ON THE ORDER OF ELEMENTS IN LONG MINIMAL ZERO-SUM SEQUENCES

WEIDONG GAO (Beijing) AND ALFRED GEROLDINGER (Graz)

[Communicated by: Attila Pethő]

Abstract

Let G be a finite abelian group and $S = \prod_{i=1}^{l} g_i$ a minimal zero-sum sequence in G of maximal length |S| = l. We study the order of the elements g_1, \ldots, g_l .

1. Introduction and Main Results

Let G be an additively written, finite abelian group. For every $n \in \mathbb{N}$ we denote by C_n the cyclic group with n elements. Then $G = C_{n_1} \oplus \cdots \oplus C_{n_r}$ with $1 < n_1 | \cdots | n_r$ if |G| > 1 and with $r = n_1 = 1$ if |G| = 1. Furthermore, r = r(G) is the rank of G, $n_r = \exp(G)$ is the exponent of G and we set $M(G) = 1 + \sum_{i=1}^r (n_i - 1)$.

We study sequences in G and for convenience we recall some basic terminology (we use the same notations as in [GG99] and refer to this paper for details). Let $\mathcal{F}(G)$ denote the free abelian monoid with basis G and let $S = \prod_{i=1}^{l} g_i \in \mathcal{F}(G)$ be a sequence in G. Then $|S| = l \in \mathbb{N}_0$ is called the *length* of S and $\sigma(S) = \sum_{i=1}^{l} g_i \in G$ the sum of S. We say that S is a zero-sum sequence, if $\sigma(S) = 0$ and that S is a minimal zero-sum sequence if no proper subsequence has sum zero. Davenport's constant $\mathcal{D}(G)$ of G is defined as the maximal length of a minimal zero-sum sequence in G.

It is a straightforward observation that $M(G) \leq \mathcal{D}(G)$. About thirty years ago J.E. Olson and D. Kruyswijk proved independently that equality holds for *p*groups and for groups *G* with rank $r(G) \leq 2$ (see [vEB69], [Ols69a], [Ols69b]). It is still unknown whether equality holds for all groups with rank three (for some recent development see [Gao00]), but for every $r \geq 4$ there are infinitely many groups *G* with rank *r* and with $M(G) < \mathcal{D}(G)$ (see [GS92]). However, up to now there is no satisfactory explanation neither for the phenomenon $M(G) = \mathcal{D}(G)$ nor for $M(G) < \mathcal{D}(G)$.

In recent work it has been tried to obtain some information about the structure of minimal zero-sum sequences whose length is equal or close to $\mathcal{D}(G)$ (see [GG99]). A good knowledge about the structure of such sequences is of high importance for

0031-5303/02/\$5.00 © Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

Key words and phrases: finite abelian groups, zero-sum sequences

applications in factorization theory (see [And97]). Furthermore, it will allow further progress in determining Davenport's constant (see [Gao00]) and will provide a new insight in the phenomenon $M(G) = \mathcal{D}(G)$.

Among others the following property of finite abelian groups has been studied: *Property*: Every minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length $|S| = \mathcal{D}(G)$ contains some element g with $\operatorname{ord}(g) = \exp(G)$.

We conjecture that every finite abelian group G has this property and in [GG99] this was proved for p-groups and for groups with rank $r(G) \leq 2$ among others. An analogous property plays an important role in the investigation of cross numbers of minimal zero-sum sequences (see [GS96], Lemma 1).

We discuss the following two refinements of the above question and ask for groups G satisfying one of the following two properties:

Property 1: Every minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length $|S| = \mathcal{D}(G)$ consists entirely of elements g with $\operatorname{ord}(g) = \exp(G)$.

Property 2: There exists a minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length $|S| = \mathcal{D}(G)$ which consists entirely of elements g with $\operatorname{ord}(g) = \exp(G)$.

Let $G = C_n$ be cyclic of order n. Then it is well known, that every minimal zero-sum sequence of length $\mathcal{D}(G) = n$ has the form g^n for some element g of order n. Hence cyclic groups have Property 1. In this note we characterize groups of rank two and p-groups having Property 1 resp. Property 2.

THEOREM 1.1. Let $G = C_m \oplus C_n$ be a group with rank two where $1 < m \mid n$.

- (1) G has Property 1 if and only if m = n.
- (2) G has Property 2 if and only if either m or $\frac{n}{m}$ is odd.

THEOREM 1.2. Let $G = C_{p^{m_1}} \oplus \cdots \oplus C_{p^{m_r}}$ be a p-group where p is prime, $r \in \mathbb{N}$ and $1 \leq m_1 \leq \cdots \leq m_r$.

- (1) G has Property 1 if and only if $m_1 = m_r$.
- (2) G has Property 2 if and only if G is not a 2-group with even rank r and with $m_{r-1} < m_r$.

Furthermore, we give a complete characterization of all minimal zero-sum sequences with length $\mathcal{D}(G)$ in groups G of the form $G = C_2 \oplus C_{2n}$ (see Theorem 3.3). By the above Theorems these are the simplest groups which do not necessarily satisfy Property 2.

2. Preliminaries

Let G be a finite abelian group and $S = \prod_{i=1}^{l} g_i \in \mathcal{F}(G)$ a sequence in G. Our terminology is consistent with the one used in [GG99]. In particular, we denote by $1 \in \mathcal{F}(G)$ the *empty sequence* and by $\operatorname{supp}(S) = \{g_i \mid 1 \leq i \leq l\}$ the *support* of S (hence S contains some element $g \in G$ if and only if $g \in \operatorname{supp}(S)$). The sequence S is called

- zero-sumfree, if $\sum_{i \in I} g_i \neq 0$ for every non-empty subset $I \subset \{1, \ldots, l\}$. Clearly, S is zero-sumfree if and only if $-\sigma(S) \cdot S$ is a minimal zero-sum sequence.
- a short zero-sum sequence, if S is a zero-sum sequence with $1 \le |S| \le \exp(G)$.

Let $\eta(G)$ denote the smallest integer $\eta \in \mathbb{N}$ such that every sequence $S \in \mathcal{F}(G)$ with $|S| \geq \eta$ contains a short zero-sum subsequence.

LEMMA 2.1. $\eta(C_n \oplus C_n) \leq 3n - 2$ for every $n \geq 2$.

PROOF. This was proved in [GG99] Lemma 4.3.

Let $\varphi : G \longrightarrow H$ be a group homomorphism. Then $\varphi(S) = \prod_{i=1}^{l} \varphi(g_i) \in \mathcal{F}(H)$ is a sequence in H with length $|\varphi(S)| = |S|$ and sum $\sigma(\varphi(S)) = \varphi(\sigma(S)) \in H$.

Elements $e_1, \ldots, e_r \in G$ are called *independent*, if for every $m_1, \ldots, m_r \in \mathbb{Z}$ the equation $\sum_{i=1}^r m_i e_i = 0$ implies that $m_i e_i = 0$ for every $1 \le i \le r$.

Furthermore, (e_1, \ldots, e_r) is called a *basis* of G, if $G = \bigoplus_{i=1}^r \langle e_i \rangle$, $\operatorname{ord}(e_i) = n_i$ for every $1 \leq i \leq r$ and $1 < n_1 | \cdots | n_r$. Clearly, if (e_1, \ldots, e_r) is a basis of G, then e_1, \ldots, e_r are independent elements.

LEMMA 2.2. Let G be an abelian group, $e_1, \ldots, e_r \in G$ independent elements with $\operatorname{ord}(e_i) = n_i$ for $1 \leq i \leq r$ and $e_0 = \sum_{i=1}^r m_i e_i$ with $m_1, \ldots, m_r \in \mathbb{Z}$.

(1)
$$\operatorname{ord}(e_0) = \operatorname{lcm}\left\{\frac{n_i}{\operatorname{gcd}\{m_i, n_i\}} \mid 1 \le i \le r\right\}.$$

(2) If $n_1 = \cdots = n_r = n$, then $\operatorname{ord}(e_0) = \frac{n}{\operatorname{gcd}\{m_1, \ldots, m_r, n\}}.$

PROOF. 1. For every $1 \le i \le r$ we have

$$\operatorname{ord}(m_i e_i) = \frac{\operatorname{ord}(e_i)}{\gcd{\operatorname{ord}(e_i), m_i}} = \frac{n_i}{\gcd{\operatorname{n_i, m_i}}}$$

Since m_1e_1, \ldots, m_re_r are independent elements, it follows that

$$\operatorname{ord}(e_0) = \operatorname{lcm}\{\operatorname{ord}(m_1e_1), \dots, \operatorname{ord}(m_re_r)\}$$

and the assertion follows.

2. If $n_1 = \cdots = n_r = n$, then

$$\operatorname{ord}(e_0) = \operatorname{lcm}\left\{\frac{n}{\gcd\{m_i,n\}} \mid 1 \le i \le r\right\} = \frac{n}{\gcd\{m_1,\dots,m_r,n\}}. \qquad \Box$$

W. GAO and A. GEROLDINGER

3. Proof of Theorem 1.1

We start with a simple observation concerning the order of elements in long minimal zero-sum sequences.

LEMMA 3.1. Let $G = C_{n_1} \oplus \cdots \oplus C_{n_r}$ with $1 < n_1 | \cdots | n_r$. Then there exists a minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length |S| = M(G) which contains some element g with $\operatorname{ord}(g) = n_1$.

PROOF. Let (e_1, \ldots, e_r) be a basis of G and set $e_0 = \sum_{i=1}^r e_i$. Then the sequence $\prod_{i=1}^r e_i^{n_i-1}$ is zero-sumfree whence $S = e_0 \cdot \prod_{i=1}^r e_i^{n_i-1}$ is a minimal zero-sum sequence with the required properties.

THEOREM 3.2. Let $G = C_{n_1} \oplus \cdots \oplus C_{n_r}$ be a finite abelian group with $1 < n_1 | \cdots | n_r$. Then the following conditions are equivalent:

(1) There exists a minimal zero-sum sequence $S \in \mathcal{F}(G)$ with length |S| = M(G) such that $\operatorname{ord}(g) = \exp(G)$ for every $g \in \operatorname{supp}(S)$.

(2)
$$r = 1$$
 or $\sum_{i=1}^{r-1} (n_i - 1)$ is even or $\frac{n_r}{n_{r-1}}$ is odd.

PROOF. 1. \Longrightarrow 2. Suppose that $r \ge 2$, $\sum_{i=1}^{r-1} (n_i - 1)$ odd and $\frac{n_r}{n_{r-1}}$ is even. Then $H = \bigoplus_{i=1}^{r-1} C_{n_i}$ is non-trivial, M(H) is even, $G = H \oplus \langle e \rangle$ with $\operatorname{ord}(e) = n_r = n$ and l = M(G) = M(H) + n - 1 is odd. Let

$$S = \prod_{i=1}^{l} (h_i + a_i e) \in \mathcal{F}(G)$$

be a minimal zero-sum sequence with all $h_i \in H$ and all $a_i \in \mathbb{Z}$. Assume to the contrary that $\operatorname{ord}(h_i + a_i e) = n$ for every $1 \leq i \leq l$. If some a_i would be even, then $\frac{n}{2}(a_i e) = 0, \frac{n}{2}h_i = 0$ since n_{r-1} divides $\frac{n}{2}$ and thus $\frac{n}{2}(h_i + a_i e) = 0$, a contradiction. Thus all a_i are odd whence $\sum_{i=1}^{l} a_i$ is odd. However, since S has sum zero, it follows that $\sum_{i=1}^{l} a_i \equiv 0 \mod n$, a contradiction.

- 2. \Longrightarrow 1. Let (e_1, \ldots, e_r) be a basis of G.
- If r = 1, then $S = e_1^{n_1}$ has the required properties.

Suppose $r \ge 2$ and choose integers $a_{i,j} \in \mathbb{Z}$ with $gcd\{n_r, a_{i,j}\} = 1$ for every $1 \le i \le r$ and every $1 \le j \le n_i - 1$. Then the sequence

$$\prod_{i=1}^{r-1} \prod_{j=1}^{n_i-1} (e_i + a_{i,j}e_r) \cdot e_r^{n_r-1}$$

is zero-sumfree whence

$$S = e_0 \cdot \prod_{i=1}^{r-1} \prod_{j=1}^{n_i-1} (e_i + a_{i,j}e_r) \cdot e_r^{n_r-1}$$

is a minimal zero-sum sequence with length M(G) where

$$e_0 = \sum_{i=1}^{r-1} e_i + (1-a)e_r$$
 with $a = \sum_{i=1}^{r-1} \sum_{j=1}^{n_i-1} a_{i,j}$

Since all $a_{i,j}$ are coprime to n_r , Lemma 2.2 implies that $\operatorname{ord}(e_i + a_{i,j}e_r) = n_r$. Hence it remains to show that $\operatorname{ord}(e_0) = n_r$. By Lemma 2.2 we have

$$\operatorname{ord}(e_0) = \operatorname{lcm}\{\operatorname{ord}(e_1), \dots, \operatorname{ord}(e_{r-1}), \operatorname{ord}((1-a)e_r)\} \\ = \operatorname{lcm}\{n_{r-1}, \operatorname{ord}((1-a)e_r)\} \\ = \operatorname{lcm}\left\{n_{r-1}, \frac{n_r}{\gcd\{n_r, 1-a\}}\right\}.$$

If $\sum_{i=1}^{r-1} (n_i - 1) = 2k$ for some $k \in \mathbb{N}$, then choose $k \, a_{i,j}$'s equal to 1 and $k a_{i,j}$'s equal to -1. This implies that a = 0 whence $\operatorname{ord}(e_0) = n_r$.

If $\frac{n_r}{n_{r-1}}$ is odd and $\sum_{i=1}^{r-1} (n_i - 1) = 2k + 1$ for some $k \in \mathbb{N}_0$, then choose k + 1 $a_{i,j}$'s equal to -1 and k $a_{i,j}$'s equal to 1. This implies that 1 - a = 2 and $\operatorname{ord}(e_0) = n_r$.

PROOF OF THEOREM 1.1. Let $G = C_m \oplus C_n$ with $1 < m \mid n$.

1. If G has Property 1, then Lemma 3.1 implies that m = n. If m = n, then Property 1 holds by Proposition 6.3 in [GG99].

2. This follows from Theorem 3.2.

In cyclic groups and elementary 2-groups it is an easy exercise to determine all minimal zero-sum sequences of maximal lengths (see Propositions 2.2 and 4.1 in [GG99]). Apart from these trivial cases this has been done for no other series of groups. Here we establish an explicit characterization of all minimal zero-sum sequences of maximal lengths in groups G of the form $G = C_2 \oplus C_{2n}$. Such explicit characterizations are of great relevance in zero sum theory (see the literature and problems in [Alo99], [Car96], [CFS99] or the discussions around Property B in [Ga000] and [GG99]) and in factorization theory (see e.g. [CG97] and [GG00]). In particular, we shall (explicitely) see that in groups $G = C_2 \oplus C_{4k}$ all minimal zero-sum sequences with length $\mathcal{D}(G)$ contain elements of order less that $\exp(G)$.

THEOREM 3.3. Let $G = C_2 \oplus C_{2n}$ for some $n \ge 2$ and $S \in \mathcal{F}(G)$ a minimal zero-sum sequence with length $|S| = \mathcal{D}(G)$. Then S has one of the following two forms:

(1) S = g²ⁿ⁻¹ ⋅ h ⋅ (g - h) for some g ∈ G with ord(g) = 2n and some h ∈ G \ ⟨g⟩.
(2) S = e ⋅ g^v ⋅ (g + e)^{2n-v} for some g ∈ G with ord(g) = 2n, e ∈ G \ ⟨g⟩ with ord(e) = 2 and v odd with 3 ≤ v ≤ 2n - 3.

Conversely, every sequence of form 1. or 2. is a minimal zero-sum sequence with length $\mathcal{D}(G)$.

PROOF. It is easy to verify that a sequence of form 1. or 2. is a minimal zero-sum sequence with length $2n + 1 = \mathcal{D}(G)$.

Let (e_1, e_2) be a basis of G, $H = \langle 2e_2 \rangle \cong C_n$, $G/H = \{H = a_0, e_1 + H =$ $a_1, e_2 + H = a_2, e_1 + e_2 + H = a_3 \cong C_2 \oplus C_2$ and consider the exact sequence

$$0 \longrightarrow H \hookrightarrow G \stackrel{\varphi}{\longrightarrow} G/H \longrightarrow 0.$$

We write S in the form

$$S = \prod_{i=0}^{3} S_i$$

such that $\varphi(S_i) = a_i^{|S_i|}$ for every $0 \le i \le 3$.

1. We assert that $S_0 = 1 \in \mathcal{F}(G)$, the empty sequence. Assume to the contrary that $S = g \cdot T$ with $\varphi(g) = a_0$. Since by Lemma 2.1 $\eta(C_2 \oplus C_2) \leq 4$ and |T| = 2n = 2(n-2) + 4, there exist pairwise disjoint subsequences T_1, \ldots, T_{n-1} of T such that all $\varphi(T_i)$ are short zero-sum subsequences of $\varphi(T)$. Therefore U = $g \cdot \prod_{i=1}^{n-1} \sigma(T_i) \in \mathcal{F}(H)$ and since $\mathcal{D}(H) = n$, it follows that U has a zero-sum subsequence. Therefore $V = g \cdot \prod_{i=1}^{n-1} T_i$ has a zero-sum subsequence. However, V is a subsequence of S with $|V| = 1 + \sum_{i=1}^{n-1} |T_i| \le 1 + 2(n-1) < |S|$, a contradiction. 2. We assert that $|S_i| \equiv 1 \mod 2$ for every $1 \le i \le 3$. For $i \in \{1, 2, 3\}$ set

 $|S_i| = 2q_i + r_i$ with $0 \le r_i \le 1$. Then $\varphi(S_i) = (a_i^2)^{q_i} \cdot a_i^{r_i}$ and obviously, a_i^2 is a short zero-sum subsequence of $\varphi(S_i)$. Therefore S contains $q = q_1 + q_2 + q_3$ pairwise disjoint subsequences T_i with $|T_i| = 2$ and $\sigma(\varphi(T_i)) = 0$. This implies that

$$T = \prod_{i=1}^{q} \sigma(T_i) \in \mathcal{F}(H).$$

Since $2n + 1 = |S| = 2q + \sum_{i=1}^{3} r_i$, it follows that $\sum_{i=1}^{3} r_i \in \{1, 3\}$. Assume to the contrary that $\sum_{i=1}^{3} r_i = 1$. Then it follows that

$$q = \frac{1}{2} \left(|S| - \sum_{i=1}^{3} r_i \right) = n$$

whence T contains a zero-sum subsequence and the same is true for $U = \prod_{i=1}^{q} T_i$. However, U is a subsequence of S with $|U| = \sum_{i=1}^{q} |T_i| \le 2n < |S|$, a contradiction. Thus $|S_i| = 2q_i + 1$ for every $1 \le i \le 3$ and q = n - 1.

3. We assert that for every $1 \leq i \leq 3$ there is some $g_i \in \varphi^{-1}(a_i) \subset G$ such that $S_i = g_i^{|S_i|}$. Furthermore, if $|S_1| \ge 3$ and $|S_2| \ge 3$, then $2g_1 = 2g_2$. Let $i \in \{1, 2, 3\} = \{i, j, k\}$. If $|S_i| = 1$, there is nothing to prove. Suppose

 $S_i = \prod_{\nu=1}^{|S_i|} h_{\nu}$ with $|S_i| = 2q_i + 1 \ge 3$. We shall verify that $h_1 = h_2$.

First suppose that $|S_i| \geq 5$. For $1 \leq \nu \leq q_i$ the sequences $T_{\nu} = h_{2\nu} \cdot h_{2\nu+1}$ are pairwise distinct subsequences of S_i with $\sigma(T_{\nu}) \in H$. For $\mu \in \{j, k\}$ there are

68

 q_{μ} such subsequences T_{ν} of S_{μ} . Set $S = T_{q+1} \cdot \prod_{\nu=1}^{q} T_{\nu}$. Then $q+1=n, |T_n|=3$ and $\varphi(T_n)$ has sum zero. Therefore

$$T = \prod_{\nu=1}^{n} \sigma(T_{\nu}) \in \mathcal{F}(H)$$

contains a zero-sum subsequence, and since S is a minimal zero-sum sequence, T is a minimal zero-sum sequence in a cyclic group of order n. Therefore, it follows that

(1)
$$\sigma(T_1) = \dots = \sigma(T_n).$$

In particular, we obtain that

$$h_2 + h_3 = \sigma(T_1) = \sigma(T_2) = h_4 + h_5.$$

Repeating this construction (with a new numeration of the h_i 's) we obtain that $h_1 + h_3 = h_4 + h_5$. Thus we obtain that $h_1 = h_2$.

Suppose now that $|S_i| = 3$ and assume that $|S_i| \ge |S_k|$. We distinguish the cases $|S_j| = 1$ and $|S_j| \ge 3$.

Suppose $|S_j| = 1$. Then $|S_k| = 1$ and $2n + 1 = |S| = \sum_{\nu=1}^3 |S_\nu| = 5$ whence n = 2. Thus we have $\varphi^{-1}(e_1 + H) = \{e_1, e_1 + 2e_2\}, \ \varphi^{-1}(e_2 + H) = \{e_2, 3e_2\}$ and $\varphi^{-1}(e_1 + e_2 + H) = \{e_1 + e_2, e_1 + 3e_2\}$. Assume to the contrary, that $|\text{supp}(S_i)| > 1$ whence $S_i = g \cdot g \cdot (g + 2e_2)$ for some $g \in \varphi^{-1}(a_i)$. This implies that S_i is not zero-sumfree, a contradiction.

Suppose $|S_j| \ge 3$. Then $q_j + q_k = q - q_i = n - 2$ and $S_j \cdot S_k = a \cdot b \cdot T_1 \cdot \ldots \cdot T_{n-2}$ with $|T_{\mu}| = 2$ and $\sigma(T_{\mu}) \in H$. Setting

$$S = T_1 \cdot \ldots \cdot T_{n-2} \cdot \underbrace{(h_1 \cdot h_3)}_{T_{n-1}} \cdot \underbrace{(a \cdot b \cdot h_2)}_{T_n}$$

we infer as above that

(2)
$$\sigma(T_1) = \dots = \sigma(T_n).$$

In particular, we have $h_1 + h_3 = \sigma(T_1)$. Repeating the construction we obtain that $h_2 + h_3 = \sigma(T_1)$ which implies that $h_1 = h_2$.

Thus we proved that for every $1 \le i \le 3$ there are $g_i \in G$ such that $S_i = g_i^{|S_i|}$. Looking at (1) and (2) again we see that $2g_1 = 2g_2$ provided $|S_1| \ge 3$ and $|S_2| \ge 3$. 4. Set

$$g_1 = e_1 + 2ae_2$$
, $g_2 = (2b+1)e_2$ and $g_3 = e_1 + (2c+1)e_2$

with $a, b, c \in \{0, \ldots, n-1\} \subset \mathbb{Z}$ and $|S_i| = v_i$ for $1 \leq i \leq 3$. Then

$$S = g_1^{v_1} \cdot g_2^{v_2} \cdot g_3^{v_3}$$

and we have

(3)
$$v_1 2a + v_2 (2b+1) + v_3 (2c+1) \equiv 0 \mod 2n$$

(4)
$$v_1 \equiv v_2 \equiv v_3 \equiv 1 \mod 2$$

W. GAO and A. GEROLDINGER

(5)
$$|S| = v_1 + v_2 + v_3 = 2n + 1$$

We assert that $1 \in \{v_1, v_2, v_3\}$. Assume to the contrary that $v_i > 1$ for every $1 \le i \le 3$. Then $v_i \ge 3$ for every $1 \le i \le 3$. Thus 3. implies that $2g_1 = 2g_2 = 2g_3$ whence

$$4a \equiv 4b + 2 \equiv 4c + 2 \mod 2n.$$

Therefore, n is odd, $2a \equiv 2b+1 \mod n$ and $2a+n \equiv 2b+1 \mod 2n$. Similarly, $2b+1 \equiv 2c+1 \mod n$ whence either $2b+1 \equiv 2c+1 \mod 2n$ or $2b+1 \equiv 2c+1+n \mod 2n$. Since $2a+n \not\equiv 2c+1+n \mod 2n$, we infer that

$$2b + 1 \equiv 2c + 1 \equiv 2a + n \mod 2n.$$

Using (3), (4) and (5) it follows that

$$v_1(2b+1+n) + v_2(2b+1) + v_3(2b+1) \equiv 0 \mod 2n_3$$

$$(v_1 + v_2 + v_3)(2b+1) + v_1n \equiv 0 \mod 2n$$

and thus

$$(2b+1) + n \equiv 0 \mod 2n.$$

Thus $2a \equiv 0 \mod 2n$ and g_1^2 is a proper zero-sum subsequence of S, a contradiction. Thus there are the following two cases.

Case 1: Two of the v_i 's are equal to 1. Then S has form 1 of the formulation of the Theorem.

Case 2: Exactly one of the v_i 's is equal to 1. In three subcases we show that S has the form

(6)
$$S = e \cdot g^{v} \cdot (g+e)^{2n-v}$$

with v odd, $3 \le v \le 2n - 3$ and $\operatorname{ord}(e) = 2$.

Case 2.1: $v_1 = 1$. Then $3 \le v_2, 3 \le v_3 = 2n - v_2$ and $2g_2 = 2g_3$ implies that $2(2b+1) \equiv 2(2c+1) \mod 2n$. If $2b+1 \equiv 2c+1 \mod 2n$, then v_2 is odd. Furthermore, $v_2 + v_3 = 2n$ and (3) imply that $2a \equiv 0 \mod 2n$ whence S has form (6) with $g_1 = e$.

If $2c+1 \equiv 2b+1+n \mod 2n$, then n is even, v_2 is odd, $2a \equiv n \mod 2n$ and S has form (6) with $g_1 = e$.

Case 2.2: $v_2 = 1$. Then $3 \le v_1, 3 \le v_3 = 2n - v_1$ and $2g_1 = 2g_3$ implies that $2(2a) \equiv 2(2c+1) \mod 2n$. Thus *n* is odd, $2c+1 \equiv 2a+n \mod 2n$, v_1 is odd and $2b+1 \equiv n \mod 2n$ whence *S* has form (6) with $g_2 = e$.

Case 2.3: $v_3 = 1$. Then $3 \le v_1, 3 \le v_2 = 2n - v_1$ and $2g_1 = 2g_2$ implies that $2(2a) \equiv 2(2b+1) \mod 2n$. Thus *n* is odd, $2b+1 \equiv 2a+n \mod 2n$, v_1 is odd and $2c+1 \equiv n \mod 2n$ whence *S* has form (6) with $g_3 = e$.

Hence we know that S has form (6), and it remains to show that $e \in G \setminus \langle g \rangle$ and $\operatorname{ord}(g) = 2n$.

Let $\operatorname{ord}(g) = m$ and mm' = 2n. If $e \in \langle g \rangle$, then $T = g^v \cdot (g+e)^{2n-v}$ is a sequence in $\langle g \rangle$, which contains a zero-sum subsequence, since $\mathcal{D}(\langle g \rangle) = m \leq 2n$, a contradiction.

70

Assume to the contrary, that m' > 1. Since T is zero-sumfree, we infer that $v < \operatorname{ord}(g) = m$ and $2n - v < \operatorname{ord}(g + e) \leq 2m$ whence mm' = 2n < 3m. Thus m'=2, m=n, 2n-v>n and $e \cdot (q+e)^n$ contains a zero-sum sequence, a contradiction. \square

COROLLARY 3.4. Let $G = C_2 \oplus C_{2n}$ with $n \ge 2$, (e_1, e_2) a basis of G and $S \in \mathcal{F}(G)$ a minimal zero-sum sequence with length $|S| = \mathcal{D}(G)$. Then there exists a group automorphism $\varphi: G \to G$ such that $\varphi(S)$ has one of the following two forms: (1) $\varphi(S) = e_2^{2n-1} \cdot (e_1 + ae_2) \cdot (e_1 + (1-a)e_2)$ with $a \in \{0, \dots, 2n-1\}$. (2) $\varphi(S) = e_1 \cdot e_2^v \cdot (e_1 + e_2)^{2n-v}$ with v odd and $3 \le v \le 2n-3$.

PROOF. 1. Suppose $S = g^{2n-1} \cdot h \cdot (g-h)$ with $\operatorname{ord}(g) = 2n$ and $h \in G \setminus \langle g \rangle$. There exists some element $e \in G$ of order two such that $G = \langle g \rangle \stackrel{\bullet}{\cup} (e + \langle g \rangle)$ whence (e,g) is a basis of G. Then h = e + ag for some $a \in \{0, \ldots, 2n-1\}$. Furthermore, there is some automorphism $\varphi: G \to G$ with $\varphi(e) = e_1$ and $\varphi(g) = e_2$ whence

$$\varphi(S) = e_2^{2n-1} \cdot (e_1 + ae_2) \cdot (e_1 + (1-a)e_2)$$

2. If $S = e \cdot g^v \cdot (g + e)^{2n-v}$ with $\operatorname{ord}(g) = 2n$ and $e \in G \setminus \langle g \rangle$ with $\operatorname{ord}(e) = 2$, then (e, g) is a basis of G and as above we obtain a group automorphism such that $\varphi(S)$ has the required form.

Suppose that n is even. If $a \in \{0, ..., 2n - 1\}$, then either a or 1 - a is even whence either $\operatorname{ord}(e_1 + ae_2) \leq n$ or $\operatorname{ord}(e_1 + (1 - a)e_2) \leq n$. Thus every minimal zero-sum sequence in $C_2 \oplus C_{2n}$ contains some element g with $\operatorname{ord}(g) < \exp(G)$.

4. Proof of Theorem 1.2

Let G be an abelian p-group and $g \in G$. Then the (p-)height h(g) of g (in G) is defined as the supremum of all $s \in \mathbb{N}_0 \cup \{\infty\}$ for which the equation $p^s \cdot x = g$ is solvable in G.

LEMMA 4.1. Let G be a finite abelian p-group and $0 \neq g \in G$. Then $\operatorname{ord}(g) \leq \frac{\exp(G)}{n^{h(g)}}$ and equality holds if $G = C_{p^m}^r$ for some $r, m \in \mathbb{N}$.

PROOF. Let $x \in G$ with $p^s \cdot x = g$ with s = h(g). Then $\operatorname{ord}(x) = p^t \leq \exp(G)$ for some t > s and it follows that

$$\operatorname{ord}(g) = \frac{p^t}{\gcd\{p^s, p^t\}} \le \frac{\exp(G)}{p^{h(g)}}.$$

Suppose that $G = (\mathbb{Z}/p^m\mathbb{Z})^r$ and $g = (a_1 + p^m\mathbb{Z}, \dots, a_r + p^m\mathbb{Z})$ where $a_i =$ $p^{m_i}b_i + p^m\mathbb{Z}$ and $p \nmid b_i$ for every $1 \leq i \leq r$. Setting $m_0 = \min\{m_1, \ldots, m_r\}$ we obtain that

$$g = p^{m_0} \cdot (p^{m_1 - m_0} b_1 + p^m \mathbb{Z}, \dots, p^{m_r - m_0} b_r + p^m \mathbb{Z})$$

whence $h(g) \ge m_0$. By Lemma 2.2 we infer that

$$\operatorname{ord}(g) = \frac{p^m}{\gcd\{a_1, \dots, a_r, p^m\}} = \frac{p^m}{p^{m_0}}$$

Therefore it follows that

 $p^{m-m_0} = \operatorname{ord}(g) \le \frac{\exp(G)}{p^{h(g)}} \le p^{m-m_0}$

and the assertion is proved.

LEMMA 4.2. Let G be a finite abelian p-group and $S = \prod_{i=1}^{l} g_i \in \mathcal{F}(G)$ a sequence. If $\sum_{i=1}^{l} p^{h(g_i)} \ge M(G)$, then S is not zero-sumfree.

PROOF. This was proved by J. E. Olson in [Ols69a], Theorem 2. \Box

PROPOSITION 4.3. Let $G = C_{p^m}^r$ with p prime, $m, r \in \mathbb{N}$ and $S \in \mathcal{F}(G)$ a minimal zero-sum sequence. If $|S| \ge \mathcal{D}(G) - p + 2$, then $\operatorname{ord}(g) = \exp(G)$ for every $g \in \operatorname{supp}(S)$.

PROOF. Suppose $S = \prod_{i=1}^{l} g_i \in \mathcal{F}(G)$ is a minimal zero-sum sequence with $|S| = l \geq \mathcal{D}(G) - p + 2$ and assume to the contrary that there exists some $i \in \{1, \ldots, l\}$ with $\operatorname{ord}(g_i) < \exp(G)$. Without restriction we suppose that i = 1 and set $T = \prod_{i=1}^{l-1} g_i$. We show that T is not zero-sumfree which yields the wanted contradiction.

Lemma 4.1 implies that

$$\frac{\exp(G)}{p^{h(g_1)}} = \operatorname{ord}(g_1) < \exp(G)$$

whence $p^{h(g_1)} \ge p$. This implies that

$$\sum_{i=1}^{l-1} p^{h(g_i)} \ge p + \sum_{i=2}^{l-1} p^{h(g_i)} \ge p + (l-2) \ge \mathcal{D}(G) = M(G),$$

whence T is not zero-sumfree by Lemma 4.2.

PROOF OF THEOREM 1.2. Let $G = C_{p^{m_1}} \oplus \cdots \oplus C_{p^{m_r}}$ be a *p*-group where p is prime, $r \in \mathbb{N}$ and $1 \leq m_1 \leq \cdots \leq m_r$. Then we have $M(G) = \mathcal{D}(G)$. Thus 1. follows from Lemma 3.1 and Proposition 4.3.

Theorem 3.2 implies that G does not have Property 2 if and only if $r \ge 2$, p = 2, $m_r > m_{r-1}$ and $\sum_{i=1}^{r-1} (2^{m_i} - 1)$ is odd which is equivalent to r even, p = 2 and $1 \le m_1 \le \cdots \le m_{r-1} < m_r$.

72

REFERENCES

- [Alo99] N. ALON, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7–29.
- [And97] D. D. ANDERSON, Factorization in integral domains, Marcel Dekker, 1997.
- [Car96] Y. CARO, Zero-sum problems A survey, Discrete Math. 152 (1996), 93–113.
- [CFS99] S. CHAPMAN, M. FREEZE and W. SMITH, Minimal zero sequences and the strong Davenport constant, *Discrete Math.* 203 (1999), 271–277.
- [CG97] S. CHAPMAN and A. GEROLDINGER, Krull domains and monoids, their sets of lengths and associated combinatorial problems, in: *Factorization in integral domains, Lecture Notes in Pure Appl. Math.* vol. 189, Marcel Dekker, 1997, 73–112.
- [Gao00] W. GAO, On Davenport's constant of finite abelian groups with rank three, Discrete Math. **222** (2000), 111–124.
- [GG99] W. GAO and A. GEROLDINGER, On long minimal zero sequences in finite abelian groups, *Periodica Math. Hungarica* **38** (1999), 179–211.
- [GG00] W. GAO and A. GEROLDINGER, Systems of sets of lengths II, Abhandl. Math. Sem. Univ. Hamburg 70 (2000), 31–49.
- [GS92] A. GEROLDINGER and R. SCHNEIDER, On Davenport's constant, J. Comb. Th. Ser. A 61 (1992), 147–152.
- [GS96] A. GEROLDINGER and R. SCHNEIDER, The cross number of finite abelian groups III, *Discrete Math.* **150** (1996), 123–130.
- [Ols69a] J.E. OLSON, A combinatorial problem on finite abelian groups I, J. Number Th. 1 (1969), 8–10.
- [Ols69b] J.E. OLSON, A combinatorial problem on finite abelian groups II, J. Number Th. 1 (1969), 195–199.
- [vEB69] P. van EMDE BOAS, A combinatorial problem on finite abelian groups II, in: Reports ZW-1969-007, Math. Centre, Amsterdam, 1969.

(*Received: August 28, 2000*)

WEIDONG GAO DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY UNIVERSITY OF PETROLEUM, BEIJING SHUIKU ROAD, CHANGPING BEIJING 102200 P.R. CHINA E-MAIL: wdgao@public.fhnet.cn.net

ALFRED GEROLDINGER INSTITUT FÜR MATHEMATIK KARL-FRANZENSUNIVERSITÄT HEINRICHSTRASSE 36 8010 GRAZ AUSTRIA E-MAIL: alfred.geroldinger@uni-graz.at