is odd, $2 a \equiv 2 b+1 \bmod n$ and $2 a+n \equiv 2 b+1 \bmod 2 n$. Similarly, $2 b+1 \equiv 2 c+1 \bmod n$ whence either $2 b+1 \equiv 2 c+1 \bmod 2 n$ or $2 b+1 \equiv 2 c+1+n$ $\bmod 2 n$. Since $2 a+n \not \equiv 2 c+1+n \bmod 2 n$, we infer that

$$
2 b+1 \equiv 2 c+1 \equiv 2 a+n \quad \bmod 2 n
$$

Using (3), (4) and (5) it follows that

$$
\begin{gathered}
v_{1}(2 b+1+n)+v_{2}(2 b+1)+v_{3}(2 b+1) \equiv 0 \quad \bmod 2 n \\
\left(v_{1}+v_{2}+v_{3}\right)(2 b+1)+v_{1} n \equiv 0 \quad \bmod 2 n
\end{gathered}
$$

and thus

$$
(2 b+1)+n \equiv 0 \quad \bmod 2 n
$$

Thus $2 a \equiv 0 \bmod 2 n$ and g_{1}^{2} is a proper zero-sum subsequence of S, a contradiction. Thus there are the following two cases.

Case 1: Two of the v_{i} 's are equal to 1 . Then S has form 1 of the formulation of the Theorem.

Case 2: Exactly one of the v_{i} 's is equal to 1 . In three subcases we show that S has the form

$$
\begin{equation*}
S=e \cdot g^{v} \cdot(g+e)^{2 n-v} \tag{6}
\end{equation*}
$$

with v odd, $3 \leq v \leq 2 n-3$ and $\operatorname{ord}(e)=2$.
Case 2.1: $v_{1}=1$. Then $3 \leq v_{2}, 3 \leq v_{3}=2 n-v_{2}$ and $2 g_{2}=2 g_{3}$ implies that $2(2 b+1) \equiv 2(2 c+1) \bmod 2 n$. If $2 b+1 \equiv 2 c+1 \bmod 2 n$, then v_{2} is odd. Furthermore, $v_{2}+v_{3}=2 n$ and (3) imply that $2 a \equiv 0 \bmod 2 n$ whence S has form (6) with $g_{1}=e$.

If $2 c+1 \equiv 2 b+1+n \bmod 2 n$, then n is even, v_{2} is odd, $2 a \equiv n \bmod 2 n$ and S has form (6) with $g_{1}=e$.

Case 2.2: $v_{2}=1$. Then $3 \leq v_{1}, 3 \leq v_{3}=2 n-v_{1}$ and $2 g_{1}=2 g_{3}$ implies that $2(2 a) \equiv 2(2 c+1) \bmod 2 n$. Thus n is odd, $2 c+1 \equiv 2 a+n \bmod 2 n, v_{1}$ is odd and $2 b+1 \equiv n \bmod 2 n$ whence S has form (6) with $g_{2}=e$.

Case 2.3: $v_{3}=1$. Then $3 \leq v_{1}, 3 \leq v_{2}=2 n-v_{1}$ and $2 g_{1}=2 g_{2}$ implies that $2(2 a) \equiv 2(2 b+1) \bmod 2 n$. Thus n is odd, $2 b+1 \equiv 2 a+n \bmod 2 n, v_{1}$ is odd and $2 c+1 \equiv n \bmod 2 n$ whence S has form (6) with $g_{3}=e$.

Hence we know that S has form (6), and it remains to show that $e \in G \backslash\langle g\rangle$ and $\operatorname{ord}(g)=2 n$.

Let $\operatorname{ord}(g)=m$ and $m m^{\prime}=2 n$. If $e \in\langle g\rangle$, then $T=g^{v} \cdot(g+e)^{2 n-v}$ is a sequence in $\langle g\rangle$, which contains a zero-sum subsequence, since $\mathcal{D}(\langle g\rangle)=m \leq 2 n$, a contradiction.

Assume to the contrary, that $m^{\prime}>1$. Since T is zero-sumfree, we infer that $v<\operatorname{ord}(g)=m$ and $2 n-v<\operatorname{ord}(g+e) \leq 2 m$ whence $m m^{\prime}=2 n<3 m$. Thus $m^{\prime}=2, m=n, 2 n-v>n$ and $e \cdot(g+e)^{n}$ contains a zero-sum sequence, a contradiction.

Corollary 3.4. Let $G=C_{2} \oplus C_{2 n}$ with $n \geq 2$, $\left(e_{1}, e_{2}\right)$ a basis of G and $S \in \mathcal{F}(G)$ a minimal zero-sum sequence with length $|S|=\mathcal{D}(G)$. Then there exists a group automorphism $\varphi: G \rightarrow G$ such that $\varphi(S)$ has one of the following two forms:
(1) $\varphi(S)=e_{2}^{2 n-1} \cdot\left(e_{1}+a e_{2}\right) \cdot\left(e_{1}+(1-a) e_{2}\right)$ with $a \in\{0, \ldots, 2 n-1\}$.
(2) $\varphi(S)=e_{1} \cdot e_{2}^{v} \cdot\left(e_{1}+e_{2}\right)^{2 n-v}$ with v odd and $3 \leq v \leq 2 n-3$.

Proof. 1. Suppose $S=g^{2 n-1} \cdot h \cdot(g-h)$ with $\operatorname{ord}(g)=2 n$ and $h \in G \backslash\langle g\rangle$. There exists some element $e \in G$ of order two such that $G=\langle g\rangle \dot{\cup}(e+\langle g\rangle)$ whence (e, g) is a basis of G. Then $h=e+a g$ for some $a \in\{0, \ldots, 2 n-1\}$. Furthermore, there is some automorphism $\varphi: G \rightarrow G$ with $\varphi(e)=e_{1}$ and $\varphi(g)=e_{2}$ whence

$$
\varphi(S)=e_{2}^{2 n-1} \cdot\left(e_{1}+a e_{2}\right) \cdot\left(e_{1}+(1-a) e_{2}\right)
$$

2. If $S=e \cdot g^{v} \cdot(g+e)^{2 n-v}$ with ord $(g)=2 n$ and $e \in G \backslash\langle g\rangle$ with $\operatorname{ord}(e)=2$, then (e, g) is a basis of G and as above we obtain a group automorphism such that $\varphi(S)$ has the required form.

Suppose that n is even. If $a \in\{0, \ldots, 2 n-1\}$, then either a or $1-a$ is even whence either ord $\left(e_{1}+a e_{2}\right) \leq n$ or ord $\left(e_{1}+(1-a) e_{2}\right) \leq n$. Thus every minimal zero-sum sequence in $C_{2} \oplus C_{2 n}$ contains some element g with $\operatorname{ord}(g)<\exp (G)$.

4. Proof of Theorem 1.2

Let G be an abelian p-group and $g \in G$. Then the $(p$-)height $h(g)$ of g (in G) is defined as the supremum of all $s \in \mathbb{N}_{0} \cup\{\infty\}$ for which the equation $p^{s} \cdot x=g$ is solvable in G.

Lemma 4.1. Let G be a finite abelian p-group and $0 \neq g \in G$. Then $\operatorname{ord}(g) \leq \frac{\exp (G)}{p^{h(g)}}$ and equality holds if $G=C_{p^{m}}^{r}$ for some $r, m \in \mathbb{N}$.

Proof. Let $x \in G$ with $p^{s} \cdot x=g$ with $s=h(g)$. Then $\operatorname{ord}(x)=p^{t} \leq \exp (G)$ for some $t>s$ and it follows that

$$
\operatorname{ord}(g)=\frac{p^{t}}{\operatorname{gcd}\left\{p^{s}, p^{t}\right\}} \leq \frac{\exp (G)}{p^{h(g)}}
$$

Suppose that $G=\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{r}$ and $g=\left(a_{1}+p^{m} \mathbb{Z}, \ldots, a_{r}+p^{m} \mathbb{Z}\right)$ where $a_{i}=$ $p^{m_{i}} b_{i}+p^{m} \mathbb{Z}$ and $p \nmid b_{i}$ for every $1 \leq i \leq r$. Setting $m_{0}=\min \left\{m_{1}, \ldots, m_{r}\right\}$ we obtain that

$$
g=p^{m_{0}} \cdot\left(p^{m_{1}-m_{0}} b_{1}+p^{m} \mathbb{Z}, \ldots, p^{m_{r}-m_{0}} b_{r}+p^{m} \mathbb{Z}\right)
$$

whence $h(g) \geq m_{0}$. By Lemma 2.2 we infer that

$$
\operatorname{ord}(g)=\frac{p^{m}}{\operatorname{gcd}\left\{a_{1}, \ldots, a_{r}, p^{m}\right\}}=\frac{p^{m}}{p^{m_{0}}}
$$

Therefore it follows that

$$
p^{m-m_{0}}=\operatorname{ord}(g) \leq \frac{\exp (G)}{p^{h(g)}} \leq p^{m-m_{0}}
$$

and the assertion is proved.
LEmma 4.2. Let G be a finite abelian p-group and $S=\prod_{i=1}^{l} g_{i} \in \mathcal{F}(G) a$ sequence. If $\sum_{i=1}^{l} p^{h\left(g_{i}\right)} \geq M(G)$, then S is not zero-sumfree.

Proof. This was proved by J. E. Olson in [Ols69a], Theorem 2.

Proposition 4.3. Let $G=C_{p^{m}}^{r}$ with p prime, $m, r \in \mathbb{N}$ and $S \in \mathcal{F}(G)$ a minimal zero-sum sequence. If $|S| \geq \mathcal{D}(G)-p+2$, then $\operatorname{ord}(g)=\exp (G)$ for every $g \in \operatorname{supp}(S)$.

Proof. Suppose $S=\prod_{i=1}^{l} g_{i} \in \mathcal{F}(G)$ is a minimal zero-sum sequence with $|S|=l \geq \mathcal{D}(G)-p+2$ and assume to the contrary that there exists some $i \in$ $\{1, \ldots, l\}$ with $\operatorname{ord}\left(g_{i}\right)<\exp (G)$. Without restriction we suppose that $i=1$ and set $T=\prod_{i=1}^{l-1} g_{i}$. We show that T is not zero-sumfree which yields the wanted contradiction.

Lemma 4.1 implies that

$$
\frac{\exp (G)}{p^{h\left(g_{1}\right)}}=\operatorname{ord}\left(g_{1}\right)<\exp (G)
$$

whence $p^{h\left(g_{1}\right)} \geq p$. This implies that

$$
\sum_{i=1}^{l-1} p^{h\left(g_{i}\right)} \geq p+\sum_{i=2}^{l-1} p^{h\left(g_{i}\right)} \geq p+(l-2) \geq \mathcal{D}(G)=M(G)
$$

whence T is not zero-sumfree by Lemma 4.2.

Proof of Theorem 1.2. Let $G=C_{p^{m_{1}}} \oplus \cdots \oplus C_{p^{m_{r}}}$ be a p-group where p is prime, $r \in \mathbb{N}$ and $1 \leq m_{1} \leq \cdots \leq m_{r}$. Then we have $M(G)=\mathcal{D}(G)$. Thus 1 . follows from Lemma 3.1 and Proposition 4.3.

Theorem 3.2 implies that G does not have Property 2 if and only if $r \geq 2, p=$ 2, $m_{r}>m_{r-1}$ and $\sum_{i=1}^{r-1}\left(2^{m_{i}}-1\right)$ is odd which is equivalent to r even, $p=2$ and $1 \leq m_{1} \leq \cdots \leq m_{r-1}<m_{r}$.

REFERENCES

[Alo99] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7-29.
[And97] D. D. Anderson, Factorization in integral domains, Marcel Dekker, 1997.
[Car96] Y. Caro, Zero-sum problems - A survey, Discrete Math. 152 (1996), 93-113.
[CFS99] S. Chapman, M. Freeze and W. Smith, Minimal zero sequences and the strong Davenport constant, Discrete Math. 203 (1999), 271-277.
[CG97] S. Chapman and A. Geroldinger, Krull domains and monoids, their sets of lengths and associated combinatorial problems, in: Factorization in integral domains, Lecture Notes in Pure Appl. Math. vol. 189, Marcel Dekker, 1997, 73-112.
[Gao00] W. Gao, On Davenport's constant of finite abelian groups with rank three, Discrete Math. 222 (2000), 111-124.
[GG99] W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Periodica Math. Hungarica 38 (1999), 179-211.
[GG00] W. Gao and A. Geroldinger, Systems of sets of lengths II, Abhandl. Math. Sem. Univ. Hamburg 70 (2000), 31-49.
[GS92] A. Geroldinger and R. Schneider, On Davenport's constant, J. Comb. Th. Ser. A 61 (1992), 147-152.
[GS96] A. Geroldinger and R. Schneider, The cross number of finite abelian groups III, Discrete Math. 150 (1996), 123-130.
[Ols69a] J.E. Olson, A combinatorial problem on finite abelian groups I, J. Number Th. 1 (1969), 8-10.
[Ols69b] J.E. Olson, A combinatorial problem on finite abelian groups II, J. Number Th. 1 (1969), 195-199.
[vEB69] P. van Emde Boas, A combinatorial problem on finite abelian groups II, in: Reports ZW-1969-007, Math. Centre, Amsterdam, 1969.
(Received: August 28, 2000)
Weidong Gao
Department of Computer Science and Technology
University of Petroleum, Beijing
Shuiku Road, Changping
Beijing 102200
P.R. China

E-MAIL: wdgao@public.fhnet.cn.net

Alfred Geroldinger
Institut für Mathematik
Karl-FranzensUniversität
Heinrichstrasse 36
8010 Graz
Austria
E-maiL: alfred.geroldinger@uni-graz.at

