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ON THE ORDER OF ELEMENTS IN LONG MINIMAL
ZERO-SUM SEQUENCES

WEIDONG GAO (Beijing) AND ALFRED GEROLDINGER (Graz)
[Communicated by: Attila Pethd]

Abstract

Let G be a finite abelian group and S = Qiil ¢g; a minimal zero-sum sequence
in G of maximal length |S| = [. We study the order of the elements g1,...,g.

1. Introduction and Main Results

Let G be an additively written, finite abelian group. For every n € N we
denote by C,, the cyclic group with n elements. Then G = Cy,, & --- & C,,, with
1<ng|--|nif |G| >1and with r = ny = 1 if |G| = 1. Furthermore, r = r(G) is
the rank of G, n, = exp(G) is the ezponent of G and we set M(G) = 1+>_._,(n;—1).

We study sequences in G and for convenience we recall some basic terminology
(we use the same notations as in [GG99] and refer to this paper for details). Let
F(G) denote the free abelian monoid with basis G and let S = Hi:l gi € F(G) be a

sequence in G. Then |S| =1 € Ny is called the length of S and o(S5) = 2221 g €G
the sum of S. We say that S is a zero-sum sequence, if 0(S) = 0 and that S is
a minimal zero-sum sequence if no proper subsequence has sum zero. Davenport’s
constant D(G) of G is defined as the maximal length of a minimal zero-sum sequence
in G.

It is a straightforward observation that M(G) < D(G). About thirty years
ago J.E. Olson and D. Kruyswijk proved independently that equality holds for p-
groups and for groups G with rank r(G) < 2 (see [vVEB69], [Ols69a], [Ols69b]). It is
still unknown whether equality holds for all groups with rank three (for some recent
development see [Gao00]), but for every r > 4 there are infinitely many groups
G with rank r and with M(G) < D(G) (see [GS92]). However, up to now there
is no satisfactory explanation neither for the phenomenon M(G) = D(G) nor for
M(G) < D(Q).

In recent work it has been tried to obtain some information about the structure
of minimal zero-sum sequences whose length is equal or close to D(G) (see [GG99)).
A good knowledge about the structure of such sequences is of high importance for
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applications in factorization theory (see [And97]). Furthermore, it will allow further
progress in determining Davenport’s constant (see [Gao00]) and will provide a new
insight in the phenomenon M(G) = D(G).

Among others the following property of finite abelian groups has been studied:

Property : Every minimal zero-sum sequence S € F(G) with length |S| =
D(G) contains some element g with ord(g) = exp(G).

We conjecture that every finite abelian group G has this property and in
[GGY99] this was proved for p-groups and for groups with rank 7(G) < 2 among
others. An analogous property plays an important role in the investigation of cross
numbers of minimal zero-sum sequences (see [GS96], Lemma 1).

We discuss the following two refinements of the above question and ask for
groups G satisfying one of the following two properties:

Property 1: Every minimal zero-sum sequence S € F(G) with length |S| =
D(G) consists entirely of elements g with ord(g) = exp(G).

Property 2: There exists a minimal zero-sum sequence S € F(G) with length
|S| = D(G) which consists entirely of elements g with ord(g) = exp(G).

Let G = C}, be cyclic of order n. Then it is well known, that every minimal
zero-sum sequence of length D(G) = n has the form g™ for some element g of order
n. Hence cyclic groups have Property 1. In this note we characterize groups of rank
two and p-groups having Property 1 resp. Property 2.

THEOREM 1.1. Let G = C,,, ® Cy, be a group with rank two where 1 < m | n.
(1) G has Property 1 if and only if m = n.
(2) G has Property 2 if and only if either m or - is odd.

THEOREM 1.2. Let G = Cpmi @ --- @ Cpm, be a p-group where p is prime,
reNandl<m; <--- <m,.
(1) G has Property 1 if and only if m1 = m,..
(2) G has Property 2 if and only if G is not a 2-group with even rank r and with
My < My

Furthermore, we give a complete characterization of all minimal zero-sum
sequences with length D(G) in groups G of the form G = Co@®Cy,, (see Theorem 3.3).
By the above Theorems these are the simplest groups which do not necessarily satisfy
Property 2.

2. Preliminaries

Let G be a finite abelian group and S = Hizl gi € F(G) a sequence in G.
Our terminology is consistent with the one used in [GG99]. In particular, we denote
by 1 € F(G) the empty sequence and by supp(S) = {g; | 1 < i <1} the support of
S (hence S contains some element g € G if and only if g € supp(S)). The sequence
S is called
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e zero-sumfree, if Y ,_;g; # 0 for every non-empty subset I C {1,...,l}.
Clearly, S is zero-sumfree if and only if —¢(S) - S is a minimal zero-sum
sequence.

e a short zero-sum sequence, if S is a zero-sum sequence with 1 < |S| < exp(G).

Let 1(G) denote the smallest integer € N such that every sequence S € F(G)
with |S| > n contains a short zero-sum subsequence.

LEMMA 2.1. n(C, ® Cyp) < 3n—2 for every n > 2.

PROOF. This was proved in [GG99] Lemma 4.3. O

Let ¢ : G — H be a group homomorphism. Then ¢(S) = []
F(H) is a sequence in H with length |p(S)| = |S| and sum o(p(S)) = ¢(0(S)) € H.

Elements ey, ...,e, € G are called independent, if for every mq,...,m, € Z
the equation ZZ=1 m;e; = 0 implies that m;e; = 0 for every 1 < ¢ < r.

Furthermore, (e1,...,e.) is called a basis of G, if G = @._, (e;), ord(e;) = n;

forevery 1 <i<rand1<mng|--|n. Clearly, if (e,...,e,) is a basis of G, then
e1,...,e, are independent elements.
LEMMA 2.2. Let G be an abelian group, eq,. .., e, € G independent elements
with ord(e;) =n; for 1 <i<r and e =>._, mie; with my,...,m, € Z.
(1) ord(eg) =1 { i ‘1<‘<}
ord(ep) = lecm<§ ——— SULSTo.
gcd{mi, nz}
n
2) I =---=n,=mn, th d = .
(2) If m nr =, then ord(eo) ged{mq,...,m,,n}

ProOF. 1. For every 1 <i < r we have

ord(e;) n;
d(mie;) = = .
ord(m;e;) ged{ord(e;),m;}  ged{n;, m;}
Since myeq,...,mye, are independent elements, it follows that
ord(eg) = lem{ord(myey),...,ord(m,e.)}

and the assertion follows.
2. If ny =--- =n, =n, then
n

1< < = . ]
‘ ZT} ged{my,...,m,n}

n
d =1 —_—
ord(co) = lem { ged{m;, n}
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3. Proof of Theorem 1.1

We start with a simple observation concerning the order of elements in long
minimal zero-sum sequences.

LEmMMA 3.1. Let G = Cy, @ - ® Cp, with 1 < ny | --- | n.. Then
there exists a minimal zero-sum sequence S € F(G) with length |S| = M (G) which
contains some element g with ord(g) = ny.

PROOF. Let (eq,...,e,) be a basis of G and set g = >.._;e;. Then the

T n;—1 . o T n;—1 - P
sequence [[,_, e: is zero-sumfree whence S =eg - [];,_; €; is a minimal zero-
sum sequence with the required properties. O

THEOREM 3.2. Let G = Cy, @ --- ® Cy,. be a finite abelian group with
1<ny| | n.. Then the following conditions are equivalent:
(1) There exists a minimal zero-sum sequence S € F(G) with length |S| = M (G)
such that ord(g) = exp(G) for every g € supp(S).

r—1
(2) r=1o0r > (n;,—1) is even or is odd.

i=1 Nyr—1

PROOF. 1. = 2. Suppose that r > 2, Z:;ll(nz — 1) odd and ;™=
Then H = @;:—11 Cl, is non-trivial, M (H) is even, G = H®{e) with ord(e) = n, = n
and l = M(G) = M(H)+n —1is odd. Let
!
S = H(hl + aie) S f(G)

i=1

is even.

be a minimal zero-sum sequence with all h; € H and all a; € Z. Assume to the
contrary that ord(h; + a;e) = n for every 1 < ¢ <. If some a; would be even, then
n

5(ase) =0, Gh; = 0 since n,_; divides § and thus 3 (h; +ase) = 0, a contradiction.

Thus all a; are odd whence 22:1 a; is odd. However, since S has sum zero, it follows
that Zi:l a; =0 mod n, a contradiction.

2. = 1. Let (ey,...,e,) be a basis of G.

If r = 1, then S = e]* has the required properties.

Suppose r > 2 and choose integers a; ; € Z with ged{n,,a;;} = 1 for every
1<i<randevery 1< j<mn; —1. Then the sequence

r—1ln;—1

]._.[ H (e; + a; jer) - efwl

i=1 j=1
is zero-sumfree whence

r—1ln;—1

S=eg- H H (ei + aijer) -epr!

i=1 j=1
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is a minimal zero-sum sequence with length M (G) where

r—1 r—1n;—1

60:Zei+(1—a)er with a:ZZai,j.

i=1 i=1 j=1

Since all a; ; are coprime to n,, Lemma 2.2 implies that ord(e; +a; er) = n,. Hence
it remains to show that ord(ep) = n,. By Lemma 2.2 we have

ord(eg) = lem{ord(ey),...,ord(e,—1),ord((1 — a)e,)}
= lem{n,_1,ord((1 — a)e,)}

=lem<{n M
B "ecd{n,,1—a} [’

If Zz;ll(nl — 1) = 2k for some k € N, then choose k a; ;’s equal to 1 and k
a; ;'s equal to —1. This implies that a = 0 whence ord(eg) = n,.

If ;2= is odd and Z:;ll(m —1) = 2k + 1 for some k € Ny, then choose

T —

k41 a;;’s equal to —1 and k a; ;’s equal to 1. This implies that 1 —a = 2 and
ord(eg) = n,.. O

PrROOF OF THEOREM 1.1. Let G = C,, ® C,, with 1 <m | n.

1. If G has Property 1, then Lemma 3.1 implies that m = n. If m = n, then
Property 1 holds by Proposition 6.3 in [GG99].

2. This follows from Theorem 3.2. O

In cyclic groups and elementary 2-groups it is an easy exercise to determine
all minimal zero-sum sequences of maximal lengths (see Propositions 2.2 and 4.1
in [GGY99]). Apart from these trivial cases this has been done for no other series
of groups. Here we establish an explicit characterization of all minimal zero-sum
sequences of maximal lengths in groups G of the form G = Cy & Csy,. Such ex-
plicit characterizations are of great relevance in zero sum theory (see the literature
and problems in [Alo99], [Car96], [CFS99] or the discussions around Property B
in [Gao00] and [GG99]) and in factorization theory (see e.g. [CGI7] and [GGO0)).
In particular, we shall (explicitely) see that in groups G = Cy @ Cyj all minimal
zero-sum sequences with length D(G) contain elements of order less that exp(G).

THEOREM 3.3. Let G = Cy & Co,, for somen > 2 and S € F(G) a minimal
zero-sum sequence with length |S| = D(G). Then S has one of the following two
forms:

(1) S=¢?""1-h-(g—h) for some g € G with ord(g) = 2n and some h € G\ {g).
(2)S=e-g" (g+e)?"" for some g € G with ord(g) = 2n, e € G\ {g) with
ord(e) =2 and v odd with 3 < v < 2n — 3.
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Conversely, every sequence of form 1. or 2. is a minimal zero-sum sequence
with length D(Q).

PROOF. It is easy to verify that a sequence of form 1. or 2. is a minimal
zero-sum sequence with length 2n +1 = D(G).

Let (e1,e2) be a basis of G, H = (2e2) =2 Cy,, G/H = {H = ag,e1 + H =
ay,es + H =as,e1 +ea+ H=a3} = Cy @ Cs and consider the exact sequence

0— H—G-*% G/H— 0.

We write S in the form

such that ¢(S;) = aLSil for every 0 <7 < 3.

1. We assert that Sp = 1 € F(G), the empty sequence. Assume to the
contrary that S = g - T with ¢(g) = ag. Since by Lemma 2.1 n(Cy @ Cs) < 4 and
IT| = 2n = 2(n — 2) 4 4, there exist pairwise disjoint subsequences T1,...,T,_1
of T such that all ¢(T;) are short zero-sum subsequences of ¢(T'). Therefore U =
g- H?:_ll o(T;) € F(H) and since D(H) = n, it follows that U has a zero-sum
subsequence. Therefore V = g - H?;ll T, has a zero-sum subsequence. However, V
is a subsequence of S with |V| =1 +Z;:11 |T;| < 142(n—1) < |S], a contradiction.

2. We assert that |S;| = 1 mod 2 for every 1 < i < 3. For ¢ € {1,2,3} set
|Si| = 2¢; + r; with 0 < r; < 1. Then ¢(S;) = (a?)9 - a.’ and obviously, a? is a
short zero-sum subsequence of ¢(.S;). Therefore S contains ¢ = g1 + g2 + ¢3 pairwise
disjoint subsequences T; with |T;| = 2 and o(¢(T;)) = 0. This implies that

q
T =]]o(T) € F(H).

=1

Since 2n 4+ 1 = |S| = 2¢ + Z?zl r;, it follows that Z?=1 r; € {1,3}. Assume to the
contrary that 2% | 7; = 1. Then it follows that

1 3
i=1
whence T' contains a zero-sum subsequence and the same is true for U = []}_, T.
However, U is a subsequence of S with [U| = >"7 | |T;| < 2n < |S|, a contradiction.
Thus |S;| =2¢; + 1 forevery 1 <i<3and ¢g=n— 1.
3. We assert that for every 1 < ¢ < 3 there is some g; € w_l(ai) C G such
that S; = gls"l. Furthermore, if |S1| > 3 and |S2| > 3, then 2g; = 2gs.
Let i € {1,2,3} = {4,4,k}. If |S;| = 1, there is nothing to prove. Suppose
Si = [1'%! b, with |S;| = 2¢; + 1 > 3. We shall verify that hy = ho.
First suppose that |S;| > 5. For 1 < v < ¢; the sequences T, = hoy, - hop11
are pairwise distinct subsequences of S; with o(7},) € H. For p € {j,k} there are
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q,, such subsequences T, of S,,. Set S = Ty41-[[%_,T,. Then g+ 1=mn, |T,| =3
and ¢(T},) has sum zero. Therefore

n

T =]]o(T) e F(H)
v=1
contains a zero-sum subsequence, and since S is a minimal zero-sum sequence, T is
a minimal zero-sum sequence in a cyclic group of order n. Therefore, it follows that

(1) o(Th) = - = o(Ty).
In particular, we obtain that
ho + hs = O'(Tl) = U(TQ) = hy + hs.

Repeating this construction (with a new numeration of the h;’s) we obtain that
hi1 + hs = hy + hs. Thus we obtain that hy = ha.

Suppose now that |S;| = 3 and assume that |S;| > |Si|. We distinguish the
cases |Sj| =1 and |S;| > 3.

Suppose |S;| = 1. Then |Sk| =1 and 2n+1 = |S| = 32°_, |S,| = 5 whence
n = 2. Thus we have p~'(e; + H) = {e1,e1 + 2e2}, ¢ '(e2 + H) = {ea,3e2} and
o Ye1+ex+ H) = {e1 +ea,e1 +3ea}. Assume to the contrary, that [supp(S;)| > 1
whence S; = g - g (g + 2e3) for some g € ¢~ !(a;). This implies that S; is not
zero-sumfree, a contradiction.

Suppose |S;| > 3. Then ¢;+qx =g—¢i=n—2and S;- Sy =a-b-T1-...- T2
with |T,| = 2 and o(T),) € H. Setting

S:Tl-...~Tn,2-(h1'h3)'((l'b'h2)
—_—— ——
Tnfl Tn
we infer as above that
(2) o(Th) = =o(Ty).

In particular, we have hy + hz = o(T}). Repeating the construction we obtain that
hs + hs = o(T1) which implies that hy = hs.
Thus we proved that for every 1 < ¢ < 3 there are g; € GG such that S; = glsi‘.
Looking at (1) and (2) again we see that 2g; = 2go provided |S1| > 3 and |Sz| > 3.
4. Set

g1 =e1+2ae3, ga=(20+1)es and g3 =-e1+ (2c+ 1)es
with a,b,c € {0,...,n—1} C Z and |S;| = v; for 1 <4 < 3. Then
S=9" 95" 95
and we have

(3) v12a +v2(2b+ 1) + v3(2¢+1) =0 mod 2n

(4) v =vy=v3=1 mod 2
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(5) S| =v1+va+v3=2n+1

We assert that 1 € {v1,va,v3}. Assume to the contrary that v; > 1 for every
1 <i<3. Then v; > 3 for every 1 < i < 3. Thus 3. implies that 2g; = 2g> = 2g3
whence

da=4b+2=4c+2 mod 2n.

Therefore, n is odd, 2a = 2b+ 1 mod n and 2a +n = 2b+ 1 mod 2n. Similarly,
2b+1=2c+1 mod n whence either 2b+1 =2c+1 mod 2nor 2b+1=2c+1+n
mod 2n. Since 2a +n # 2c+ 1 +n mod 2n, we infer that

2b+1=2c+1=2a+n mod 2n.
Using (3), (4) and (5) it follows that
v1(2b4+14+n)+v2(20+1) +v3(2b+1) =0 mod 2n,

(v1 +v2+v3)(2b+ 1) +vin=0 mod 2n

and thus
(20+1)+n=0 mod 2n.

Thus 2a = 0 mod 2n and g7 is a proper zero-sum subsequence of S, a contradiction.
Thus there are the following two cases.

Case 1: Two of the v;’s are equal to 1. Then S has form 1 of the formulation
of the Theorem.

Case 2: Exactly one of the v;’s is equal to 1. In three subcases we show that
S has the form

(6) S=e-g" (g+e?"

with v odd, 3 < v < 2n — 3 and ord(e) = 2.

Case 2.1: v1 = 1. Then 3 < v9,3 < w3 = 2n — vy and 2g, = 2g3 implies
that 2(2b + 1) = 2(2¢+ 1) mod 2n. If 20+ 1 = 2¢ + 1 mod 2n, then vy is odd.
Furthermore, vy + vs = 2n and (3) imply that 2¢ = 0 mod 2n whence S has form
(6) with g; = e.

If2¢+1=2b+1+n mod 2n, then n is even, vy is odd, 2a =n mod 2n and
S has form (6) with g; =e.

Case 2.2: v = 1. Then 3 < wv1,3 < w3 = 2n — vy and 2g; = 2g3 implies that
2(2a) = 2(2¢+1) mod 2n. Thus n is odd, 2¢+ 1 = 2a +n mod 2n, v; is odd and
2b+1 =n mod 2n whence S has form (6) with g2 = e.

Case 2.3: v3 = 1. Then 3 < 1,3 < vy = 2n — vy and 2g; = 2g-» implies that
2(2a) =2(2b+ 1) mod 2n. Thus n is odd, 2b+ 1 = 2a +n mod 2n, v; is odd and
2c¢+1=mn mod 2n whence S has form (6) with g3 = e.

Hence we know that S has form (6), and it remains to show that e € G\ (g)
and ord(g) = 2n.

Let ord(g) = m and mm’ = 2n. If e € (g), then T = ¢ - (g +¢€)?" " is a
sequence in (g), which contains a zero-sum subsequence, since D({g)) = m < 2n, a
contradiction.
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Assume to the contrary, that m’ > 1. Since T is zero-sumfree, we infer that
v < ord(g) = m and 2n — v < ord(g + e) < 2m whence mm’ = 2n < 3m. Thus
m' =2 m=mn, 2n—v > n and e- (g + €)™ contains a zero-sum sequence, a

contradiction. O

COROLLARY 3.4. Let G = Cy & Cyy, with n > 2, (e1,e2) a basis of G and
S € F(G) a minimal zero-sum sequence with length |S| = D(G). Then there exists a
group automorphism ¢ : G — G such that ©(S) has one of the following two forms:
(1) @(S) = €21 - (e1 + aes) - (e1 + (1 — a)ey) with a € {0,...,2n —1}.
(2) ©(S) =e1 - €y - (e1 + €2)* ™% with v odd and 3 < v < 2n — 3.

PROOF. 1. Suppose S = ¢g?"~ 1. h-(g— h) with ord(g) = 2n and h € G\ (g).

There exists some element e € G of order two such that G = (g) v (e + (g)) whence
(e,g) is a basis of G. Then h = e + ag for some a € {0,...,2n — 1}. Furthermore,
there is some automorphism ¢ : G — G with ¢(e) = e; and ¢(g) = e2 whence

»(S) = e%”fl (e1 +aez) - (e1 + (1 — a)ea).

2. If S=e-g" (g+e)?" " with ord(g) = 2n and e € G\ (g) with ord(e) = 2,
then (e, g) is a basis of G and as above we obtain a group automorphism such that
©(S) has the required form. O

Suppose that n is even. If a € {0,...,2n — 1}, then either a or 1 — a is even
whence either ord(e; + aez) < n or ord(e; + (1 — a)ea) < n. Thus every minimal
zero-sum sequence in Cy @ Cy,, contains some element g with ord(g) < exp(G).

4. Proof of Theorem 1.2

Let G be an abelian p-group and g € G. Then the (p-)height h(g) of g (in G)
is defined as the supremum of all s € Ny U {oc} for which the equation p® -z = g is
solvable in G.

LEMMA 4.1. Let G be a finite abelian p-group and 0 # g € G. Then

ord(g) < c;f((g) and equality holds if G = C,. for some r,m € N.

PROOF. Let z € G with p* -z = g with s = h(g). Then ord(z) = p* < exp(G)
for some ¢ > s and it follows that

pt _exp@)
ged{ps,p'} = ph@ ~
Suppose that G = (Z/p™Z)" and g = (a1 + p™Z,...,a, + p™7Z) where a; =

p™ib; + p™Z and p 1 b; for every 1 < ¢ < r. Setting mg = min{my,...,m,} we
obtain that

ord(g) =

g=p" - (" "0by + p" L, ..., p" b, 4+ p™ L)
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whence h(g) > mg. By Lemma 2.2 we infer that

m m

p p

d(g) = = .
or (g) ng{ala ceey ar’pm} pmo

Therefore it follows that
m—mg __ eXp(G) m—1rmo
p =ord(g) < = <P

and the assertion is proved. O

LEMMA 4.2. Let G be a finite abelian p-group and S = Hi:l gi € F(G) a
sequence. If 22:1 pM9i) > M(G), then S is not zero-sumfree.

PROOF. This was proved by J. E. Olson in [Ols69a], Theorem 2. O

PROPOSITION 4.3.  Let G = Cp.n with p prime, m,7 € N and S € F(G) a
minimal zero-sum sequence. If |S| > D(G) —p+2, then ord(g) = exp(G) for every
g € supp(S).

PROOF. Suppose S = Hizl gi € F(G) is a minimal zero-sum sequence with
|S| =1 > D(G) — p+ 2 and assume to the contrary that there exists some ¢ €
{1,...,1} with ord(g;) < exp(G). Without restriction we suppose that i = 1 and
set T = Hi;i g;- We show that T is not zero-sumfree which yields the wanted
contradiction.

Lemma 4.1 implies that

exp(G)

(o = ord(g1) < exp(G)

whence p"(9) > p. This implies that

-1 -1
3 000 > p 3 ) > p g (1-2) > D(G) = M(G),
i=1 =2

whence T is not zero-sumfree by Lemma 4.2. (Il

Proor or THEOREM 1.2. Let G = Cymi @ --- ® Cpm- be a p-group where
pis prime, r € Nand 1 < my <--- < m,. Then we have M(G) = D(G). Thus 1.
follows from Lemma 3.1 and Proposition 4.3.

Theorem 3.2 implies that G does not have Property 2 if and only if r > 2, p =
2, my > m,_; and Z:;ll (2™ —1) is odd which is equivalent to r even, p = 2 and
1<m < <myp_g <My, O



ON THE ORDER OF ELEMENTS IN LONG MINIMAL. .. 73

REFERENCES

[Alo99] N. ALoON, Combinatorial Nullstellensatz, Combinatorics, Probability and Com-
puting 8 (1999), 7-29.

[And97] D. D. ANDERSON, Factorization in integral domains, Marcel Dekker, 1997.

[Car96] Y. CARO, Zero-sum problems — A survey, Discrete Math. 152 (1996), 93-113.

[CFS99] S. CHAPMAN, M. FREEZE and W. SMITH, Minimal zero sequences and the strong
Davenport constant, Discrete Math. 203 (1999), 271-277.

[CG97] S. CHAPMAN and A. GEROLDINGER, Krull domains and monoids, their sets of
lengths and associated combinatorial problems, in: Factorization in integral do-
mains, Lecture Notes in Pure Appl. Math. vol. 189, Marcel Dekker, 1997, 73-112.

[Gao00] W. GAO, On Davenport’s constant of finite abelian groups with rank three,
Discrete Math. 222 (2000), 111-124.

[GG99] W. GAO and A. GEROLDINGER, On long minimal zero sequences in finite abelian
groups, Periodica Math. Hungarica 38 (1999), 179-211.

[GG00] W. GaO and A. GEROLDINGER, Systems of sets of lengths II, Abhandl. Math.
Sem. Univ. Hamburg 70 (2000), 31-49.

[GS92] A. GEROLDINGER and R. SCHNEIDER, On Davenport’s constant, J. Comb. Th.
Ser. A 61 (1992), 147-152.

[GS96] A. GEROLDINGER and R. SCHNEIDER, The cross number of finite abelian groups
IT1, Discrete Math. 150 (1996), 123-130.

[O1s69a] J.E. OLSON, A combinatorial problem on finite abelian groups I, J. Number Th.
1 (1969), 8-10.

[01s69b] J.E. OLSON, A combinatorial problem on finite abelian groups II, J. Number Th.
1 (1969), 195-199.

[VEB69] P. van EMDE BoOAS, A combinatorial problem on finite abelian groups II, in:
Reports ZW-1969-007, Math. Centre, Amsterdam, 1969.

(Received: August 28, 2000)

WEIDONG GAO

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
UNIVERSITY OF PETROLEUM, BELJING

SHUIKU ROAD, CHANGPING

BEWLING 102200

P.R. CHINA

E-MAIL: wdgao@public.fhnet.cn.net

ALFRED GEROLDINGER

INSTITUT FUR MATHEMATIK
KARL-FRANZENSUNIVERSITAT
HEINRICHSTRASSE 36

8010 GRAZ

AUSTRIA

E-MAIL: alfred.geroldinger@uni-graz.at



