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1. INTRODUCTION AND MAIN RESULT

Throughout this section, let G be a finite abelian group, which will be
written additively.

Let S = (g1,-..,41) be a sequence of elements of . Then |S| =1
denotes the length of S and

k(S)=>" .

— ovd(g:)

its eross number. We say that S is a zero sequence, if Zi:l g =10
and that S is zero free, if 37, ,9; # 0 forall @ # 1 C {1,...,1}.
Furthermore, S is called a minimal zero sequence, if it i3 a zero sequence
and each proper subsequence is zero frec.

Suppose G=Cp, ®---®Cp,. where Cp,,...,C,, arc cyclic groups
of prime power order and let oxp(G) denote the exponent of G. Inves-
tigations of the following invariants are motivated mainly by arithmetical
problems in Krull domains (cf. [CL]):

W(G) = {k(S)|S is a minimal zero scquence in G},
K(G) = exp(G)maxW (G),
k(G) = max{k(S)| S is a zcro free sequence in G},

T

pe) =y B

and

K*(G) =1+ exp(G)K*(G) .

It is casy to see that

K*(G) <1+ exp(G)k(G) < K(G) (1)
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(¢f. [G-S2; Lemma 1]). For p-groups and somce further series of groups
K*(G) = K(G) holds (sce the references). Up to now there is known no
group with K*(G) < K(G). Apart from the case of prime cyclic proups,
we have almost no information about the structure of zero free sequences
S (resp. wninimal zero sequences) with large cross wnbers Le., with &(S)
close to k(G) . I this paper we tackle the question about the structure in
the very special case that G is a direct swui of two clementary p-groups.
Before we can state onr inain result we need a further definitiow.

Let p(G) denote the smallest integer 1 such that every sequence S
in G with exp(GYk(S) > 1 contaius a non-cinpty zero sequence 8 C .8
with k(S") <1.

For cvery primme p we have p(CL,) =p and /)(C}‘f) =3p—-2.1If p is
the minimal prime dividing |G, then

exp(G)

1+ oxp(G)R(G) < p(6) <
IJ

Gl . (2)

Proofs may be found in [G-S1].

Theorem. Lct G = C) & O with iutegers r,5 € N and primes p,q
with p > wmax{q,p(C;) — (s —1)(¢ — 1)} . Let S he a zero free sequence
in G with

(—2

p—1 -1
k(S)>rl—= 4 1=
Y q 1

Then S=AUDB where A s a sequence in G with [A| =r(p—1) aud
B is a sequence in CF with |B| = s(g—1).
This result describes the structure of S and yields immediately the

following corollary.

Corollary 1. Let G be as above. Then K*(G) = K(G).

Proof. The Theorem iinplics that

p— ~ 1l
2 1+:~;(] .
»

k(G) <7

Hence by (1) it follows that k*(G) = k(G) . Therefore, a simple caleulation
(or Corollary 1 in [G-S2]) gives the assertion. O

Recall that Davenport’s constant D(G) of & is defined as

D(G) = max{|S}|S is a winimal zero sequence in G} .
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If G is as in the Theoren, then the exact value of D(G) is muknown
and there is no information at all about the structure of long minimal zero
sequences. Daveuport’s coustant of G = Cp @ €5 was studied i [Ma).

By definition we have

i

w(G) C {m

2<i< K(G)} ‘ (3)

If G is a p-group for some odd prime p, then equality holds. This
was proved in [C-G]. The uext corollary gives the first example of groups
of odd order, for which the inclusion in (3) is strict.

Corollary 2. Let G be as above. Then

{

W(G)g{ [2<i < K(G)—q+1 01-1,::1{(0)}‘

exp(G)

Proof. Let Sg be a miniimal zero sequence distinet to (0). Suppose that
k(So) > ;%(K(G) —q+2). Obviously, Sp=gU S forsome g€ G with
ord(g) = exp(@) = pg and some zero free sequence S, Therefore

k(S) = k(So) — piq
Ly, ‘ L
> @ =49 -
- piq(fc*(c:) ~(1-2)) - i
1 .
- M(rq(p — 1) +splg—1) = (¢—2))

Then the Theoremn implies that  &(S) = r% + s% whence  k(Sp) =
~K(G). O

2. PROOF OF THE THEOREM

We start with a simple lanma.

Lemma. Let G De a finite abelian gronp, H < G a subgroup and
m: G — G/H the canonical cpimorphisin. Let S be a sequence in G
and S =m(S) its image.
a) Suppose k(S) > k(G/H)+ T;:(a:l“?ﬁ_) . Then there exists a non-cmpty
subsequence Sp €S with deSo g € H.
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b) Supposc k(S) > ;:{—%%EH— + 1 for some 1 € Ng. Theu there ex-

ist disjoint subsequences Sg,...,S; with U:::o S; € 8§ such that
Egesig €H forall 0<i<].

c) Suppose S =S5"U Ui:o S; such that h; =3 . g € H for all
0<i<l. Theu 8* =5 U(hg,...,h) isa sequence in G with
k(S*) > k(S))+ ﬁ% . Moreover, if S is a zevo sequence, a minimal
zero sequence or zero free, theu the same is time for §* .

Proof. a) By [G-S1; Lawnma 1] there exists a nou-cipty subsequence T C
S with sumn zero. Hence T lias a preimage Sp C S with deso g €H.
b) We proceed by induction on 1. Suppose | = 0. Taking (2) into
account the assertion follows from a). To do the induction step one just
Las to use the very definition of p(G/H).
c) Straightforward. O

Proof of the Theorem. Set § = AUBUC where A is a sequence in
Cp with |A] = «, B isascquencein Cp with [Bl=p and C isa
sequence in G\ (Cp U Cy) with |C| =

Since D(Cp) = 1+ r(p—1) (cf. [Al; section 6.1]) and siuce S is
zoro free, we infer that « < 7(p —1). An analogous argument shows that
A <s(qg—1). Suppose y=0.If « <r(p—1)—1, then

r(p—l)—l_l_sq—l 21.",(5’)27'1)_1%-5(1_1—(1_2 ’
/i q p q P

a coutradiction. If # < s(¢g—1)—1, then

p—1 s(g—1)—1 p—1 -1 q-2
L1 s(g —1) Y Anb N bl |
P q P q Pq

which implies that q— 2 > p, contradicting our asswunption on p and q.
Hence, if v =0, then the assertion follows.

Assume to the contrary, that v > 1. We distinguish two cascs.
Case 1. k(B) = s% Let H=Cj,m:G— G/H=Cy fh( canonical
epimorphism, A =7(A) aud C= 7r((”) Then k(AUC) = . Clearly,

: -1 p—1 -2
g+l—k,(5)——.«sq Z'r‘" _4

p g q p g

and thus
aq+y>relp—1)—(g-2).
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Since
qa+y)=cq+y+@-)y>2aq+y+g-12rqlp—-1)+1,

we infer that

- 1 W1
pk(AUC)=a+y>r(p—1)+ p = pk(Cy) +E .

However, because pk(AUC) € Ny and pk(Cy) € Ny it follows that
pk(AUC) > pk(Cy) +1 .

By Lemina a) there exists a subsequence So € AUC with b= 3" gese 9 €
C;. Then T=0UDB 1s a %cro free sequence in Oy with

k(T) = %—I— k(B) > k(Cy) »

a contradiction.
Case 2. k(B) < s% Let H=Cp,m: G — G/H = Cy the canonical

epimorphism, B =n(B) and C = n(C). Obviously, we have k(BUC) =
ﬂ—"']"l . Define

- p—1 p(C;)
l—[[)L.(S)—(x— 3 . . } .

We verify in a moment that 1 is a non-negative integer. Since

i )
Sy =214
Yy a g

it follows that

0l = pk(S) — /1'12 —
q q

and hence
= 3 n—1
k(BUC) = L% =pk(S) —a— ﬂp

S n(Cs)
- q
p(G/H)

=——"—_ 4],
exp(G/H) T

+1
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By Lemnma b) there exist sequences  Sp,...,S with U:::o S; C BUC
such that h; = des,; g € H for 0<4 <. By Leuna ¢) the sequence
S* =AU (ho,...,h;) is gero free and k(S*) > % + ’JIF—)l . However,

e+ n— Cs
o+ +12k(S)—/‘” 1 p(CY)
'y pq rq
o — _ _ p— s
er 1+Sq l_q 2—3‘0 1_/)( q)
p q pq pq bq
et ps(g—1) —(g—2) = (s(¢ = 1) = 1)(p — 1) — p(C7)
P ny
> 21 _ ko)
po T

where the last inequality follows from the Liypothesis p > p(C5) — (s —
(g —1). Since o < r(p—1), this caleulation shows in particular that [
is non-negative. Furthermore, it contradicts the zero freeness of S*. O

Acknowledgement: We thank the referee for his carcful reading,.
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