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Abstract

Let G be a finite abelian group and S =
Ql
i=1 gi a minimal zero-sum sequence

in G of maximal length |S| = l. We study the order of the elements g1, . . . , gl.

1. Introduction and Main Results

Let G be an additively written, finite abelian group. For every n ∈ N we
denote by Cn the cyclic group with n elements. Then G = Cn1 ⊕ · · · ⊕ Cnr with
1 < n1 | · · · | nr if |G| > 1 and with r = n1 = 1 if |G| = 1. Furthermore, r = r(G) is
the rank of G, nr = exp(G) is the exponent of G and we set M(G) = 1+

∑r
i=1(ni−1).

We study sequences in G and for convenience we recall some basic terminology
(we use the same notations as in [GG99] and refer to this paper for details). Let
F(G) denote the free abelian monoid with basis G and let S =

∏l
i=1 gi ∈ F(G) be a

sequence in G. Then |S| = l ∈ N0 is called the length of S and σ(S) =
∑l
i=1 gi ∈ G

the sum of S. We say that S is a zero-sum sequence, if σ(S) = 0 and that S is
a minimal zero-sum sequence if no proper subsequence has sum zero. Davenport’s
constant D(G) of G is defined as the maximal length of a minimal zero-sum sequence
in G.

It is a straightforward observation that M(G) ≤ D(G). About thirty years
ago J.E. Olson and D. Kruyswijk proved independently that equality holds for p-
groups and for groups G with rank r(G) ≤ 2 (see [vEB69], [Ols69a], [Ols69b]). It is
still unknown whether equality holds for all groups with rank three (for some recent
development see [Gao00]), but for every r ≥ 4 there are infinitely many groups
G with rank r and with M(G) < D(G) (see [GS92]). However, up to now there
is no satisfactory explanation neither for the phenomenon M(G) = D(G) nor for
M(G) < D(G).

In recent work it has been tried to obtain some information about the structure
of minimal zero-sum sequences whose length is equal or close to D(G) (see [GG99]).
A good knowledge about the structure of such sequences is of high importance for
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applications in factorization theory (see [And97]). Furthermore, it will allow further
progress in determining Davenport’s constant (see [Gao00]) and will provide a new
insight in the phenomenon M(G) = D(G).

Among others the following property of finite abelian groups has been studied:
Property : Every minimal zero-sum sequence S ∈ F(G) with length |S| =

D(G) contains some element g with ord(g) = exp(G).
We conjecture that every finite abelian group G has this property and in

[GG99] this was proved for p-groups and for groups with rank r(G) ≤ 2 among
others. An analogous property plays an important role in the investigation of cross
numbers of minimal zero-sum sequences (see [GS96], Lemma 1).

We discuss the following two refinements of the above question and ask for
groups G satisfying one of the following two properties:

Property 1: Every minimal zero-sum sequence S ∈ F(G) with length |S| =
D(G) consists entirely of elements g with ord(g) = exp(G).

Property 2: There exists a minimal zero-sum sequence S ∈ F(G) with length
|S| = D(G) which consists entirely of elements g with ord(g) = exp(G).

Let G = Cn be cyclic of order n. Then it is well known, that every minimal
zero-sum sequence of length D(G) = n has the form gn for some element g of order
n. Hence cyclic groups have Property 1. In this note we characterize groups of rank
two and p-groups having Property 1 resp. Property 2.

Theorem 1.1. Let G = Cm⊕Cn be a group with rank two where 1 < m | n.
(1) G has Property 1 if and only if m = n.
(2) G has Property 2 if and only if either m or n

m is odd.

Theorem 1.2. Let G = Cpm1 ⊕ · · · ⊕ Cpmr be a p-group where p is prime,
r ∈ N and 1 ≤ m1 ≤ · · · ≤ mr.

(1) G has Property 1 if and only if m1 = mr.
(2) G has Property 2 if and only if G is not a 2-group with even rank r and with

mr−1 < mr.

Furthermore, we give a complete characterization of all minimal zero-sum
sequences with lengthD(G) in groupsG of the formG = C2⊕C2n (see Theorem 3.3).
By the above Theorems these are the simplest groups which do not necessarily satisfy
Property 2.

2. Preliminaries

Let G be a finite abelian group and S =
∏l
i=1 gi ∈ F(G) a sequence in G.

Our terminology is consistent with the one used in [GG99]. In particular, we denote
by 1 ∈ F(G) the empty sequence and by supp(S) = {gi | 1 ≤ i ≤ l} the support of
S (hence S contains some element g ∈ G if and only if g ∈ supp(S)). The sequence
S is called
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• zero-sumfree, if
∑
i∈I gi 6= 0 for every non-empty subset I ⊂ {1, . . . , l}.

Clearly, S is zero-sumfree if and only if −σ(S) · S is a minimal zero-sum
sequence.
• a short zero-sum sequence, if S is a zero-sum sequence with 1 ≤ |S| ≤ exp(G).

Let η(G) denote the smallest integer η ∈ N such that every sequence S ∈ F(G)
with |S| ≥ η contains a short zero-sum subsequence.

Lemma 2.1. η(Cn ⊕ Cn) ≤ 3n− 2 for every n ≥ 2.

Proof. This was proved in [GG99] Lemma 4.3. ¤

Let ϕ : G −→ H be a group homomorphism. Then ϕ(S) =
∏l
i=1 ϕ(gi) ∈

F(H) is a sequence in H with length |ϕ(S)| = |S| and sum σ(ϕ(S)) = ϕ(σ(S)) ∈ H.
Elements e1, . . . , er ∈ G are called independent, if for every m1, . . . ,mr ∈ Z

the equation
∑r
i=1miei = 0 implies that miei = 0 for every 1 ≤ i ≤ r.

Furthermore, (e1, . . . , er) is called a basis of G, if G =
⊕r

i=1〈ei〉, ord(ei) = ni
for every 1 ≤ i ≤ r and 1 < n1 | · · · | nr. Clearly, if (e1, . . . , er) is a basis of G, then
e1, . . . , er are independent elements.

Lemma 2.2. Let G be an abelian group, e1, . . . , er ∈ G independent elements
with ord(ei) = ni for 1 ≤ i ≤ r and e0 =

∑r
i=1miei with m1, . . . ,mr ∈ Z.

(1) ord(e0) = lcm
{

ni
gcd{mi, ni}

∣∣∣ 1 ≤ i ≤ r
}

.

(2) If n1 = · · · = nr = n, then ord(e0) =
n

gcd{m1, . . . ,mr, n} .

Proof. 1. For every 1 ≤ i ≤ r we have

ord(miei) =
ord(ei)

gcd{ord(ei),mi} =
ni

gcd{ni,mi} .

Since m1e1, . . . ,mrer are independent elements, it follows that

ord(e0) = lcm{ord(m1e1), . . . , ord(mrer)}

and the assertion follows.
2. If n1 = · · · = nr = n, then

ord(e0) = lcm
{

n

gcd{mi, n}
∣∣∣ 1 ≤ i ≤ r

}
=

n

gcd{m1, . . . ,mr, n} . ¤
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3. Proof of Theorem 1.1

We start with a simple observation concerning the order of elements in long
minimal zero-sum sequences.

Lemma 3.1. Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · | nr. Then
there exists a minimal zero-sum sequence S ∈ F(G) with length |S| = M(G) which
contains some element g with ord(g) = n1.

Proof. Let (e1, . . . , er) be a basis of G and set e0 =
∑r
i=1 ei. Then the

sequence
∏r
i=1 e

ni−1
i is zero-sumfree whence S = e0 ·

∏r
i=1 e

ni−1
i is a minimal zero-

sum sequence with the required properties. ¤

Theorem 3.2. Let G = Cn1 ⊕ · · · ⊕ Cnr be a finite abelian group with
1 < n1 | · · · | nr. Then the following conditions are equivalent:

(1) There exists a minimal zero-sum sequence S ∈ F(G) with length |S| = M(G)
such that ord(g) = exp(G) for every g ∈ supp(S).

(2) r = 1 or
r−1∑
i=1

(ni − 1) is even or
nr
nr−1

is odd.

Proof. 1. =⇒ 2. Suppose that r ≥ 2,
∑r−1
i=1 (ni − 1) odd and nr

nr−1
is even.

Then H =
⊕r−1

i=1 Cni is non-trivial, M(H) is even, G = H⊕〈e〉 with ord(e) = nr = n
and l = M(G) = M(H) + n− 1 is odd. Let

S =
l∏

i=1

(hi + aie) ∈ F(G)

be a minimal zero-sum sequence with all hi ∈ H and all ai ∈ Z. Assume to the
contrary that ord(hi + aie) = n for every 1 ≤ i ≤ l. If some ai would be even, then
n
2 (aie) = 0, n2hi = 0 since nr−1 divides n

2 and thus n
2 (hi+aie) = 0, a contradiction.

Thus all ai are odd whence
∑l
i=1 ai is odd. However, since S has sum zero, it follows

that
∑l
i=1 ai ≡ 0 mod n, a contradiction.

2. =⇒ 1. Let (e1, . . . , er) be a basis of G.
If r = 1, then S = en1

1 has the required properties.
Suppose r ≥ 2 and choose integers ai,j ∈ Z with gcd{nr, ai,j} = 1 for every

1 ≤ i ≤ r and every 1 ≤ j ≤ ni − 1. Then the sequence
r−1∏

i=1

ni−1∏

j=1

(ei + ai,jer) · enr−1
r

is zero-sumfree whence

S = e0 ·
r−1∏

i=1

ni−1∏

j=1

(ei + ai,jer) · enr−1
r
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is a minimal zero-sum sequence with length M(G) where

e0 =
r−1∑

i=1

ei + (1− a)er with a =
r−1∑

i=1

ni−1∑

j=1

ai,j .

Since all ai,j are coprime to nr, Lemma 2.2 implies that ord(ei+ai,jer) = nr. Hence
it remains to show that ord(e0) = nr. By Lemma 2.2 we have

ord(e0) = lcm{ord(e1), . . . , ord(er−1), ord((1− a)er)}
= lcm{nr−1, ord((1− a)er)}

= lcm
{
nr−1,

nr
gcd{nr, 1− a}

}
.

If
∑r−1
i=1 (ni − 1) = 2k for some k ∈ N, then choose k ai,j ’s equal to 1 and k

ai,j ’s equal to −1. This implies that a = 0 whence ord(e0) = nr.

If nr
nr−1

is odd and
∑r−1
i=1 (ni − 1) = 2k + 1 for some k ∈ N0, then choose

k + 1 ai,j ’s equal to −1 and k ai,j ’s equal to 1. This implies that 1 − a = 2 and
ord(e0) = nr. ¤

Proof of Theorem 1.1. Let G = Cm ⊕ Cn with 1 < m | n.
1. If G has Property 1, then Lemma 3.1 implies that m = n. If m = n, then

Property 1 holds by Proposition 6.3 in [GG99].
2. This follows from Theorem 3.2. ¤

In cyclic groups and elementary 2-groups it is an easy exercise to determine
all minimal zero-sum sequences of maximal lengths (see Propositions 2.2 and 4.1
in [GG99]). Apart from these trivial cases this has been done for no other series
of groups. Here we establish an explicit characterization of all minimal zero-sum
sequences of maximal lengths in groups G of the form G = C2 ⊕ C2n. Such ex-
plicit characterizations are of great relevance in zero sum theory (see the literature
and problems in [Alo99], [Car96], [CFS99] or the discussions around Property B
in [Gao00] and [GG99]) and in factorization theory (see e.g. [CG97] and [GG00]).
In particular, we shall (explicitely) see that in groups G = C2 ⊕ C4k all minimal
zero-sum sequences with length D(G) contain elements of order less that exp(G).

Theorem 3.3. Let G = C2 ⊕C2n for some n ≥ 2 and S ∈ F(G) a minimal
zero-sum sequence with length |S| = D(G). Then S has one of the following two
forms:

(1) S = g2n−1 ·h · (g−h) for some g ∈ G with ord(g) = 2n and some h ∈ G \ 〈g〉.
(2) S = e · gv · (g + e)2n−v for some g ∈ G with ord(g) = 2n, e ∈ G \ 〈g〉 with

ord(e) = 2 and v odd with 3 ≤ v ≤ 2n− 3.
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Conversely, every sequence of form 1. or 2. is a minimal zero-sum sequence
with length D(G).

Proof. It is easy to verify that a sequence of form 1. or 2. is a minimal
zero-sum sequence with length 2n+ 1 = D(G).

Let (e1, e2) be a basis of G, H = 〈2e2〉 ∼= Cn, G/H = {H = a0, e1 + H =
a1, e2 +H = a2, e1 + e2 +H = a3} ∼= C2 ⊕ C2 and consider the exact sequence

0 −→ H ↪→ G
ϕ−→ G/H −→ 0.

We write S in the form

S =
3∏

i=0

Si

such that ϕ(Si) = a
|Si|
i for every 0 ≤ i ≤ 3.

1. We assert that S0 = 1 ∈ F(G), the empty sequence. Assume to the
contrary that S = g · T with ϕ(g) = a0. Since by Lemma 2.1 η(C2 ⊕ C2) ≤ 4 and
|T | = 2n = 2(n − 2) + 4, there exist pairwise disjoint subsequences T1, . . . , Tn−1

of T such that all ϕ(Ti) are short zero-sum subsequences of ϕ(T ). Therefore U =
g · ∏n−1

i=1 σ(Ti) ∈ F(H) and since D(H) = n, it follows that U has a zero-sum
subsequence. Therefore V = g ·∏n−1

i=1 Ti has a zero-sum subsequence. However, V
is a subsequence of S with |V | = 1+

∑n−1
i=1 |Ti| ≤ 1+2(n−1) < |S|, a contradiction.

2. We assert that |Si| ≡ 1 mod 2 for every 1 ≤ i ≤ 3. For i ∈ {1, 2, 3} set
|Si| = 2qi + ri with 0 ≤ ri ≤ 1. Then ϕ(Si) = (a2

i )
qi · arii and obviously, a2

i is a
short zero-sum subsequence of ϕ(Si). Therefore S contains q = q1 +q2 +q3 pairwise
disjoint subsequences Ti with |Ti| = 2 and σ(ϕ(Ti)) = 0. This implies that

T =
q∏

i=1

σ(Ti) ∈ F(H).

Since 2n+ 1 = |S| = 2q +
∑3
i=1 ri, it follows that

∑3
i=1 ri ∈ {1, 3}. Assume to the

contrary that
∑3
i=1 ri = 1. Then it follows that

q =
1
2

(
|S| −

3∑

i=1

ri

)
= n

whence T contains a zero-sum subsequence and the same is true for U =
∏q
i=1 Ti.

However, U is a subsequence of S with |U | = ∑q
i=1 |Ti| ≤ 2n < |S|, a contradiction.

Thus |Si| = 2qi + 1 for every 1 ≤ i ≤ 3 and q = n− 1.
3. We assert that for every 1 ≤ i ≤ 3 there is some gi ∈ ϕ−1(ai) ⊂ G such

that Si = g
|Si|
i . Furthermore, if |S1| ≥ 3 and |S2| ≥ 3, then 2g1 = 2g2.

Let i ∈ {1, 2, 3} = {i, j, k}. If |Si| = 1, there is nothing to prove. Suppose
Si =

∏|Si|
ν=1 hν with |Si| = 2qi + 1 ≥ 3. We shall verify that h1 = h2.

First suppose that |Si| ≥ 5. For 1 ≤ ν ≤ qi the sequences Tν = h2ν · h2ν+1

are pairwise distinct subsequences of Si with σ(Tν) ∈ H. For µ ∈ {j, k} there are
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qµ such subsequences Tν of Sµ. Set S = Tq+1 ·
∏q
ν=1 Tν . Then q + 1 = n, |Tn| = 3

and ϕ(Tn) has sum zero. Therefore

T =
n∏
ν=1

σ(Tν) ∈ F(H)

contains a zero-sum subsequence, and since S is a minimal zero-sum sequence, T is
a minimal zero-sum sequence in a cyclic group of order n. Therefore, it follows that

(1) σ(T1) = · · · = σ(Tn).

In particular, we obtain that

h2 + h3 = σ(T1) = σ(T2) = h4 + h5.

Repeating this construction (with a new numeration of the hi’s) we obtain that
h1 + h3 = h4 + h5. Thus we obtain that h1 = h2.

Suppose now that |Si| = 3 and assume that |Sj | ≥ |Sk|. We distinguish the
cases |Sj | = 1 and |Sj | ≥ 3.

Suppose |Sj | = 1. Then |Sk| = 1 and 2n + 1 = |S| =
∑3
ν=1 |Sν | = 5 whence

n = 2. Thus we have ϕ−1(e1 + H) = {e1, e1 + 2e2}, ϕ−1(e2 + H) = {e2, 3e2} and
ϕ−1(e1 + e2 +H) = {e1 + e2, e1 + 3e2}. Assume to the contrary, that |supp(Si)| > 1
whence Si = g · g · (g + 2e2) for some g ∈ ϕ−1(ai). This implies that Si is not
zero-sumfree, a contradiction.

Suppose |Sj | ≥ 3. Then qj+qk = q−qi = n−2 and Sj ·Sk = a ·b ·T1 · . . . ·Tn−2

with |Tµ| = 2 and σ(Tµ) ∈ H. Setting

S = T1 · . . . · Tn−2 · (h1 · h3)︸ ︷︷ ︸
Tn−1

· (a · b · h2)︸ ︷︷ ︸
Tn

we infer as above that

(2) σ(T1) = · · · = σ(Tn).

In particular, we have h1 + h3 = σ(T1). Repeating the construction we obtain that
h2 + h3 = σ(T1) which implies that h1 = h2.

Thus we proved that for every 1 ≤ i ≤ 3 there are gi ∈ G such that Si = g
|Si|
i .

Looking at (1) and (2) again we see that 2g1 = 2g2 provided |S1| ≥ 3 and |S2| ≥ 3.
4. Set

g1 = e1 + 2ae2, g2 = (2b+ 1)e2 and g3 = e1 + (2c+ 1)e2

with a, b, c ∈ {0, . . . , n− 1} ⊂ Z and |Si| = vi for 1 ≤ i ≤ 3. Then

S = gv1
1 · gv2

2 · gv3
3

and we have

(3) v12a+ v2(2b+ 1) + v3(2c+ 1) ≡ 0 mod 2n

(4) v1 ≡ v2 ≡ v3 ≡ 1 mod 2
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(5) |S| = v1 + v2 + v3 = 2n+ 1

We assert that 1 ∈ {v1, v2, v3}. Assume to the contrary that vi > 1 for every
1 ≤ i ≤ 3. Then vi ≥ 3 for every 1 ≤ i ≤ 3. Thus 3. implies that 2g1 = 2g2 = 2g3

whence
4a ≡ 4b+ 2 ≡ 4c+ 2 mod 2n.

Therefore, n is odd, 2a ≡ 2b + 1 mod n and 2a + n ≡ 2b + 1 mod 2n. Similarly,
2b+ 1 ≡ 2c+ 1 mod n whence either 2b+ 1 ≡ 2c+ 1 mod 2n or 2b+ 1 ≡ 2c+ 1 +n
mod 2n. Since 2a+ n 6≡ 2c+ 1 + n mod 2n, we infer that

2b+ 1 ≡ 2c+ 1 ≡ 2a+ n mod 2n.

Using (3), (4) and (5) it follows that

v1(2b+ 1 + n) + v2(2b+ 1) + v3(2b+ 1) ≡ 0 mod 2n,

(v1 + v2 + v3)(2b+ 1) + v1n ≡ 0 mod 2n

and thus
(2b+ 1) + n ≡ 0 mod 2n.

Thus 2a ≡ 0 mod 2n and g2
1 is a proper zero-sum subsequence of S, a contradiction.

Thus there are the following two cases.
Case 1: Two of the vi’s are equal to 1. Then S has form 1 of the formulation

of the Theorem.
Case 2: Exactly one of the vi’s is equal to 1. In three subcases we show that

S has the form

(6) S = e · gv · (g + e)2n−v

with v odd, 3 ≤ v ≤ 2n− 3 and ord(e) = 2.
Case 2.1: v1 = 1. Then 3 ≤ v2, 3 ≤ v3 = 2n − v2 and 2g2 = 2g3 implies

that 2(2b + 1) ≡ 2(2c + 1) mod 2n. If 2b + 1 ≡ 2c + 1 mod 2n, then v2 is odd.
Furthermore, v2 + v3 = 2n and (3) imply that 2a ≡ 0 mod 2n whence S has form
(6) with g1 = e.

If 2c+ 1 ≡ 2b+ 1 +n mod 2n, then n is even, v2 is odd, 2a ≡ n mod 2n and
S has form (6) with g1 = e.

Case 2.2: v2 = 1. Then 3 ≤ v1, 3 ≤ v3 = 2n − v1 and 2g1 = 2g3 implies that
2(2a) ≡ 2(2c+ 1) mod 2n. Thus n is odd, 2c+ 1 ≡ 2a+ n mod 2n, v1 is odd and
2b+ 1 ≡ n mod 2n whence S has form (6) with g2 = e.

Case 2.3: v3 = 1. Then 3 ≤ v1, 3 ≤ v2 = 2n − v1 and 2g1 = 2g2 implies that
2(2a) ≡ 2(2b+ 1) mod 2n. Thus n is odd, 2b+ 1 ≡ 2a+ n mod 2n, v1 is odd and
2c+ 1 ≡ n mod 2n whence S has form (6) with g3 = e.

Hence we know that S has form (6), and it remains to show that e ∈ G \ 〈g〉
and ord(g) = 2n.

Let ord(g) = m and mm′ = 2n. If e ∈ 〈g〉, then T = gv · (g + e)2n−v is a
sequence in 〈g〉, which contains a zero-sum subsequence, since D(〈g〉) = m ≤ 2n, a
contradiction.



on the order of elements in long minimal. . . 71

Assume to the contrary, that m′ > 1. Since T is zero-sumfree, we infer that
v < ord(g) = m and 2n − v < ord(g + e) ≤ 2m whence mm′ = 2n < 3m. Thus
m′ = 2, m = n, 2n − v > n and e · (g + e)n contains a zero-sum sequence, a
contradiction. ¤

Corollary 3.4. Let G = C2 ⊕ C2n with n ≥ 2, (e1, e2) a basis of G and
S ∈ F(G) a minimal zero-sum sequence with length |S| = D(G). Then there exists a
group automorphism ϕ : G→ G such that ϕ(S) has one of the following two forms:

(1) ϕ(S) = e2n−1
2 · (e1 + ae2) · (e1 + (1− a)e2) with a ∈ {0, . . . , 2n− 1}.

(2) ϕ(S) = e1 · ev2 · (e1 + e2)2n−v with v odd and 3 ≤ v ≤ 2n− 3.

Proof. 1. Suppose S = g2n−1 · h · (g − h) with ord(g) = 2n and h ∈ G \ 〈g〉.
There exists some element e ∈ G of order two such that G = 〈g〉 •∪ (e+ 〈g〉) whence
(e, g) is a basis of G. Then h = e + ag for some a ∈ {0, . . . , 2n− 1}. Furthermore,
there is some automorphism ϕ : G→ G with ϕ(e) = e1 and ϕ(g) = e2 whence

ϕ(S) = e2n−1
2 · (e1 + ae2) · (e1 + (1− a)e2).

2. If S = e · gv · (g+ e)2n−v with ord(g) = 2n and e ∈ G \ 〈g〉 with ord(e) = 2,
then (e, g) is a basis of G and as above we obtain a group automorphism such that
ϕ(S) has the required form. ¤

Suppose that n is even. If a ∈ {0, . . . , 2n− 1}, then either a or 1− a is even
whence either ord(e1 + ae2) ≤ n or ord(e1 + (1 − a)e2) ≤ n. Thus every minimal
zero-sum sequence in C2 ⊕ C2n contains some element g with ord(g) < exp(G).

4. Proof of Theorem 1.2

Let G be an abelian p-group and g ∈ G. Then the (p-)height h(g) of g (in G)
is defined as the supremum of all s ∈ N0 ∪ {∞} for which the equation ps · x = g is
solvable in G.

Lemma 4.1. Let G be a finite abelian p-group and 0 6= g ∈ G. Then
ord(g) ≤ exp(G)

ph(g) and equality holds if G = Crpm for some r,m ∈ N.

Proof. Let x ∈ G with ps ·x = g with s = h(g). Then ord(x) = pt ≤ exp(G)
for some t > s and it follows that

ord(g) =
pt

gcd{ps, pt} ≤
exp(G)
ph(g)

.

Suppose that G = (Z/pmZ)r and g = (a1 + pmZ, . . . , ar + pmZ) where ai =
pmibi + pmZ and p - bi for every 1 ≤ i ≤ r. Setting m0 = min{m1, . . . ,mr} we
obtain that

g = pm0 · (pm1−m0b1 + pmZ, . . . , pmr−m0br + pmZ)
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whence h(g) ≥ m0. By Lemma 2.2 we infer that

ord(g) =
pm

gcd{a1, . . . , ar, pm} =
pm

pm0
.

Therefore it follows that

pm−m0 = ord(g) ≤ exp(G)
ph(g)

≤ pm−m0

and the assertion is proved. ¤

Lemma 4.2. Let G be a finite abelian p-group and S =
∏l
i=1 gi ∈ F(G) a

sequence. If
∑l
i=1 p

h(gi) ≥M(G), then S is not zero-sumfree.

Proof. This was proved by J. E. Olson in [Ols69a], Theorem 2. ¤

Proposition 4.3. Let G = Crpm with p prime, m, r ∈ N and S ∈ F(G) a
minimal zero-sum sequence. If |S| ≥ D(G)− p+ 2, then ord(g) = exp(G) for every
g ∈ supp(S).

Proof. Suppose S =
∏l
i=1 gi ∈ F(G) is a minimal zero-sum sequence with

|S| = l ≥ D(G) − p + 2 and assume to the contrary that there exists some i ∈
{1, . . . , l} with ord(gi) < exp(G). Without restriction we suppose that i = 1 and
set T =

∏l−1
i=1 gi. We show that T is not zero-sumfree which yields the wanted

contradiction.
Lemma 4.1 implies that

exp(G)
ph(g1)

= ord(g1) < exp(G)

whence ph(g1) ≥ p. This implies that

l−1∑

i=1

ph(gi) ≥ p+
l−1∑

i=2

ph(gi) ≥ p+ (l − 2) ≥ D(G) = M(G),

whence T is not zero-sumfree by Lemma 4.2. ¤

Proof of Theorem 1.2. Let G = Cpm1 ⊕ · · · ⊕ Cpmr be a p-group where
p is prime, r ∈ N and 1 ≤ m1 ≤ · · · ≤ mr. Then we have M(G) = D(G). Thus 1.
follows from Lemma 3.1 and Proposition 4.3.

Theorem 3.2 implies that G does not have Property 2 if and only if r ≥ 2, p =
2, mr > mr−1 and

∑r−1
i=1 (2mi − 1) is odd which is equivalent to r even, p = 2 and

1 ≤ m1 ≤ · · · ≤ mr−1 < mr. ¤
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