ON MONOIDS OF PLUS-MINUS WEIGHTED ZERO-SUM SEQUENCES: THE ISOMORPHISM PROBLEM AND THE CHARACTERIZATION PROBLEM

Florin Fabsits, Alfred Geroldinger, Andreas Reinhart and Qinghai Zhong

Let G be an additive abelian group. A sequence $S=g_{1} \cdot \ldots \cdot g_{\ell}$ of terms from G is a plus-minus weighted zero-sum sequence if there are $\varepsilon_{1}, \ldots, \varepsilon_{\ell} \in\{1,-1\}$ such that $\varepsilon_{1} g_{1}+\ldots+\varepsilon_{\ell} g_{\ell}=0$. We first characterize (in terms of G) when the monoid $\mathscr{B}_{ \pm}(G)$ of plus-minus weighted zero-sum sequences is Mori, respectively, Krull, respectively, finitely generated. After that, we study the isomorphism problem and the characterization problem for monoids of plus-minus weighted zero-sum sequences.

1. Introduction

Let G be an additively written abelian group. We consider (finite unordered) sequences (with repetition allowed) of terms from G as elements of the (multiplicatively written) free abelian monoid $\mathscr{F}(G)$ with basis G. Let $\Gamma \subset \operatorname{End}(G)$ be a nonempty subset of the endomorphism group of G. A sequence $S=g_{1} \cdot \ldots \cdot g_{\ell} \in \mathscr{F}(G)$ is called a (Γ-)weighted zero-sum sequence if there are $\gamma_{1}, \ldots, \gamma_{\ell} \in \Gamma$ such that $\gamma_{1}\left(g_{1}\right)+\ldots+\gamma_{\ell}\left(g_{\ell}\right)=0$. Then the set $\mathscr{B}_{\Gamma}(G)$ of all Γ-weighted zero-sum sequences over G is a submonoid of $\mathscr{F}(G)$. A special emphasis has been laid on the case $\Gamma=\left\{\mathrm{id}_{G},-\mathrm{id}_{G}\right\}$. In that case one speaks of plus-minus weighted zero-sum sequences, and the associated monoid is denoted by $\mathscr{B}_{ \pm}(G)$.

For the last decade, combinatorial and number theoretic problems of weighted zero-sum sequences have seen a lot of interest. Many of the classical zero-sum invariants (including the Davenport constant $\mathrm{D}(G)$, the Erdős-Ginzburg-Ziv constant $s(G)$, Gao's constant $\mathrm{E}(G)$ and the Harborth constant $\mathrm{g}(G))$ have found their weighted analogs (for a weighted version of $\mathrm{E}(G)$ see [17, Chapter 16], for connections with coding theory see [26], and for a sample of papers with a strong number theoretic flavor see $[1 ; 16 ; 18 ; 19 ; 20$; $22 ; 24 ; 25 ; 27]$; see also the remark at the end of Section 2).

Algebraic properties of the monoid of weighted zero-sum sequences were first studied by Boukheche et al. [4]. There are transfer homomorphisms from norm monoids in orders of algebraic number fields (and others) to monoids of weighted zero-sum sequences; see [4, Theorem 7.1] and [15, Theorems 3.2 and 3.5]. This implies that arithmetic questions in norm monoids (in particular, their sets of lengths) can be studied in monoids of weighted zero-sum sequences, and it demonstrates the connection of the latter with questions in commutative ring theory.

[^0]In the present paper, we focus on the monoid $\mathscr{B}_{ \pm}(G)$ of plus-minus weighted zero-sum sequences. In Section 3, we characterize when $\mathscr{B}_{ \pm}(G)$ is a Mori monoid (Theorem 3.4), when it is a Krull monoid (Corollary 3.5) and when it is finitely generated, respectively, a C-monoid (Theorem 3.7).

In Section 4, we study the isomorphism problem and the characterization problem. We recall these two problems.

The isomorphism problem (for plus-minus weighted zero-sum sequences). Let G_{1} and G_{2} be abelian groups such that the monoids $\mathscr{B}_{ \pm}\left(G_{1}\right)$ and $\mathscr{B}_{ \pm}\left(G_{2}\right)$ are isomorphic. Are the groups G_{1} and G_{2} isomorphic?

It is well known that the isomorphism problem has an affirmative answer for monoids of (unweighted) zero-sum sequences over abelian groups [9, Corollary 2.5.7]. The isomorphism problem was recently studied for power monoids of numerical monoids $[3 ; 32]$ and for monoids of product-one sequences over nonabelian groups [11]. For the isomorphism problem for group rings, we refer to the survey [28]. In the present paper, we give an affirmative answer to the isomorphism problem for plus-minus weighted zero-sum sequences in the case where one group is a direct sum of cyclic groups (Theorem 4.3).

The characterization problem asks whether or not two monoids (or domains), from a given class of monoids, are already uniquely determined by their systems of sets of lengths. This problem has its origin in algebraic number theory. Indeed, in the 1970s, Narkiewicz asked whether or not the ideal class group of a number field can be characterized by arithmetic properties of the ring of integers. Nowadays, this question got reformulated in terms of monoids of (unweighted) zero-sum sequences over finite abelian groups, where an affirmative answer is expected (for an overview, we refer to the survey [12]).

The characterization problem (for plus-minus weighted zero-sum sequences). Let G_{1} and G_{2} be finite abelian groups with Davenport constant $\mathrm{D}_{ \pm}\left(G_{1}\right) \geq 4$ such that their systems of sets of lengths $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{1}\right)\right)$ and $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right)$ coincide. Are the groups G_{1} and G_{2} isomorphic?

Clearly, a necessary condition for an affirmative answer to the characterization problem (for a class of abelian groups) is an affirmative answer to the isomorphism problem. Any work on the characterization problem (both for unweighted, as well as for weighted zero-sum sequences) requires a lot of ingredients from additive combinatorics. If $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{1}\right)\right)=\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right)$, respectively, $\mathscr{L}\left(\mathscr{B}\left(G_{1}\right)\right)=\mathscr{L}\left(\mathscr{B}\left(G_{2}\right)\right)$, then one easily gets that for the associated Davenport constants we have $\mathrm{D}_{ \pm}\left(G_{1}\right)=\mathrm{D}_{ \pm}\left(G_{2}\right)$, respectively, $\mathrm{D}\left(G_{1}\right)=\mathrm{D}\left(G_{2}\right)$. In spite of being studied for decades, the precise value of the Davenport constant of a finite abelian group G (in terms of the group invariants) is unknown for general groups of $\operatorname{rank} r(G) \geq 3$. In Section 4, we settle the characterization problem for plus-minus weighted zero-sum sequences in the case when G_{1} is a cyclic group of odd order (Theorem 4.6).

2. Prerequisites

We denote by $\mathbb{P} \subset \mathbb{N} \subset \mathbb{N}_{0} \subset \mathbb{Z}$ the sets of prime number, positive integers, nonnegative integers and integers. For $a, b \in \mathbb{Z}$, let $[a, b]=\{x \in \mathbb{Z}: a \leq x \leq b\}$ be the discrete interval between a and b. For subsets $A, B \subset \mathbb{Z}$, we denote by $A+B=\{a+b: a \in A, b \in B\}$ the sumset of A and B, and for $k \in \mathbb{Z}$, we set $k+A=\{k\}+A$. For $k \in \mathbb{N}$, let $\mathbb{N}_{\geq k}=\{a \in \mathbb{N}: a \geq k\}$, and let $k \cdot A=\{k a: a \in A\}$ be the dilation of A by k. If $A=\left\{m_{0}, \ldots, m_{k}\right\} \subset \mathbb{Z}$, with $k \in \mathbb{N}_{0}$ and $m_{0}<\ldots<m_{k}$, then $\Delta(A)=\left\{m_{i}-m_{i-1}: i \in[1, k]\right\}$ is the set of distances of A.

By a monoid, we mean a commutative cancellative semigroup with identity element, and we use multiplicative notation. Let H be a monoid. Then H^{\times}denotes the group of invertible elements and $\mathrm{q}(H)$ denotes the quotient group. Furthermore, let

- $H^{\prime}=\left\{x \in \mathrm{q}(H)\right.$: there is some $n \in \mathbb{N}$ such that $x^{m} \in H$ for each $\left.m \in \mathbb{N}_{\geq n}\right\}$ be the seminormal closure of H,
- $\widetilde{H}=\left\{x \in \mathrm{q}(H)\right.$: there is some $n \in \mathbb{N}$ such that $\left.x^{n} \in H\right\}$ be the root closure of H,
- $\widehat{H}=\left\{x \in \mathrm{q}(H)\right.$: there is some $c \in H$ such that $c x^{n} \in H$ for all $\left.n \in \mathbb{N}\right\}$ be the complete integral closure of H.
Then $H \subset H^{\prime} \subset \widetilde{H} \subset \widehat{H} \subset \mathrm{q}(H)$, and H is said to be seminormal, or root closed, or completely integrally closed, if $H=H^{\prime}$, or $H=\widetilde{H}$, or $H=\widehat{H}$. For a set P, we denote by $\mathscr{F}(P)$ the free abelian monoid with basis P, and we will use multiplicative notation for $\mathscr{F}(P)$. The monoid H is factorial if its associated reduced monoid $H_{\mathrm{red}}=\left\{a H^{\times}: a \in H\right\}$ is free abelian. A monoid homomorphism $\varphi: H \rightarrow D$ is said to be a
- divisor homomorphism if $a, b \in H$ and $\varphi(a) \mid \varphi(b)$ (in D) implies that $a \mid b$ (in H),
- divisor theory (for H) if D is free abelian, φ is a divisor homomorphism and for every $\alpha \in D$ there are $a_{1}, \ldots, a_{m} \in H$ such that $\alpha=\operatorname{gcd}\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{m}\right)\right)$.

If $\varphi: H \rightarrow D$ is a divisor theory, then $\mathscr{C}(H)=\mathrm{q}(D) / \mathrm{q}(\varphi(H)$) is the (divisor) class group of H. If H is a submonoid of D, then it is easily checked that the inclusion $H \hookrightarrow D$ is a divisor homomorphism if and only if $H=\mathrm{q}(H) \cap D$.

Ideal theory of monoids. Our main references are [9;21]. To fix notation, we gather some key concepts needed in the sequel. For subsets $I, J \subset \mathrm{q}(H)$, we set $(I: J)=\{x \in \mathrm{q}(H): x J \subset I\}, I^{-1}=(H: I)$ and $I_{v}=\left(I^{-1}\right)^{-1}$. Then $I \subset H$ is called an s-ideal if $I H=I$, and it is called a divisorial ideal (or a v-ideal) if $I=I_{v}$. We denote by s-spec (H) the set of prime s-ideals of H and by $\mathfrak{X}(H)$ the set of minimal nonempty prime s-ideals of H. The monoid H is said to be a

- Mori monoid if it satisfies the ascending chain condition on divisorial ideals,
- Krull monoid if it is a completely integrally closed Mori monoid (equivalently, if it has a divisor theory).

If H is a Krull monoid, then every v-ideal is v-invertible and the monoid of v-ideals is free abelian (with v-multiplication as operation) with basis $\mathfrak{X}(H)$. If $\mathscr{F}_{v}(H)$ denotes the semigroup of fractional v-ideals, then $\mathscr{C}_{v}(H)=\mathscr{F}_{v}(H)^{\times} /\{a H: a \in \mathrm{q}(H)\}$ is the v-class group of H. If H is a Krull monoid, then $\mathscr{C}_{v}(H)$ is isomorphic to the divisor class group of H.

We need the concept of C-monoids (for details, see [9, Chapter 2]). Let F be a factorial monoid, and let $H \subset F$ be a submonoid. Two elements $y, y^{\prime} \in F$ are called H-equivalent if $y^{-1} H \cap F=\left(y^{\prime}\right)^{-1} H \cap F$, equivalently, if

$$
\text { for all } x \in F \text {, we have } x y \in H \text { if and only if } x y^{\prime} \in H
$$

This defines a congruence relation on F, and for $y \in F$, we denote by $[y]_{H}^{F}=[y]$ its congruence class. Then

$$
\mathscr{C}^{*}(H, F)=\left\{[y]: y \in\left(F \backslash F^{\times}\right) \cup\{1\}\right\} \subset \mathscr{C}(H, F)=\{[y]: y \in F\}
$$

are commutative semigroups with identity element $[1], \mathscr{C}(H, F)$ is the class semigroup and $\mathscr{C}^{*}(H, F)$ is the reduced class semigroup of H in F. A monoid H is said to be a C-monoid (defined in F) if it is a submonoid of F such that $H \cap F^{\times}=H^{\times}$and $\mathscr{C}^{*}(H, F)$ is finite. If H is a C-monoid, then H is Mori, $(H: \widehat{H}) \neq \varnothing$ and $\mathscr{C}(\widehat{H})$ is finite. Every Krull monoid with finite class group is a C-monoid, and in that case, the class semigroup and the class group coincide. A commutative ring is a C -ring if its monoid of regular elements is a C-monoid (for a sample of work on C-monoids and C-rings, see $[5 ; 6 ; 8 ; 23 ; 29 ; 30]$).

Arithmetic theory of monoids. We denote by $\mathscr{A}(H)$ the set of atoms of H, and we say that H is atomic if every noninvertible element of H can be written as a finite product of atoms. If $a=u_{1} \cdot \ldots \cdot u_{k} \in H$, where $k \in \mathbb{N}$ and $u_{1}, \ldots, u_{k} \in \mathscr{A}(H)$, then k is called a factorization length of a, and the set $\mathrm{L}(a) \subset \mathbb{N}$ of all possible factorization lengths of a is called the set of lengths of a. It is convenient to set $\mathrm{L}(a)=\{0\}$ for $a \in H^{\times}$, and then $\mathscr{L}(H)=\{\mathrm{L}(a): a \in H\}$ denotes the system of sets of lengths of H. Thus, H is atomic if and only if all sets of lengths are nonempty. Furthermore, H is said to be

- half-factorial if $|L|=1$ for all $L \in \mathscr{L}(H)$,
- a BF-monoid if all $L \in \mathscr{L}(H)$ are finite and nonempty.

Every Mori monoid is a BF-monoid and every factorial monoid is half-factorial.
Sequences over abelian groups. Let G be an additively written abelian group, and let $G_{0} \subset G$ be a subset. Then $\left[G_{0}\right] \subset G$ denotes the submonoid generated by G_{0} and $\left\langle G_{0}\right\rangle \subset G$ is the subgroup generated by G_{0}. Let $\exp (G) \in \mathbb{N} \cup\{\infty\}$ denote the exponent of G. For $n \in \mathbb{N}$, let C_{n} be an additive cyclic group with n elements, and let $n G=\{n g: g \in G\}$. For a prime $p \in \mathbb{P}$, the group G is called an elementary p-group if $p G=0$ (equivalently, every nonzero element has order p). We denote by $\mathscr{F}(G)$ the multiplicatively written free abelian monoid with basis G. In additive combinatorics, elements of $\mathscr{F}(G)$ are called sequences over G. Let

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}=\prod_{g \in G} g^{v_{g}(S)}
$$

be a sequence over G, where $\ell \in \mathbb{N}_{0}, g_{1}, \ldots, g_{\ell} \in G$ and $\mathrm{v}_{g}(S) \in \mathbb{N}_{0}$ with $\mathrm{v}_{g}(S)=0$ for almost all $g \in G$. Then

- $|S|=\ell \in \mathbb{N}_{0}$ is the length of S,
- $\operatorname{supp}(S)=\left\{g \in G: v_{g}(S)>0\right\} \subset G$ is the support of S,
- $\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S): g \in G\right\}$ is the maximum multiplicity of a term of S,
- $\sigma(S)=g_{1}+\ldots+g_{\ell}=\sum_{g \in G} \vee_{g}(S) g \in G$ is the sum of S,
- $\sigma_{ \pm}(S)=\left\{\varepsilon_{1} g_{1}+\ldots+\varepsilon_{\ell} g_{\ell}: \varepsilon_{1}, \ldots, \varepsilon_{\ell} \in\{-1,1\}\right\}$ is the set of plus-minus weighted sums of S.

The sequence S is called a

- zero-sum sequence if $\sigma(S)=0$,
- plus-minus weighted zero-sum sequence if $0 \in \sigma_{ \pm}(S)$.

Then

$$
\mathscr{B}\left(G_{0}\right)=\left\{S \in \mathscr{F}\left(G_{0}\right): S \text { is a zero-sum sequence }\right\} \subset \mathscr{F}\left(G_{0}\right)
$$

is the monoid of zero-sum sequences over G_{0},

$$
\mathscr{B}_{ \pm}\left(G_{0}\right)=\left\{S \in \mathscr{F}\left(G_{0}\right): S \text { is a plus-minus weighted zero-sum sequence }\right\}
$$

is the monoid of plus-minus weighted zero-sum sequences over G_{0} and we have

$$
\mathscr{B}\left(G_{0}\right) \subset \mathscr{P}_{ \pm}\left(G_{0}\right) \subset \mathscr{F}\left(G_{0}\right) .
$$

Furthermore,

- $\mathrm{D}\left(G_{0}\right)=\sup \left\{|S|: S \in \mathscr{A}\left(\mathscr{B}\left(G_{0}\right)\right)\right\}$ is the Davenport constant of G_{0},
- $\mathrm{D}_{ \pm}\left(G_{0}\right)=\sup \left\{|S|: S \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)\right\}$ is the plus-minus weighted Davenport constant of G_{0}.

It is easy to see that $\mathscr{B}\left(G_{0}\right)$ and $\mathscr{B}_{ \pm}\left(G_{0}\right)$ are BF-monoids, and it is well known that each of $\mathscr{A}(\mathscr{B}(G))$, $\mathscr{A}\left(\mathscr{B}_{ \pm}(G)\right), \mathrm{D}(G)$ and $\mathrm{D}_{ \pm}(G)$ is finite if and only if G is finite.

We end with a remark on notation. For sequences over G_{0}, as well as for plus-minus weighted sequences over G_{0}, the following three properties have been studied (for simplicity, we formulate them only for plus-minus weighted sequences):
(a) What is the smallest integer $N \in \mathbb{N}$ such that every sequence $S \in \mathscr{F}\left(G_{0}\right)$ has a plus-minus weighted zero-sum subsequence?
(b) What is the maximal length of a sequence that has no plus-minus weighted zero-sum subsequence?
(c) What is the maximal length of a minimal plus-minus weighted zero-sum sequence?

All these integers have been called weighted Davenport constants and were denoted as $\mathrm{D}_{ \pm}\left(G_{0}\right)$, or as $d_{ \pm}\left(G_{0}\right)$, or similarly. The constant addressed in (c) fits into the general concept of a Davenport constant of a monoid, embedded in a free abelian monoid, as introduced in [7] and further used in [4]. Since in the present paper, we do not need constants fulfilling properties (a) and (b), we use the shorthand notation $\mathrm{D}_{ \pm}\left(G_{0}\right)$ for the Davenport constant of the monoid $\mathscr{B}_{ \pm}\left(G_{0}\right)$, whence we have

$$
\mathrm{D}_{ \pm}\left(G_{0}\right)=\mathrm{D}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right),
$$

where the latter notation is used in $[4 ; 7]$.

3. Characterizations of ideal theoretic properties

In this section, we study algebraic properties of the monoid $\mathscr{P}_{ \pm}(G)$. We characterize when it is Mori or Krull (equivalently, completely integrally closed, respectively, root closed) or finitely generated (equivalently, a C-monoid); see Theorems 3.4 and 3.7 and Corollary 3.5.

Lemma 3.1. Let G be an abelian group.
(1) If $|G| \leq 2$, then

$$
\mathscr{B}(G)=\mathscr{B}_{ \pm}(G) \cong \mathscr{F}(G) \cong\left(\mathbb{N}_{0}^{|G|},+\right) .
$$

(2) The following statements are equivalent:
(a) $|G| \leq 2$.
(b) $\mathscr{B}_{ \pm}(G)$ is factorial.
(c) $\mathscr{B}_{ \pm}(G)$ is half-factorial.

Proof. (1) Obvious.
(2) Note that (a) \Longrightarrow (b) follows from (1) and (b) \Longrightarrow (c) is obvious.

Consider (c) \Longrightarrow (a). We suppose that $|G| \geq 3$ and show that $\mathscr{B}_{ \pm}(G)$ is not half-factorial. To do so, it is sufficient to find some atom $U=g_{1} \cdot \ldots \cdot g_{\ell} \in \mathscr{B}_{ \pm}(G)$ with $|U| \geq 3$. Then we have $U^{2}=\left(g_{1}^{2}\right) \cdot \ldots \cdot\left(g_{\ell}^{2}\right)$.

If there is an element $g \in G$ with $\operatorname{ord}(g)=n \geq 3$ odd, then $U=g^{n}$ is an atom. If there is an element $g \in G$ with $\operatorname{ord}(g)=\infty$, then $U=g^{2}(2 g)$ is an atom. If there are two distinct elements e_{1} and e_{2} of order two, then $U=e_{1} e_{2}\left(e_{1}+e_{2}\right)$ is an atom. If none of these conditions hold, then G has an element g with $\operatorname{ord}(g)=4$, whence $U=g^{2}(2 g)$ is an atom.
Theorem 3.2. Let G be an abelian group.
(1) $\overline{\mathscr{B}_{ \pm}(G)}=\widehat{\mathscr{B}_{ \pm}(G)}$ is a Krull monoid.
(2) If $|G| \neq 2$, then the inclusion $\widetilde{\mathscr{P}_{ \pm}(G)} \hookrightarrow \mathscr{F}(G)$ is a divisor theory. Its class group is isomorphic to a factor group of G, and every class contains a prime divisor.
Proof. If $|G| \leq 2$, then all statements hold true by Lemma 3.1. Thus, we suppose that $|G| \geq 3$. We set

$$
\mathscr{B}_{ \pm}^{*}(G)=\mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) \cap \mathscr{F}(G) .
$$

Since

$$
\mathscr{B}_{ \pm}(G) \subset \mathscr{B}_{ \pm}^{*}(G) \quad \text { and } \quad \mathscr{B}_{ \pm}^{*}(G) \subset q\left(\mathscr{B}_{ \pm}(G)\right),
$$

it follows that

$$
\mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) \subset \mathrm{q}\left(\mathscr{B}_{ \pm}^{*}(G)\right) \subset \mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) .
$$

This implies that

$$
\mathscr{B}_{ \pm}^{*}(G)=\mathrm{q}\left(\mathscr{B}_{ \pm}^{*}(G)\right) \cap \mathscr{F}(G),
$$

whence $\mathscr{B}_{ \pm}^{*}(G) \hookrightarrow \mathscr{F}(G)$ is a divisor homomorphism and $\mathscr{B}_{ \pm}^{*}(G)$ is a Krull monoid. Thus, $\mathscr{B}_{ \pm}^{*}(G)$ is completely integrally closed, which implies that

$$
\widetilde{\mathscr{B}_{ \pm}(G)} \subset \widehat{\mathscr{B}_{ \pm}(G)} \subset \mathscr{B}_{ \pm}^{*}(G) .
$$

If $S \in \mathrm{q}\left(\mathscr{P}_{ \pm}(G)\right) \cap \mathscr{F}(G)$, then $S^{2} \in \mathscr{B}_{ \pm}(G)$, whence

$$
\mathrm{q}\left(\mathscr{P}_{ \pm}(G)\right) \cap \mathscr{F}(G)=\mathscr{P}_{ \pm}^{*}(G) \subset \widetilde{\mathscr{B}_{ \pm}(G)} .
$$

Thus, it follows that

$$
\widetilde{\mathscr{P}_{ \pm}(G)}=\widehat{\mathscr{P}_{ \pm}(G)}=\mathscr{P}_{ \pm}^{*}(G) .
$$

By [9, Proposition 2.5.6], the inclusion $\mathscr{B}(G) \hookrightarrow \mathscr{F}(G)$ is a divisor theory with class group

$$
\mathrm{q}(\mathscr{F}(G)) / \mathrm{q}(\mathscr{B}(G)) \cong G
$$

and every class contains precisely one prime divisor. Therefore, every $S \in \mathscr{F}(G)$ is a greatest common divisor of elements from $\mathscr{B}(G)$, and hence it is a greatest common divisor of elements from $\overline{\mathscr{B}_{ \pm}(G)}$. Thus, the inclusion $\mathscr{B}_{ \pm}(G) \hookrightarrow \mathscr{F}(G)$ is a divisor theory with class group

$$
\mathrm{q}(\mathscr{F}(G)) / \mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) \cong \mathrm{q}(\mathscr{F}(G)) / \mathrm{q}(\mathscr{B}(G)) / \mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) / \mathrm{q}(\mathscr{B}(G)) \cong G / \mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) / \mathrm{q}(\mathscr{B}(G))
$$

Lemma 3.3. Let G be an abelian group, and let $g \in G$ with $\operatorname{ord}(g)=\infty$. For every $n \in \mathbb{N}$, let $S_{n}=g\left(2^{n+1} g\right)^{2}\left(\left(2^{n+2}-1\right) g\right)$ and $a_{n}=(2 g) \prod_{j=1}^{n}\left(\left(3 \cdot 2^{j}\right) g\right)$.
(1) For every $n \in \mathbb{N}$,

$$
S_{n} \in \mathscr{B}_{ \pm}(G), \quad a_{n} \in \mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right), \quad a_{n} S_{n+1} \notin \mathscr{B}_{ \pm}(G), \quad a_{n} S_{i} \in \mathscr{B}_{ \pm}(G)
$$

for each $i \in[1, n]$.
(2) $\mathscr{P}_{ \pm}(G)$ is not a Mori monoid.

Proof. Let Q be the quotient group of $\mathscr{B}_{ \pm}(G)$.
(1) Let $n \in \mathbb{N}$. Since $1-2^{n+1}-2^{n+1}+\left(2^{n+2}-1\right)=0$, we have that

$$
g+(-1)\left(2^{n+1} g\right)+(-1)\left(2^{n+1} g\right)+\left(2^{n+2}-1\right) g=0
$$

and thus $S_{n} \in \mathscr{P}_{ \pm}(G)$. Next we show that $z g \in Q$ for each $z \in 2 \mathbb{Z}$. Let $z \in 2 \mathbb{Z}$. Then

$$
\left(\frac{1}{2} z g\right)^{2},(z g)\left(\frac{1}{2} z g\right)^{2} \in \mathscr{P}_{ \pm}(G)
$$

and hence

$$
z g=\frac{(z g)\left(\frac{1}{2} z g\right)^{2}}{\left(\frac{1}{2} z g\right)^{2}} \in Q
$$

Consequently, $a_{n} \in Q$.
Now we prove that $a_{n} S_{n+1} \notin \mathscr{B}_{ \pm}(G)$. Assume that $a_{n} S_{n+1} \in \mathscr{B}_{ \pm}(G)$. Then there are some $\varepsilon,\left(\varepsilon_{j}\right)_{j=1}^{n}$ and $\left(\eta_{i}\right)_{i=1}^{4}$ such that $\varepsilon, \varepsilon_{j}, \eta_{i} \in\{-1,1\}$ for each $j \in[1, n]$ and $i \in[1,4]$ and

$$
\varepsilon(2 g)+\sum_{j=1}^{n} \varepsilon_{j}\left(\left(3 \cdot 2^{j}\right) g\right)+\eta_{1} g+\left(\eta_{2}+\eta_{3}\right)\left(2^{n+2} g\right)+\eta_{4}\left(\left(2^{n+3}-1\right) g\right)=0 .
$$

Since $\operatorname{ord}(g)=\infty$, it follows that

$$
2 \varepsilon+\sum_{j=1}^{n} 3 \varepsilon_{j} 2^{j}+\eta_{1}+\left(\eta_{2}+\eta_{3}\right) 2^{n+2}+\eta_{4}\left(2^{n+3}-1\right)=0
$$

Without restriction, we can assume that $\eta_{4}=1$. Suppose that $\eta_{3}=1$. Then

$$
\begin{aligned}
2^{n+2}+2^{n+3}-1 & =\left|2 \varepsilon+\sum_{j=1}^{n} 3 \varepsilon_{j} 2^{j}+\eta_{1}+\eta_{2} 2^{n+2}\right| \\
& \leq 2+3 \sum_{j=1}^{n} 2^{j}+1+2^{n+2} \\
& =2^{n+2}+3 \sum_{j=0}^{n} 2^{j}=2^{n+2}+3\left(2^{n+1}-1\right)=2^{n+2}+3 \cdot 2^{n+1}-3 \\
& <2^{n+2}+2^{n+3}-1
\end{aligned}
$$

a contradiction. Consequently, $\eta_{3}=-1$. It follows by analogy that $\eta_{2}=-1$. Therefore,

$$
2 \varepsilon+\sum_{j=1}^{n} 3 \varepsilon_{j} 2^{j}+\eta_{1}-1=0
$$

and hence
$3 \cdot 2^{n}=\left|2 \varepsilon+\sum_{j=1}^{n-1} 3 \varepsilon_{j} 2^{j}+\eta_{1}-1\right| \leq 2+\sum_{j=1}^{n-1} 3 \cdot 2^{j}+1+1=1+3 \sum_{j=0}^{n-1} 2^{j}=1+3\left(2^{n}-1\right)=3 \cdot 2^{n}-2<3 \cdot 2^{n}$, a contradiction.

Let $i \in[1, n]$. Note that

$$
\begin{aligned}
2(-1)^{i+1}+\sum_{j=1}^{i-1} 3(-1)^{i+1-j} 2^{j} & -\sum_{j=i}^{n-1} 3 \cdot 2^{j}+3 \cdot 2^{n}-1+2^{i+1}-2^{i+1}-\left(2^{i+2}-1\right) \\
& =2(-1)^{i+1}+3(-1)^{i+1} \sum_{j=1}^{i-1}(-2)^{j}-3 \sum_{j=i}^{n-1} 2^{j}+3 \cdot 2^{n}-2^{i+2} \\
& =(-1)^{i+1}\left(2+3\left(\frac{(-2)^{i}-1}{-2-1}-1\right)\right)-3\left(\frac{2^{n}-1}{2-1}-\frac{2^{i}-1}{2-1}\right)+3 \cdot 2^{n}-2^{i+2} \\
& =(-1)^{i+1}\left(2-\left((-2)^{i}+2\right)\right)-3\left(2^{n}-2^{i}\right)+3 \cdot 2^{n}-2^{i+2} \\
& =(-1)^{i+2}(-2)^{i}-2^{i}=(-1)^{2 i+2} 2^{i}-2^{i}=0 .
\end{aligned}
$$

We infer that

$$
\begin{aligned}
(-1)^{i+1}(2 g)+\sum_{j=1}^{i-1}(-1)^{i+1-j} & \left(\left(3 \cdot 2^{j}\right) g\right)+\sum_{j=i}^{n-1}(-1)\left(\left(3 \cdot 2^{j}\right) g\right) \\
& +\left(3 \cdot 2^{n}\right) g+(-1) g+2^{i+1} g+(-1)\left(2^{i+1} g\right)+(-1)\left(\left(2^{i+2}-1\right) g\right)=0 .
\end{aligned}
$$

Therefore, $a_{n} S_{i} \in \mathscr{B}_{ \pm}(G)$.
(2) It follows from (1) that for each $n \in \mathbb{N}$,

$$
\left(\mathscr{B}_{ \pm}(G):\left\{S_{i}: i \in[1, n]\right\}\right) \supsetneq\left(\mathscr{B}_{ \pm}(G):\left\{S_{i}: i \in[1, n+1]\right\}\right),
$$

and hence, $\left(\left\{S_{i}: i \in[1, n]\right\}\right)_{v} \subsetneq\left(\left\{S_{i}: i \in[1, n+1]\right\}\right)_{v}$ for each $n \in \mathbb{N}$. Therefore, $\mathscr{B}_{ \pm}(G)$ is not a Mori monoid.

Let H and D be monoids, and let $\varphi: H \rightarrow D$ be a divisor homomorphism. Note that H is seminormal if and only if for each $x \in \mathrm{q}(H)$ with $x^{2}, x^{3} \in H$, we have that $x \in H$ (e.g., see [13]). Moreover, it follows from [13, Lemma 3.2.2] that $H \times D$ is seminormal if and only if H and D are seminormal. Finally, if D is seminormal, then H is seminormal. (This can be proved along similar lines as [13, Lemma 3.2.4].) We use these facts about seminormality without further mention.
Theorem 3.4. Let G be an abelian group. Then the following statements are equivalent:
(a) $\mathscr{B}_{ \pm}(G)$ is a Mori monoid.
(b) $\left(\mathscr{B}_{ \pm}(G): \widehat{\mathscr{P}_{ \pm}(G)}\right) \neq \varnothing$.
(c) $2 G$ is finite.
(d) $G=G_{1} \oplus G_{2}$, where G_{1} is an elementary 2-group and G_{2} is a finite group.

If these equivalent conditions are satisfied, then $\mathscr{B}_{ \pm}(G)$ is seminormal if and only if $\exp (G) \mid 4$.
Proof. Let Q be the quotient group of $\mathscr{B}_{ \pm}(G)$.
(a) $\Rightarrow(\mathrm{c})$: It follows from Lemma 3.3 that G is a torsion group. Assume that $2 G$ is infinite. Clearly, there is some $e_{0} \in G$ such that $2 e_{0} \neq 0$. Now let $i \in \mathbb{N}_{0}$, and let $\left(e_{j}\right)_{j=1}^{i}$ be elements of G such that $2 e_{k} \notin\left\langle\left\{e_{j}: j \in[0, k-1]\right\}\right\rangle$ for each $k \in[1, i]$. Note that $\left\langle\left\{e_{j}: j \in[0, i]\right\}\right\rangle$ is finite, and hence there is some $e_{i+1} \in G$ such that $2 e_{i+1} \notin\left\langle\left\{e_{j}: j \in[0, i]\right\}\right\rangle$. Consequently, there exists a sequence $\left(e_{i}\right)_{i \in \mathbb{N}_{0}}$ of elements of G such that $2 e_{0} \neq 0$ and for each $i \in \mathbb{N}_{0}, 2 e_{i+1} \notin\left\{\left\{e_{j}: j \in[0, i]\right\}\right\rangle$.

For each $n \in \mathbb{N}$ let

$$
S_{n}=\left(2 e_{0}\right)\left(e_{0}+e_{n}\right)\left(e_{0}-e_{n}\right) \quad \text { and } \quad a_{n}=\frac{\prod_{i=1}^{n} e_{i}^{2}}{2 e_{0}}
$$

It is sufficient to show that for each $n \in \mathbb{N}$, we have $S_{n} \in \mathscr{B}_{ \pm}(G), a_{n} \in Q, a_{n} S_{n+1} \notin \mathscr{B}_{ \pm}(G)$ and for each $i \in[1, n], a_{n} S_{i} \in \mathscr{B}_{ \pm}(G)$. (Then $\left(\left\{S_{i}: i \in[1, n]\right\}\right)_{v} \subsetneq\left(\left\{S_{i}: i \in[1, n+1]\right\}\right)_{v}$ for each $n \in \mathbb{N}$, a contradiction.) Let $n \in \mathbb{N}$. Since $(-1)\left(2 e_{0}\right)+\left(e_{0}+e_{n}\right)+\left(e_{0}-e_{n}\right)=0$, we have that $S_{n} \in \mathscr{B}_{ \pm}(G)$. Clearly, $\left(2 e_{0}\right)^{2}, e_{0}^{2}\left(2 e_{0}\right) \in \mathscr{P}_{ \pm}(G)$, and thus,

$$
\frac{e_{0}^{2}}{2 e_{0}}=\frac{e_{0}^{2}\left(2 e_{0}\right)}{\left(2 e_{0}\right)^{2}} \in Q
$$

Since $e_{j}^{2} \in \mathscr{B}_{ \pm}(G)$ for each $j \in[0, n]$, we infer that

$$
a_{n}=\frac{\prod_{i=1}^{n} e_{i}^{2}}{e_{0}^{2}} \frac{e_{0}^{2}}{2 e_{0}} \in Q
$$

Let $i \in[1, n]$. Then

$$
\sum_{j=1, j \neq i}^{n} e_{j}+\sum_{j=1, j \neq i}^{n}(-1) e_{j}+(-1) e_{i}+(-1) e_{i}+\left(e_{0}+e_{i}\right)+(-1)\left(e_{0}-e_{i}\right)=0
$$

and hence, $a_{n} S_{i} \in \mathscr{B}_{ \pm}(G)$.
Assume that $a_{n} S_{n+1} \in \mathscr{B}_{ \pm}(G)$. Then there are some $\left(\alpha_{j}\right)_{j=1}^{n},\left(\beta_{j}\right)_{j=1}^{n} \in\{-1,1\}^{n}$ and $\gamma, \delta \in\{-1,1\}$ such that

$$
\sum_{j=1}^{n}\left(\alpha_{j}+\beta_{j}\right) e_{j}+\gamma\left(e_{0}+e_{n+1}\right)+\delta\left(e_{0}-e_{n+1}\right)=0
$$

If $\gamma \neq \delta$, then $2 e_{n+1} \in\left\langle\left\{e_{j}: j \in[0, n]\right\}\right\rangle$, a contradiction. Therefore, $\gamma=\delta$ and $\sum_{j=1}^{n}\left(\alpha_{j}+\beta_{j}\right) e_{j}+2 \gamma e_{0}=$ 0 . Assume that $\alpha_{j}+\beta_{j} \neq 0$ for some $j \in[1, n]$. Let $j \in[1, n]$ be maximal with $\alpha_{j}+\beta_{j} \neq 0$. Then $2 e_{j} \in\left\langle\left\{e_{i}: i \in[0, j-1]\right\}\right\rangle$, a contradiction. Consequently, $\alpha_{j}+\beta_{j}=0$ for all $j \in[1, n]$, and thus $2 e_{0}=0$, a contradiction.
(b) \Rightarrow (c): First we show that $2 G \subset \widehat{\mathscr{R}_{ \pm}(G)}$. Let $z \in 2 G$. Then $z=2 g$ for some $g \in G$. Note that $g^{2}, z g^{2} \in \mathscr{B}_{ \pm}(G)$, and hence, $z=z g^{2} / g^{2} \in Q$. Since $z^{2} \in \mathscr{B}_{ \pm}(G)$, we infer that $z \in \widehat{\mathscr{P}_{ \pm}(G)}$. There is some $S \in \mathscr{B}_{ \pm}(G)$ such that $S z \in \mathscr{B}_{ \pm}(G)$ for each $z \in 2 G$. Observe that $2 G \subset \sigma_{ \pm}(S)$, and thus $2 G$ is finite.
(c) \Rightarrow (d): If $N=|2 G|$, then $(2 N) g=0$ for each $g \in G$. Thus G is bounded, whence it is a direct sum of cyclic groups; see [31, Chapter 4]. Therefore, there is a set \mathscr{I}, a family $\left(G_{i}\right)_{i \in \mathscr{\mathscr { I }}}$ of subgroups of G and $\left(n_{i}\right)_{i \in \mathscr{I}} \in\left(\mathbb{N}_{\geq 2}\right)^{\mathscr{I}}$ such that G_{i} is cyclic of order n_{i} for each $i \in \mathscr{I}$ and $G=\bigoplus_{i \in \mathscr{I}} G_{i}$. Let $\mathscr{F}=\left\{i \in \mathscr{I}: n_{i}=2\right\}, \mathscr{K}=\left\{i \in \mathscr{I}: n_{i} \neq 2\right\}, G_{1}=\bigoplus_{i \in \mathscr{\mathscr { F }}} G_{i}$ and $G_{2}=\bigoplus_{i \in \mathscr{K}} G_{i}$. Note that G_{1} and G_{2} are subgroups of $G, G=G_{1} \oplus G_{2}$ and G_{1} is an elementary 2-group. Moreover, since $2 G$ is finite, we have that \mathscr{K} is finite, and thus G_{2} is finite.
$(\mathrm{d}) \Longrightarrow$ (a): Let

$$
\varphi: \mathscr{B}_{ \pm}(G) \rightarrow \mathscr{F}(G) \times \mathscr{B}\left(G_{1}\right) \times \mathscr{B}_{ \pm}\left(G_{2}\right), \quad \prod_{i=1}^{r}\left(x_{i}^{\prime}+x_{i}^{\prime \prime}\right) \mapsto\left(\prod_{i=1}^{r}\left(x_{i}^{\prime}+x_{i}^{\prime \prime}\right), \prod_{i=1}^{r} x_{i}^{\prime}, \prod_{i=1}^{r} x_{i}^{\prime \prime}\right)
$$

for each $r \in \mathbb{N}_{0},\left(x_{i}^{\prime}\right)_{i=1}^{r} \in G_{1}^{r}$ and $\left(x_{i}^{\prime \prime}\right)_{i=1}^{r} \in G_{2}^{r}$.

We prove that φ is a divisor homomorphism. Let $r \in \mathbb{N}_{0},\left(x_{i}^{\prime}\right)_{i=1}^{r} \in G_{1}^{r}$ and $\left(x_{i}^{\prime \prime}\right)_{i=1}^{r} \in G_{2}^{r}$ be such that $\prod_{i=1}^{r}\left(x_{i}^{\prime}+x_{i}^{\prime \prime}\right) \in \mathscr{B}_{ \pm}(G)$. Then there is some $\left(\alpha_{i}\right)_{i=1}^{r} \in\{-1,1\}^{r}$ with $\sum_{i=1}^{r} \alpha_{i}\left(x_{i}^{\prime}+x_{i}^{\prime \prime}\right)=0$, and thus,

$$
\sum_{i=1}^{r} x_{i}^{\prime}=\sum_{i=1}^{r} \alpha_{i} x_{i}^{\prime}=0 \quad \text { and } \quad \sum_{i=1}^{r} \alpha_{i} x_{i}^{\prime \prime}=0
$$

Therefore,

$$
\left(\prod_{i=1}^{r}\left(x_{i}^{\prime}+x_{i}^{\prime \prime}\right), \prod_{i=1}^{r} x_{i}^{\prime}, \prod_{i=1}^{r} x_{i}^{\prime \prime}\right) \in \mathscr{F}(G) \times \mathscr{B}\left(G_{1}\right) \times \mathscr{B}_{ \pm}\left(G_{2}\right)
$$

This implies that φ is well defined, since each element of $\mathscr{B}_{ \pm}(G)$ has a unique representation (up to order) as a formal product of sums of elements of G_{1} and G_{2}. It is straightforward to prove that φ is a monoid homomorphism.

Let $S, T \in \mathscr{B}_{ \pm}(G), A \in \mathscr{F}(G), B \in \mathscr{B}\left(G_{1}\right)$ and $C \in \mathscr{B}_{ \pm}\left(G_{2}\right)$ be such that $\varphi(T)=\varphi(S)(A, B, C)$ (i.e., $\varphi(S)$ divides $\varphi(T)$ in $\left.\mathscr{F}(G) \times \mathscr{B}\left(G_{1}\right) \times \mathscr{B}_{ \pm}\left(G_{2}\right)\right)$. There are some $m, n \in \mathbb{N}_{0},\left(g_{i}^{\prime}\right)_{i=1}^{n} \in G_{1}^{n},\left(g_{i}^{\prime \prime}\right)_{i=1}^{n} \in G_{2}^{n}$, $\left(h_{j}^{\prime}\right)_{j=1}^{m} \in G_{1}^{m}$ and $\left(h_{j}^{\prime \prime}\right)_{j=1}^{m} \in G_{2}^{m}$ such that

$$
S=\prod_{i=1}^{n}\left(g_{i}^{\prime}+g_{i}^{\prime \prime}\right) \quad \text { and } \quad A=\prod_{j=1}^{m}\left(h_{j}^{\prime}+h_{j}^{\prime \prime}\right)
$$

We have that $T=S A$, and hence

$$
\left(T, \prod_{i=1}^{n} g_{i}^{\prime} \prod_{j=1}^{m} h_{j}^{\prime}, \prod_{i=1}^{n} g_{i}^{\prime \prime} \prod_{j=1}^{m} h_{j}^{\prime \prime}\right)=\varphi(T)=\varphi(S)(A, B, C)=\left(S A,\left(\prod_{i=1}^{n} g_{i}^{\prime}\right) B,\left(\prod_{i=1}^{n} g_{i}^{\prime \prime}\right) C\right)
$$

It follows that $\prod_{j=1}^{m} h_{j}^{\prime}=B \in \mathscr{B}\left(G_{1}\right)$ and $\prod_{j=1}^{m} h_{j}^{\prime \prime}=C \in \mathscr{B}_{ \pm}\left(G_{2}\right)$. Therefore,

$$
\sum_{j=1}^{m} h_{j}^{\prime}=0 \quad \text { and } \quad \sum_{j=1}^{m} \beta_{j} h_{j}^{\prime \prime}=0
$$

for some $\left(\beta_{j}\right)_{j=1}^{m} \in\{-1,1\}^{m}$. Note that

$$
\sum_{j=1}^{m} \beta_{j}\left(h_{j}^{\prime}+h_{j}^{\prime \prime}\right)=\sum_{j=1}^{m} \beta_{j} h_{j}^{\prime}+\sum_{j=1}^{m} \beta_{j} h_{j}^{\prime \prime}=\sum_{j=1}^{m} h_{j}^{\prime}=0
$$

and thus $A \in \mathscr{B}_{ \pm}(G)$ and S divides T in $\mathscr{B}_{ \pm}(G)$. This shows that φ is a divisor homomorphism.
Clearly, $\mathscr{F}(G)$ and $\mathscr{B}\left(G_{1}\right)$ are Mori monoids (since they are Krull monoids). It follows from [15, Theorem 5.1] and [9, Theorem 2.9.13] that $\mathscr{B}_{ \pm}\left(G_{2}\right)$ is a Mori monoid. Therefore, $\mathscr{F}(G) \times \mathscr{B}\left(G_{1}\right) \times \mathscr{B}_{ \pm}\left(G_{2}\right)$ is a Mori monoid by [9, Proposition 2.1.11]. We infer by [9, Proposition 2.4.4 (b)] that $\mathscr{B}_{ \pm}(G)$ is a Mori monoid.
$(\mathrm{d}) \Longrightarrow(\mathrm{b})$: Since G_{2} is finite,

$$
\left(\mathscr{B}_{ \pm}\left(G_{2}\right): \widehat{\mathscr{B}_{ \pm}\left(G_{2}\right)}\right) \neq \varnothing
$$

by [15, Theorem 5.1] and [9, Theorem 2.9.11]. There is some $a \in\left(\mathscr{B}_{ \pm}\left(G_{2}\right): \overline{\mathscr{B}_{ \pm}\left(G_{2}\right)}\right)$. It suffices to show that $a \in\left(\mathscr{B}_{ \pm}(G): \widehat{\mathscr{P}_{ \pm}(G)}\right)$. Note that

$$
a \in \mathscr{B}_{ \pm}\left(G_{2}\right) \subset \mathscr{B}_{ \pm}(G) \quad \text { and } \quad a \widehat{\mathscr{R}_{ \pm}\left(G_{2}\right)} \subset \mathscr{B}_{ \pm}\left(G_{2}\right)
$$

Let $x \in \widehat{\mathscr{P}_{ \pm}(G)}$. It remains to show that $a x \in \mathscr{P}_{ \pm}(G)$.

There is some $y \in \mathscr{B}_{ \pm}(G)$ such that $x y \in \mathscr{B}_{ \pm}(G)$. Furthermore, there are some $\ell, m, n \in \mathbb{N}_{0}$, $\left(a_{k}\right)_{k=1}^{\ell} \in G_{2}^{\ell},\left(x_{i}\right)_{i=1}^{n} \in G^{n}$ and $\left(y_{j}\right)_{j=1}^{m} \in G^{m}$ such that $a=\prod_{k=1}^{\ell} a_{k}, x=\prod_{i=1}^{n} x_{i}$ and $y=\prod_{j=1}^{m} y_{j}$. Finally, there are some $\left(x_{i}^{\prime}\right)_{i=1}^{n} \in G_{1}^{n},\left(x_{i}^{\prime \prime}\right)_{i=1}^{n} \in G_{2}^{n},\left(y_{j}^{\prime}\right)_{j=1}^{m} \in G_{1}^{m}$ and $\left(y_{j}^{\prime \prime}\right)_{j=1}^{m} \in G_{2}^{m}$ such that $x_{i}=x_{i}^{\prime}+x_{i}^{\prime \prime}$ for each $i \in[1, n]$ and $y_{j}=y_{j}^{\prime}+y_{j}^{\prime \prime}$ for each $j \in[1, m]$.

Since $y \in \mathscr{B}_{ \pm}(G)$, there is some $\left(\alpha_{j}\right)_{j=1}^{m} \in\{-1,1\}^{m}$ with $\sum_{j=1}^{m} \alpha_{j} y_{j}=0$. Since $G=G_{1} \oplus G_{2}$ and G_{1} is an elementary 2-group, this implies that

$$
\sum_{j=1}^{m} y_{j}^{\prime}=\sum_{j=1}^{m} \alpha_{j} y_{j}^{\prime}=0 \quad \text { and } \quad \sum_{j=1}^{m} \alpha_{j} y_{j}^{\prime \prime}=0
$$

Consequently, $\prod_{j=1}^{m} y_{j}^{\prime \prime} \in \mathscr{B}_{ \pm}\left(G_{2}\right)$.
Since $x y \in \mathscr{P}_{ \pm}(G)$, there are some $\left(\beta_{i}\right)_{i=1}^{n} \in\{-1,1\}^{n}$ and $\left(\gamma_{j}\right)_{j=1}^{m} \in\{-1,1\}^{m}$ with

$$
\sum_{i=1}^{n} \beta_{i} x_{i}+\sum_{j=1}^{m} \gamma_{j} y_{j}=0
$$

Again since $G=G_{1} \oplus G_{2}$ and G_{1} is an elementary 2-group, we have that

$$
\sum_{i=1}^{n} x_{i}^{\prime}=\sum_{i=1}^{n} x_{i}^{\prime}+\sum_{j=1}^{m} y_{j}^{\prime}=\sum_{i=1}^{n} \beta_{i} x_{i}^{\prime}+\sum_{j=1}^{m} \gamma_{j} y_{j}^{\prime}=0 \quad \text { and } \quad \sum_{i=1}^{n} \beta_{i} x_{i}^{\prime \prime}+\sum_{j=1}^{m} \gamma_{j} y_{j}^{\prime \prime}=0
$$

This implies that $\prod_{i=1}^{n} x_{i}^{\prime \prime} \prod_{j=1}^{m} y_{j}^{\prime \prime} \in \mathscr{B}_{ \pm}\left(G_{2}\right)$.
Observe that, by the proof of Theorem 3.2,

$$
\prod_{i=1}^{n} x_{i}^{\prime \prime} \in \widehat{\mathscr{P}_{ \pm}\left(G_{2}\right)}
$$

since $\prod_{i=1}^{n} x_{i}^{\prime \prime} \in \mathscr{F}\left(G_{2}\right), \prod_{j=1}^{m} y_{j}^{\prime \prime} \in \mathscr{B}_{ \pm}\left(G_{2}\right)$ and $\prod_{i=1}^{n} x_{i}^{\prime \prime} \prod_{j=1}^{m} y_{j}^{\prime \prime} \in \mathscr{B}_{ \pm}\left(G_{2}\right)$. It follows that

$$
a \prod_{i=1}^{n} x_{i}^{\prime \prime} \in \mathscr{B}_{ \pm}\left(G_{2}\right)
$$

and hence there are some $\left(\delta_{k}\right)_{k=1}^{\ell} \in\{-1,1\}^{\ell}$ and $\left(\varepsilon_{i}\right)_{i=1}^{n} \in\{-1,1\}^{n}$ with $\sum_{k=1}^{\ell} \delta_{k} a_{k}+\sum_{i=1}^{n} \varepsilon_{i} x_{i}^{\prime \prime}=0$.
Since G_{1} is an elementary 2-group, we infer that

$$
\sum_{k=1}^{\ell} \delta_{k} a_{k}+\sum_{i=1}^{n} \varepsilon_{i} x_{i}=\sum_{k=1}^{\ell} \delta_{k} a_{k}+\sum_{i=1}^{n} \varepsilon_{i} x_{i}^{\prime \prime}+\sum_{i=1}^{n} \varepsilon_{i} x_{i}^{\prime}=\sum_{i=1}^{n} \varepsilon_{i} x_{i}^{\prime}=\sum_{i=1}^{n} x_{i}^{\prime}=0
$$

Therefore, $a x \in \mathscr{B}_{ \pm}(G)$.
Now let the equivalent conditions be satisfied and let $\varphi: \mathscr{B}_{ \pm}(G) \rightarrow \mathscr{F}(G) \times \mathscr{B}_{\mathcal{B}}\left(G_{1}\right) \times \mathscr{B}_{ \pm}\left(G_{2}\right)$ be the divisor homomorphism from above. Furthermore, let $\psi: \mathscr{B}_{ \pm}\left(G_{2}\right) \rightarrow \mathscr{F}\left(G_{2}\right) \times \mathscr{B}_{ \pm}(G)$ be defined by $\psi(S)=(S, S)$ for each $S \in \mathscr{B}_{ \pm}\left(G_{2}\right)$. Then ψ is a divisor homomorphism (e.g., see the proof of Corollary 3.5 below).

First let $\mathscr{B}_{ \pm}(G)$ be seminormal. Since $\mathscr{F}\left(G_{2}\right)$ is seminormal, $\mathscr{F}\left(G_{2}\right) \times \mathscr{B}_{ \pm}(G)$ is seminormal, and hence $\mathscr{B}_{ \pm}\left(G_{2}\right)$ is seminormal (since ψ is a divisor homomorphism). Consequently, we have that $\exp \left(G_{2}\right) \mid 4$ [15, Theorem 5.3.2]. Since $\exp \left(G_{1}\right) \mid 2$, we obtain that $\exp (G)=1 \mathrm{~cm}\left(\exp \left(G_{1}\right), \exp \left(G_{2}\right)\right) \mid 4$.

Now let $\exp (G) \mid 4$. Then $\exp \left(G_{2}\right) \mid 4$ and $\mathscr{B}_{ \pm}\left(G_{2}\right)$ is seminormal [15, Theorem 5.3.2]. Since $\mathscr{F}(G)$ and $\mathscr{B}\left(G_{1}\right)$ are Krull monoids (and thus seminormal), we have that $\mathscr{F}(G) \times \mathscr{B}\left(G_{1}\right) \times \mathscr{B}_{ \pm}\left(G_{2}\right)$ is seminormal. Therefore, $\mathscr{B}_{ \pm}(G)$ is seminormal (since φ is a divisor homomorphism).

A monoid homomorphism $\theta: H \rightarrow B$ is said to be a transfer homomorphism if the following two conditions hold:
(T1) $B=\theta(H) B^{\times}$and $\theta^{-1}\left(B^{\times}\right)=H^{\times}$.
(T2) If $u \in H, b, c \in B$ and $\theta(u)=b c$, then there exist $v, w \in H$ such that $u=v w, \theta(v) \in b B^{\times}$and $\theta(w) \in c B^{\times}$.

A monoid is said to be transfer Krull if it has a transfer homomorphism to a Krull monoid. Thus, every Krull monoid is transfer Krull, because the identity is a transfer homomorphism. For a list of transfer Krull monoids, that are not Krull, we refer to [12, Section 5] and to [2].

Corollary 3.5. Let G be an abelian group. Then the following statements are equivalent:
(a) $\mathscr{B}_{ \pm}(G)$ is a Krull monoid.
(b) $\mathscr{B}_{ \pm}(G)$ is completely integrally closed.
(c) $\mathscr{B}_{ \pm}(G)$ is root closed.
(d) $\mathscr{B}_{ \pm}(G)$ is a transfer Krull monoid.
(e) G is an elementary 2-group.

Proof. (a) \Longrightarrow (b): Every Krull monoid is completely integrally closed.
(b) \Longrightarrow (c): Every completely integrally closed monoid is root closed.
(c) \Longrightarrow (a): If $\mathscr{B}_{ \pm}(G)$ is root closed, then $\mathscr{B}_{ \pm}(G)=\overline{\mathscr{B}_{ \pm}(G)}$ is a Krull monoid by Theorem 3.2 (1).
(a) \Longleftrightarrow (d): Every Krull monoid is transfer Krull and the reverse implication was proved in [4, Proposition 3.8].
(e) \Longrightarrow (a): If G is an elementary 2-group, then $\mathscr{B}_{ \pm}(G)=\mathscr{B}(G)$ is a Krull monoid by [9, Proposition 2.5.6].
(a) \Longrightarrow (e): It follows from Theorem 3.4 that there are some subgroups G_{1} and G_{2} of G such that $G=G_{1} \oplus G_{2}, G_{1}$ is an elementary 2-group and G_{2} is finite. Let $\varphi: \mathscr{B}_{ \pm}\left(G_{2}\right) \rightarrow \mathscr{F}\left(G_{2}\right) \times \mathscr{B}_{ \pm}(G)$ be defined by $\varphi(S)=(S, S)$ for each $S \in \mathscr{B}_{ \pm}\left(G_{2}\right)$. Clearly, φ is a monoid homomorphism. Moreover, since $\mathscr{F}\left(G_{2}\right) \cap \mathscr{B}_{ \pm}(G)=\mathscr{B}_{ \pm}\left(G_{2}\right)$, we obtain that φ is a divisor homomorphism. It follows from [9, Proposition 2.3.7] that $\mathscr{F}\left(G_{2}\right) \times \mathscr{B}_{ \pm}(G)$ is a Krull monoid, and hence $\mathscr{B}_{ \pm}\left(G_{2}\right)$ is a Krull monoid by [9, Proposition 2.4.4(b)]. Therefore, G_{2} is an elementary 2-group by [15, Theorem 4.4], and thus, G is an elementary 2 -group.

Lemma 3.6. Let G be an abelian group and let G_{1} and G_{2} be subgroups of G such that $G=G_{1} \oplus G_{2}$, G_{1} is an elementary 2-group and G_{2} is finite. Then $\mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) / \mathrm{q}(\mathscr{B}(G))$ is finitely generated.

Proof. Let $N=\left|G_{2}\right|$ and let $E=\left\{g^{2}: g \in G_{2}\right\}$. First we show that for each $S \in \mathscr{B}_{ \pm}(G)$, there is some $e \in[E]$ such that $S \in e q(\mathscr{B}(G))$. Let $S \in \mathscr{B}_{ \pm}(G)$. Then there are some $n \in \mathbb{N}_{0},\left(g_{i}^{\prime}\right)_{i=1}^{n} \in G_{1}^{n}$
and $\left(g_{i}^{\prime \prime}\right)_{i=1}^{n} \in G_{2}^{n}$ such that $S=\prod_{i=1}^{n}\left(g_{i}^{\prime}+g_{i}^{\prime \prime}\right)$. Moreover, there is some $\left(\alpha_{i}\right)_{i=1}^{n} \in\{-1,1\}^{n}$ such that $\sum_{i=1}^{n} \alpha_{i}\left(g_{i}^{\prime}+g_{i}^{\prime \prime}\right)=0$. Observe that

$$
\sum_{i=1}^{n} g_{i}^{\prime}=0 \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} g_{i}^{\prime \prime}=0
$$

Set $e=\prod_{i=1, \alpha_{i}=1}^{n}\left(g_{i}^{\prime \prime}\right)^{2}$. Then $e \in[E]$. Since

$$
\sum_{i=1}^{n} N\left(g_{i}^{\prime}+g_{i}^{\prime \prime}\right)=N \sum_{i=1}^{n} g_{i}^{\prime}+\sum_{i=1}^{n} N g_{i}^{\prime \prime}=0
$$

we have that $S^{N} \in \mathscr{B}(G)$. Moreover,

$$
\begin{aligned}
\sum_{i=1}^{n}(N-1)\left(g_{i}^{\prime}+g_{i}^{\prime \prime}\right)+\sum_{i=1, \alpha_{i}=1}^{n} 2 g_{i}^{\prime \prime} & =(N-1) \sum_{i=1}^{n} g_{i}^{\prime}+\sum_{i=1}^{n}(N-1) g_{i}^{\prime \prime}+\sum_{i=1, \alpha_{i}=1}^{n}\left(1+\alpha_{i}\right) g_{i}^{\prime \prime} \\
& =\sum_{i=1}^{n}(N-1) g_{i}^{\prime \prime}+\sum_{i=1}^{n}\left(1+\alpha_{i}\right) g_{i}^{\prime \prime}=\sum_{i=1}^{n} N g_{i}^{\prime \prime}+\sum_{i=1}^{n} \alpha_{i} g_{i}^{\prime \prime}=0 .
\end{aligned}
$$

Consequently, $S^{N-1} e \in \mathscr{B}(G)$. This implies that

$$
S=e \frac{S^{N}}{S^{N-1} e} \in e q(\mathscr{B}(G))
$$

Since E is finite, it is sufficient to show that $\mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) / \mathrm{q}(\mathscr{B}(G))=\langle\{y \mathrm{q}(\mathscr{B}(G)): y \in E\}\rangle$. Clearly, $E \subset \mathscr{B}_{ \pm}(G)$, and thus $\langle\{y \mathrm{q}(\mathscr{B}(G)): y \in E\}\rangle \subset \mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) / \mathrm{q}(\mathscr{B}(G))$.

Now, let $x \in \mathrm{q}\left(\mathscr{P}_{ \pm}(G)\right) / \mathrm{q}(\mathscr{B}(G))$. Then there are some $S, T \in \mathscr{B}_{ \pm}(G)$ such that

$$
x=\frac{S}{T} \mathrm{q}(\mathscr{B}(G)) .
$$

As shown before, there are some $e, f \in[E]$ such that $S \in e q(\mathscr{B}(G))$ and $T \in f \mathrm{q}(\mathscr{B}(G))$. It follows that $S \mathrm{q}(\mathscr{B}(G))=e \mathrm{q}(\mathscr{B}(G)) \in\langle\{y \mathrm{q}(\mathscr{B}(G)): y \in E\}\rangle$ and $T \mathrm{q}(\mathscr{B}(G))=f \mathrm{q}(\mathscr{B}(G)) \in\langle\{y \mathrm{q}(\mathscr{B}(G)): y \in E\}\rangle$. This implies that

$$
x=\frac{S}{T} \mathrm{q}(\mathscr{B}(G))=\frac{S \mathrm{q}(\mathscr{B}(G))}{T \mathrm{q}(\mathscr{B}(G))} \in\langle\{y \mathrm{q}(\mathscr{B}(G)): y \in E\}\rangle .
$$

Theorem 3.7. Let G be an abelian group. Then the following statements are equivalent:
(a) $\mathscr{P}_{ \pm}(G)$ is finitely generated.
(b) $\mathscr{B}_{ \pm}(G)$ is a C-monoid defined in $\mathscr{F}(G)$.
(c) $\mathscr{B}_{ \pm}(G)$ is a C-monoid.
(d) $\mathscr{B}_{ \pm}(G)$ is a Mori monoid and $\mathscr{C}_{v}\left(\widehat{\mathscr{B}_{ \pm}(G)}\right)$ is finitely generated.
(e) G is finite.

Proof. (a) $\Rightarrow(\mathrm{d})$: It is an immediate consequence of [9, Proposition 2.7.11 and Theorems 2.7.13 and 2.7.14] that $\mathscr{B}_{ \pm}(G)$ is a Mori monoid, $\widehat{\mathscr{B}_{ \pm}(G)}$ is a finitely generated Krull monoid and $\mathfrak{X}\left(\widehat{\mathscr{B}_{ \pm}(G)}\right)$ is finite (since $\mathscr{B}_{ \pm}(G)$ and $\widehat{\mathscr{P}_{ \pm}(G)}$ are reduced). We have that

$$
\mathscr{C}_{v}\left(\widehat{\left(\mathscr{B}_{ \pm}(G)\right.}\right)=\left\langle\left\{[P]_{\mathscr{C}_{v}\left(\widehat{\mathscr{F}_{ \pm}(G)}\right)}: P \in \mathfrak{X}\left(\widehat{\mathscr{B}_{ \pm}(G)}\right)\right\}\right\rangle
$$

(since $\widehat{\mathscr{B}_{ \pm}(G)}$ is a Krull monoid), and thus, $\mathscr{C}_{v}\left(\widehat{\mathscr{R}_{ \pm}(G)}\right)$ is finitely generated.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: This is obvious.
(c) $\Rightarrow(\mathrm{d})$: We have that $\mathscr{B}_{ \pm}(G)$ is a Mori monoid by [9, Theorem 2.9.13]. Moreover, $\mathscr{C}_{v}\left(\widehat{\mathscr{P}_{ \pm}(G)}\right)$ is finite by [9, Theorem 2.9.11].
$(\mathrm{d}) \Longrightarrow(\mathrm{e})$: Without restriction, we can assume that $|G| \geq 3$. It follows from Lemmas 3.3 and 3.6 and Theorem 3.4 that G is a torsion group and $\mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right) / \mathrm{q}(\mathscr{B}(G))$ is finitely generated. Since $\widehat{\mathscr{B}_{ \pm}(G)} \hookrightarrow \mathscr{F}(G)$ is a divisor theory by Theorem 3.2 (2), we infer by [9, Theorem 2.4.7] that

$$
\mathscr{C}_{v}\left(\widehat{\mathscr{B}_{ \pm}(G)}\right) \cong \mathrm{q}(\mathscr{F}(G)) / \mathrm{q}\left(\widehat{\mathscr{B}_{ \pm}(G)}\right) .
$$

Therefore,

$$
\mathrm{q}(\mathscr{F}(G)) / \mathrm{q}\left(\mathscr{B}_{ \pm}(G)\right)=\mathrm{q}(\mathscr{F}(G)) / \mathrm{q}\left(\widehat{\mathscr{B}_{ \pm}(G)}\right)
$$

is finitely generated, and hence $\mathrm{q}(\mathscr{F}(G)) / \mathrm{q}(\mathscr{P}(G))$ is finitely generated. Since $G \cong \mathrm{q}(\mathscr{F}(G)) / \mathrm{q}(\mathscr{P}(G))$ by [9, Proposition 2.5.6], we obtain that G is finitely generated. Consequently, G is finite (since G is a torsion group).
(e) \Longrightarrow (a), (b): This follows from [15, Theorem 5.1] and its proof.

4. On the isomorphism problem and the characterization problem

In this section, we first give an affirmative answer to the isomorphism problem for groups which are direct sums of cyclic groups (Theorem 4.3). Then we study the characterization problem (Theorems 4.5 and 4.6).

Proposition 4.1. Let G_{1} and G_{2} be abelian groups such that $\left|G_{1}\right|,\left|G_{2}\right| \neq 2$, and let $\varphi: \mathscr{B}_{ \pm}\left(G_{1}\right) \rightarrow \mathscr{B}_{ \pm}\left(G_{2}\right)$ be a monoid isomorphism.
(1) $\varphi(0)=0$ and $|A|=|\varphi(A)|$ for every $A \in \mathscr{B}_{ \pm}\left(G_{1}\right)$.
(2) For every $g \in G_{1}$, there exists $h \in G_{2}$ with $\operatorname{ord}(h)=\operatorname{ord}(g)$ such that $\varphi\left(g^{2}\right)=h^{2}$.
(3) For every $h \in G_{2}$, there exists $g \in G_{1}$ such that $\varphi\left(g^{2}\right)=h^{2}$.
(4) Let $g \in G_{1}$. For every $k \in \mathbb{Z} \backslash\{0\}$, there exist $h \in G_{2}$ and $\varepsilon \in\{-1,1\}$ such that $\varphi\left((k g)^{2}\right)=(\varepsilon k h)^{2}$.
(5) There is a bijection $\varphi_{0}: G_{1} \rightarrow G_{2}$.

Proof. (1) We first show that $\varphi(0)=0$. Assume to the contrary that there exists $U \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right)$ with $U \neq 0$ such that $\varphi(0)=U$. Then $0 \notin \operatorname{supp}(U)$ and $|U| \geq 2$. Suppose $U=g_{1} \ldots g_{\ell}$. Then there exist nontrivial $T_{1}, \ldots, T_{\ell} \in \mathscr{P}_{ \pm}\left(G_{1}\right)$ such that $\varphi\left(T_{i}\right)=g_{i}^{2}$, whence $\varphi\left(T_{1} \ldots T_{\ell}\right)=U^{2}=\varphi\left(0^{2}\right)$. Thus $0^{2}=T_{1} \ldots T_{\ell}$, whence $\ell=2, T_{1}=T_{2}=0$, and $U=g_{1}^{2}$. Let $g \in G_{2} \backslash\left\{0,-g_{1}\right\}$, and let $V_{1}, V_{2}, V \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{1}\right)\right)$ such that $\varphi\left(V_{1}\right)=g^{2}, \varphi\left(V_{2}\right)=\left(g_{1}+g\right)^{2}, \varphi(V)=g_{1} g\left(g_{1}+g\right)$. Then

$$
\varphi\left(0 V_{1} V_{2}\right)=g_{1}^{2} g^{2}\left(g_{1}+g\right)^{2}=\left(g_{1} g\left(g_{1}+g\right)\right)^{2}=\varphi\left(V^{2}\right)
$$

whence $0 V_{1} V_{2}=V^{2}$ and hence $0 \mid V$. It follows from $V \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{1}\right)\right)$ that $V=0$, a contradiction.
Let $A=0^{k} B$ be such that $k \in \mathbb{N}_{0}$ and $0 \notin \operatorname{supp}(B)$. Then

$$
|B|=\max \mathrm{L}\left(B^{2}\right)=\max \mathrm{L}\left(\varphi\left(B^{2}\right)\right)=\max \mathrm{L}\left((\varphi(B))^{2}\right)=|\varphi(B)|
$$

whence $|A|=k+|B|=k+|\varphi(B)|=|\varphi(A)|$.
(2) Let $g \in G_{1}$. If $g=0$, then the assertion is trivial. Suppose $g \neq 0$. Since $g^{2} \in \mathscr{B}_{ \pm}\left(G_{1}\right)$, we have $\varphi\left(g^{2}\right) \in \mathscr{B}_{ \pm}\left(G_{2}\right)$ and $\left|\varphi\left(g^{2}\right)\right|=2$. Thus there exists $h \in G_{2}$ such that $\varphi\left(g^{2}\right) \in\left\{h^{2}, h(-h)\right\}$. Assume to the contrary that $\varphi\left(g^{2}\right)=h(-h)$ with ord $(h) \geq 3$. Then there exist nontrivial $T_{1}, T_{2} \in \mathscr{B}_{ \pm}\left(G_{1}\right)$ such that $\varphi\left(T_{1}\right)=h^{2}$ and $\varphi\left(T_{2}\right)=(-h)^{2}$, whence $\varphi\left(T_{1} T_{2}\right)=h^{2}(-h)^{2}=\varphi\left(g^{2}\right)^{2}=\varphi\left(g^{4}\right)$. It follows that $T_{1}=T_{2}=g^{2}$ and $h=-h$, a contradiction to the assumption that $\operatorname{ord}(h) \geq 3$.

It remains to show that $\operatorname{ord}(h)=\operatorname{ord}(g)$. We distinguish three cases.
Case 1. Assume $\operatorname{ord}(g)$ is odd.
Then $g^{\operatorname{ord}(g)}$ is an atom and $\varphi\left(g^{\operatorname{ord}(g)}\right)^{2}=\varphi\left(g^{2 \operatorname{ord}(g)}\right)=h^{2 \operatorname{ord}(g)}$, whence

$$
\varphi\left(g^{\operatorname{ord}(g)}\right)=h^{\operatorname{ord}(g)} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right) .
$$

It follows that $\operatorname{ord}(h)=\operatorname{ord}(g)$.
Case 2. Assume $\operatorname{ord}(g)=2 m$ for some $m \in \mathbb{N}$.
Then $(m g) g^{m}$ is an atom and $\varphi\left((m g) g^{m}\right)^{2}=\varphi\left((m g)^{2}\right) \varphi\left(g^{2}\right)^{m}=h_{0}^{2} h^{2 m}$ for some $h_{0} \in G_{2}$, whence $\varphi\left((m g) g^{m}\right)=h_{0} h^{m} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right)$. It follows that $h_{0} \in\{m h,-m h\}$. Suppose ord $\left(h_{0}\right) \geq 3$. Then there exist $g^{\prime} \in G_{1}$ with $g^{\prime} \neq m g$ and $T \in \mathscr{B}_{ \pm}\left(G_{1}\right)$ such that $\varphi\left(\left(g^{\prime}\right)^{2}\right)=\left(-h_{0}\right)^{2}$ and $\varphi(T)=h_{0}\left(-h_{0}\right)$. Then

$$
\varphi\left((m g)^{2}\left(g^{\prime}\right)^{2}\right)=h_{0}^{2}\left(-h_{0}\right)^{2}=\left(h_{0}\left(-h_{0}\right)\right)^{2}=\varphi\left(T^{2}\right)
$$

whence $T=(m g) g^{\prime} \in \mathscr{B}_{ \pm}\left(G_{1}\right)$. Note that $2 m g=0$. We have $g^{\prime}=m g$, a contradiction. Suppose $\operatorname{ord}\left(h_{0}\right)=2$. Then $h_{0}=m h$ and $\operatorname{ord}(h) \mid 2 m=\operatorname{ord}(g)$. If $\operatorname{ord}(h)<2 m$, then $\operatorname{ord}(h) \leq m$, and hence $(m h) h^{m}=(m h) h^{m-\operatorname{ord}(h)} \cdot h^{\operatorname{ord}(h)}$ is not an atom, a contradiction. Thus, $\operatorname{ord}(h)=2 m=\operatorname{ord}(g)$.
Case 3. Assume $\operatorname{ord}(g)=\infty$.
Then for every $k \in \mathbb{N}$, we have $(k g) g^{k} \in \mathscr{A}\left(\mathscr{P}_{ \pm}(G)\right)$. Assume to the contrary that $\operatorname{ord}(h)=n$ is finite. Then $\varphi\left((n g) g^{n}\right)^{2}=\varphi\left((n g)^{2} g^{2 n}\right)=h_{0}^{2}\left(h^{n}\right)^{2}$ for some $h_{0} \in G_{2}$, whence $\varphi\left((n g) g^{n}\right)=h_{0} h^{n} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right)$, and hence $h_{0} \in\{n h,-n h\}=\{0\}$, a contradiction.
(3) Note that $\varphi^{-1}: \mathscr{B}_{ \pm}\left(G_{2}\right) \rightarrow \mathscr{B}_{ \pm}\left(G_{1}\right)$ is a monoid isomorphism. Let $h \in G_{2}$. Then (2) implies that there exists $g \in G_{1}$ such that $\varphi^{-1}\left(h^{2}\right)=g^{2}$, and hence $\varphi\left(g^{2}\right)=h^{2}$.
(4) Let $g \in G_{1}$. Then (2) implies that there exists $h \in G_{2}$ with $\operatorname{ord}(h)=\operatorname{ord}(g)$ such that $\varphi\left(g^{2}\right)=h^{2}$. Let $k \in \mathbb{Z} \backslash\{0\}$. We set $k^{\prime}=|k|$ if $\operatorname{ord}(g)$ is infinite and set $k^{\prime}=\min \left\{k_{1}, \operatorname{ord}(g)-k_{1}\right\}$, where $k_{1} \in[0, \operatorname{ord}(g)-1]$ with $k_{1} \equiv k \bmod \operatorname{ord}(g)$, if $\operatorname{ord}(g)$ is finite. Then $(k g) g^{k^{\prime}} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{1}\right)\right)$. Let $h_{0} \in G_{2}$ be such that $\varphi\left((k g)^{2}\right)=h_{0}^{2}$. Then

$$
\varphi\left((k g) g^{k^{\prime}}\right)^{2}=\varphi\left((k g)^{2} g^{2 k^{\prime}}\right)=h_{0}^{2} h^{2 k^{\prime}}=\left(h_{0} h^{k^{\prime}}\right)^{2}
$$

whence $\varphi\left((k g) g^{k^{\prime}}\right)=h_{0} h^{k^{\prime}}$ is an atom. It follows that $h_{0} \in\left\{k^{\prime} h,-k^{\prime} h\right\}=\{k h,-k h\}$, whence there exists $\varepsilon \in\{-1,1\}$ such that $h_{0}=\varepsilon k h$ and $\varphi\left((k g)^{2}\right)=(\varepsilon k h)^{2}$.
(5) An isomorphism $\mathscr{P}_{ \pm}\left(G_{1}\right) \rightarrow \mathscr{B}_{ \pm}\left(G_{2}\right)$ lifts to an isomorphism $\overline{\mathscr{P}_{ \pm}\left(G_{1}\right)} \rightarrow \overline{\mathscr{B}_{ \pm}\left(G_{2}\right)}$. Since the inclusions

$$
\overline{\mathscr{B}_{ \pm}\left(G_{1}\right)} \hookrightarrow \mathscr{F}\left(G_{1}\right) \quad \text { and } \quad \overline{\mathscr{B}_{ \pm}\left(G_{2}\right)} \hookrightarrow \mathscr{F}\left(G_{2}\right)
$$

are divisor theories by Theorem 3.2, the uniqueness theorem for divisor theories [9, Theorem 2.4.7] shows that there is an isomorphism $\psi: \mathscr{F}\left(G_{1}\right) \rightarrow \mathscr{F}\left(G_{2}\right)$. Each isomorphism between two free abelian monoids stems from a bijection between the basis sets, whence the claim follows.

In the next remark, we provide a simple example showing that such a bijection $\varphi_{0}: G_{1} \rightarrow G_{2}$, as given above, need not be a homomorphism.

Remark 4.2. Let G be an abelian group, and let $g \in G$ with $\operatorname{ord}(g) \geq 5$. Then the map $\varphi: G \rightarrow G$, defined by $\varphi(g)=-g, \varphi(-g)=g$, and $\varphi(h)=h$ for all $h \in G \backslash\{g,-g\}$, is a bijection. Since $\varphi(2 g)=2 g \neq-2 g=\varphi(g)+\varphi(g)$, we observe that φ is not a homomorphism. The bijection φ induces a monoid isomorphism $\psi: \mathscr{F}(G) \rightarrow \mathscr{F}(G)$, and it is easy to see that the restriction $\left.\psi\right|_{\mathscr{B}_{ \pm}(G)}$ is also a monoid isomorphism. Thus, we have an isomorphism between monoids of plus-minus weighted zero-sum sequences, which does not stem from a group homomorphism.

Theorem 4.3. Let G_{1} and G_{2} be abelian groups, and suppose that G_{1} is a direct sum of cyclic groups. Then the groups G_{1} and G_{2} are isomorphic if and only if their monoids of plus-minus weighted zero-sum sequences $\mathscr{B}_{ \pm}\left(G_{1}\right)$ and $\mathscr{B}_{ \pm}\left(G_{2}\right)$ are isomorphic.

Proof. If G_{1} and G_{2} are isomorphic, then the associated monoids $\mathscr{B}_{ \pm}\left(G_{1}\right)$ and $\mathscr{B}_{ \pm}\left(G_{2}\right)$ are isomorphic. Conversely, suppose we have a monoid isomorphism $\varphi: \mathscr{B}_{ \pm}\left(G_{1}\right) \rightarrow \mathscr{B}_{ \pm}\left(G_{2}\right)$. If one of the monoids is factorial, then both are factorial and Lemma 3.1 shows that G_{1} and G_{2} are isomorphic.

Suppose that none of the monoids is factorial. Then Lemma 3.1 implies that $\left|G_{1}\right| \geq 3$ and $\left|G_{2}\right| \geq 3$. Suppose that $G_{1}=\bigoplus_{j \in J}\left\langle\left\{e_{j}\right\}\right\rangle$. By Proposition 4.1 (2), there exist $f_{j} \in G_{2}$ with $\operatorname{ord}\left(f_{j}\right)=\operatorname{ord}\left(e_{j}\right)$ and $\varphi\left(e_{j}^{2}\right)=f_{j}^{2}$ for all $j \in J$. We define a group homomorphism $\psi: G_{1} \rightarrow G_{2}$ by setting

$$
\psi\left(\sum_{i \in I} k_{i} e_{i}\right)=\sum_{i \in I} k_{i} f_{i}
$$

for all finite subsets $I \subset J$ and all $k_{i} \in \mathbb{Z}$, with $i \in I$.
We first show that ψ is surjective. Let $h \in G_{2}$. We need to show that $h \in \psi\left(G_{1}\right)$. By Proposition 4.1 (3), there exists $g \in G_{1}$ such that $\varphi\left(g^{2}\right)=h^{2}$ and $g=\sum_{j \in J_{0}} t_{j} e_{j}$ for some finite subset $J_{0} \subset J$ and $t_{j} \in \mathbb{Z} \backslash\{0\}$ for all $j \in J_{0}$, whence

$$
g \prod_{j \in J_{0}} e_{j}^{\left|t_{j}\right|} \in \mathscr{P}_{ \pm}\left(G_{1}\right) \quad \text { and } \quad \varphi\left(g^{2} \prod_{j \in J_{0}} e_{j}^{2\left|t_{j}\right|}\right)=h^{2} \prod_{j \in J_{0}} f_{j}^{2\left|t_{j}\right|} .
$$

It follows that $\varphi\left(g \prod_{j \in J_{0}} e_{j}^{\left|t_{j}\right|}\right)=h \prod_{j \in J_{0}} f_{j}^{\left|t_{j}\right|} \in \mathscr{B}_{ \pm}\left(G_{2}\right)$, whence $h \in\left\langle\left\{f_{j}: j \in J_{0}\right\}\right\rangle \subset \psi\left(G_{1}\right)$.
It remains to show that ψ is a monomorphism. Assume to the contrary that ψ is not a monomorphism. Then there exist finite $\varnothing \neq I \subset J$ and $k_{i} \in \mathbb{Z} \backslash\{0\}$ for $i \in I$ such that $\sum_{i \in I} k_{i} f_{i}=0$. By Proposition 4.1 (4), there exist $\varepsilon_{i} \in\{-1,1\}$ for all $i \in I$ such that $\varphi\left(\left(\varepsilon_{i} k_{i} e_{i}\right)^{2}\right)=\left(k_{i} f_{i}\right)^{2}$ for all $i \in I$, whence $\varphi\left(\prod_{i \in I}\left(\varepsilon_{i} k_{i} e_{i}\right)^{2}\right)=\left(\prod_{i \in I} k_{i} f_{i}\right)^{2}$. Let $T \in \mathscr{B}_{ \pm}\left(G_{1}\right)$ be such that $\varphi(T)=\prod_{i \in I} k_{i} f_{i}$, whence

$$
\varphi\left(T^{2}\right)=\varphi\left(\prod_{i \in I}\left(\varepsilon_{i} k_{i} e_{i}\right)^{2}\right),
$$

and hence $T=\prod_{i \in I}\left(\varepsilon_{i} k_{i} e_{i}\right) \in \mathscr{B}_{ \pm}\left(G_{1}\right)$, a contradiction to the independence of $\left(e_{i}\right)_{i \in I}$.
Our next goal is to settle the characterization problem for cyclic groups of odd order (Theorem 4.6; a weaker result in this direction is given in [15, Theorem 6.10]). In order to do so, we need some more invariants controlling the structure of sets of lengths.

Let H be a BF-monoid. Then

$$
\Delta(H)=\bigcup_{L \in \mathscr{L}(H)} \Delta(L) \subset \mathbb{N}
$$

denotes the set of distances of H. By definition, we have that H is half-factorial if and only if $\Delta(H)=\varnothing$. If H is not half-factorial, then $\min \Delta(H)=\operatorname{gcd} \Delta(H)$. Let $\omega(H)$ be the smallest $N \in \mathbb{N}_{0} \cup\{\infty\}$ with the following property:
For all $u \in \mathscr{A}(H)$, all $n \in \mathbb{N}$ and all $a_{1}, \ldots, a_{n} \in H$ with $u \mid a_{1} \cdot \ldots \cdot a_{n}$, there is $\Omega \subset[1, n]$ such that $|\Omega| \leq N$ and $u \mid \prod_{v \in \Omega} a_{v}$.

If H is not half-factorial, then, by [10, Proposition 3.6.3], we have

$$
\begin{equation*}
2+\sup \Delta(H) \leq \omega(H) \tag{4-1}
\end{equation*}
$$

A subset $L \subset \mathbb{Z}$ is said to be an almost arithmetic progression (AAP) with difference $d \in \mathbb{N}$, length ℓ, and bound M if

$$
L=y+\left(L^{\prime} \cup L^{*} \cup L^{\prime \prime}\right) \subset y+d \mathbb{Z}
$$

where L^{*} is an arithmetic progression with difference d, length ℓ, and $\min L^{*}=0, L^{\prime} \subset[-M,-1]$, and $L^{\prime \prime} \subset \max L^{*}+[1, M]$. We define $\Delta_{1}(H)$ to be the set of all $d \in \mathbb{N}$ having the following property:
For every $k \in \mathbb{N}$, there is $L_{k} \in \mathscr{L}(H)$ that is an AAP with difference d and length at least k.
For $k \in \mathbb{N}$, we denote by

- $U_{k}(H)=\bigcup_{k \in L, L \in \mathscr{L}(H)} L \subset \mathbb{N}$ the union of sets of lengths (containing k),
- $\rho_{k}(H)=\sup U_{k}(H)$ the k-th elasticity of H.

The unions $\mathscr{U}_{k}\left(\mathscr{B}_{ \pm}(G)\right)$ are finite intervals by [4, Theorem 5.2] and for the elasticity $\rho(H)$, we have

$$
\rho(H)=\sup \left\{\frac{\max L}{\min L}:\{0\} \neq L \in \mathscr{L}(H)\right\}=\lim _{k \rightarrow \infty} \frac{\rho_{k}(H)}{k} .
$$

Lemma 4.4. Let G_{1} and G_{2} be finite abelian groups such that $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{1}\right)\right)=\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right)$.
(1) $\max \Delta_{1}\left(\mathscr{F}_{ \pm}\left(G_{1}\right)\right)=\max \Delta_{1}\left(\mathscr{F}_{ \pm}\left(G_{2}\right)\right)$.
(2) $\rho_{k}\left(\mathscr{B}_{ \pm}\left(G_{1}\right)\right)=\rho_{k}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right)$ for every $k \in \mathbb{N}$, and $\mathrm{D}_{ \pm}\left(G_{1}\right)=\mathrm{D}_{ \pm}\left(G_{2}\right)$.

Proof. The claims on $\Delta_{1}(\cdot)$ and on $\rho_{k}(\cdot)$ follow immediately from $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{1}\right)\right)=\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{2}\right)\right)$. Since $\rho_{2}\left(\mathscr{B}_{ \pm}\left(G_{i}\right)\right)=\mathrm{D}_{ \pm}\left(G_{i}\right)$ for $i \in[1,2]$ [4, Theorem 5.7], we infer that $\mathrm{D}_{ \pm}\left(G_{1}\right)=\mathrm{D}_{ \pm}\left(G_{2}\right)$.

Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $1<n_{1}|\ldots| n_{r}$. We set

$$
\mathrm{D}^{*}(G)=1+\sum_{i=1}^{r}\left(n_{i}-1\right) .
$$

Then $\mathrm{D}^{*}(G) \leq \mathrm{D}(G)$ and equality holds if $r \leq 2$ or if G is a p-group; see [9, Chapter 5]. If $|G|$ has odd order, then $\mathrm{D}_{ \pm}(G)=\mathrm{D}(G)$ by [4, Corollary 6.2]. Set $n_{0}=1$. If n is even, then $\mathrm{D}_{ \pm}\left(C_{n}\right)=1+n / 2$ and if $t \in[0, r]$ is maximal such that $2 \nmid n_{t}$, then

$$
\mathrm{D}_{ \pm}(G) \geq 1+\sum_{i=1}^{t}\left(n_{i}-1\right)+\sum_{i=t+1}^{r} \frac{1}{2} n_{i}
$$

see [4, Theorem 6.7 and Corollary 6.8]. This shows that G has Davenport constant $\mathrm{D}_{ \pm}(G)=3$ if and only if G is isomorphic to one of the groups

$$
C_{3}, \quad C_{4}, \quad C_{2} \oplus C_{2}
$$

Furthermore, we have $\mathrm{D}_{ \pm}(G)=4$ if and only if G is either isomorphic to C_{2}^{3} or to $C_{2} \oplus C_{4}$. Indeed, the above mentioned results on the Davenport constant show that no other finite abelian groups G can have $\mathrm{D}_{ \pm}(G)=4$, and in the following theorem we outline that $\mathrm{D}_{ \pm}\left(C_{2} \oplus C_{4}\right)=4$.

Theorem 4.5. (1) $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{1}\right)\right)=\mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{2}\right)\right)=\left\{\{k\}: k \in \mathbb{N}_{0}\right\}$.
(2) $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{3}\right)\right)=\mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{4}\right)\right)=\mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{2} \oplus C_{2}\right)\right)=\left\{y+2 k+[0, k]: y, k \in \mathbb{N}_{0}\right\}$.
(3) $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{2}^{3}\right)\right)=\left\{y+(k+1)+[0, k]: y \in \mathbb{N}_{0}, k \in[0,2]\right\} \cup\left\{y+k+[0, k]: y \in \mathbb{N}_{0}, k \geq 3\right\}$

$$
\cup\left\{y+2 k+2 \cdot[0, k]: y, k \in \mathbb{N}_{0}\right\} .
$$

$$
\begin{align*}
\mathrm{D}_{ \pm}\left(C_{2} \oplus C_{4}\right) & =4, \Delta\left(\mathscr{P}_{ \pm}\left(C_{2} \oplus C_{4}\right)\right)=[1,2] \text { and } \tag{4}\\
\mathscr{L}\left(\mathscr{P}_{ \pm}\left(C_{2} \oplus C_{4}\right)\right) & =\left\{y+k+[0, k]: y \in \mathbb{N}_{0}, k \geq 2\right\} \cup\left\{y+2 k+2 \cdot[0, k]: y, k \in \mathbb{N}_{0}\right\} .
\end{align*}
$$

In particular, we have $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{2}^{3}\right)\right) \subsetneq \mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{2} \oplus C_{4}\right)\right)$.
Proof. (1) This follows from Lemma 3.1.
(2) If $g \in C_{3}$ with $\operatorname{ord}(g)=3$, then

$$
\mathscr{A}\left(\mathscr{P}_{ \pm}\left(C_{3}\right)\right)=\left\{0, g^{2},(-g)^{2},(-g) g, g^{3}, g^{2}(-g), g(-g)^{2},(-g)^{3}\right\} .
$$

If $g \in C_{4}$ with $\operatorname{ord}(g)=4$, then

$$
\mathscr{A}\left(\mathscr{B}_{ \pm}\left(C_{4}\right)\right)=\left\{0, g^{2},(-g)^{2},(-g) g,(2 g)^{2},(2 g) g^{2},(2 g)(-g)^{2},(2 g)(-g) g\right\} .
$$

If $e_{1}, e_{2} \in C_{2} \oplus C_{2}$ are distinct and nonzero, then

$$
\mathscr{A}\left(\mathscr{B}_{ \pm}\left(C_{2} \oplus C_{2}\right)\right)=\left\{0, e_{1}^{2}, e_{2}^{2},\left(e_{1}+e_{2}\right)^{2}, e_{1} e_{2}\left(e_{1}+e_{2}\right)\right\} .
$$

This shows that, in each of the three groups, the sequence $S=0$ is the only prime element and the product of any two atoms of length three has a factorization as a product of three atoms of length two. Thus, the assertion follows (details in the case of $C_{2} \oplus C_{2}$ are given in [9, Theorem 7.3.2]).
(3) Since $\mathscr{B}\left(C_{2}^{3}\right)=\mathscr{B}_{ \pm}\left(C_{2}^{3}\right)$, the assertion follows from [9, Theorem 7.3.2].
(4) We set $G=C_{2} \oplus C_{4}$ and choose a basis (e_{1}, e_{2}) of G with $\operatorname{ord}\left(e_{1}\right)=2$ and $\operatorname{ord}\left(e_{2}\right)=4$. Then $G=\left\{0, e_{1}, 2 e_{2}, e_{1}+2 e_{2}, \pm e_{2}, \pm\left(e_{1}+e_{2}\right)\right\}$. We proceed in five steps.
A1. $\mathrm{D}_{ \pm}(G)=4$ and $\rho\left(\mathscr{B}_{ \pm}(G)\right)=2$.
Proof of A1. Since $5=\mathrm{D}(G) \geq \mathrm{D}_{ \pm}(G) \geq 4$, in order to show $\mathrm{D}_{ \pm}(G)=4$, it suffices to prove that for every $A \in \mathscr{A}(\mathscr{P}(G))$ with $|A|=5$, we have $A \notin \mathscr{A}\left(\mathscr{B}_{ \pm}(G)\right)$. Let $U \in \mathscr{A}(\mathscr{B}(G))$ with $|U|=5$. The elements of $\mathscr{A}\left(\mathscr{B}\left(C_{2} \oplus C_{4}\right)\right)$ are written down explicitly in [14, Lemma 4.6]. Here, we go briefly through the possible cases. By symmetry and after renumbering if necessary, we may assume that $\mathrm{v}_{e_{2}}(U)=\mathrm{h}(U)$. Note that U has four terms of order 4 and one term of order 2. Moreover,

$$
\left\{e_{1}+e_{2}, e_{1}-e_{2}\right\} \not \subset\{g \in \operatorname{supp}(U): \operatorname{ord}(g)=4\} \subset\left\{e_{2}, e_{1}+e_{2}, e_{1}-e_{2}\right\}
$$

We have $\mathrm{h}(U)=3$, and hence $U=e_{2}^{3}\left(e_{1}+e_{2}\right) e_{1}$ or $U=e_{2}^{3}\left(e_{1}-e_{2}\right)\left(e_{1}+2 e_{2}\right)$, which is not in $\mathscr{A}\left(\mathscr{B}_{ \pm}(G)\right)$. Therefore, $\mathrm{D}_{ \pm}(G)=4$ and $\rho\left(\mathscr{B}_{ \pm}(G)\right)=2$ [4, Theorem 5.7].

A2. On $\mathscr{A}\left(\mathscr{B}_{ \pm}(G)\right)$ and some relations.
We set $G_{0}=\left\{0, e_{1}, 2 e_{2}, e_{1}+2 e_{2}, e_{2}, e_{1}+e_{2}\right\}$ and observe that

$$
\mathscr{L}\left(\mathscr{B}_{ \pm}(G)\right)=\mathscr{L}\left(\mathscr{R}_{ \pm}\left(G_{0}\right)\right) \quad \text { and } \quad \mathrm{D}_{ \pm}(G)=\mathrm{D}_{ \pm}\left(G_{0}\right) .
$$

A simple calculation shows that

$$
\begin{aligned}
& \left\{A \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right):|A|=4\right\} \\
& \quad=\left\{e_{2}^{2} e_{1}\left(e_{1}+2 e_{2}\right),\left(e_{1}+e_{2}\right)^{2} e_{1}\left(e_{1}+2 e_{2}\right), e_{2}\left(e_{1}+e_{2}\right) e_{1}\left(2 e_{2}\right), e_{2}\left(e_{1}+e_{2}\right)\left(2 e_{2}\right)\left(e_{1}+2 e_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{A \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right):|A|=3\right\} \\
& \quad=\left\{e_{1}\left(2 e_{2}\right)\left(e_{1}+2 e_{2}\right), e_{2}^{2}\left(2 e_{2}\right),\left(e_{1}+e_{2}\right)^{2}\left(2 e_{2}\right), e_{2}\left(e_{1}+e_{2}\right)\left(e_{1}+2 e_{2}\right), e_{2}\left(e_{1}+e_{2}\right) e_{1}\right\}
\end{aligned}
$$

Note that
(i) For every atom $A \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$ of length 4 , we have $\mathrm{L}_{\mathscr{B}_{ \pm}}\left(G_{0}\right)\left(A^{2}\right)=\{2,4\}$ if and only if

$$
A \in\left\{e_{2}^{2} e_{1}\left(e_{1}+2 e_{2}\right),\left(e_{1}+e_{2}\right)^{2} e_{1}\left(e_{1}+2 e_{2}\right)\right\} ;
$$

(ii) For every atom $A \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$ of length 4 , we have $\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(A^{2}\right)=[2,4]$ if and only if

$$
A \in\left\{e_{2}\left(e_{1}+e_{2}\right) e_{1}\left(2 e_{2}\right), e_{2}\left(e_{1}+e_{2}\right)\left(2 e_{2}\right)\left(e_{1}+2 e_{2}\right)\right\}
$$

(iii) For any two distinct atoms $A_{1}, A_{2} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$ of length 4 , we have $e_{1} e_{2}\left(e_{1}+e_{2}\right)$ divides $A_{1} A_{2}$ in $\mathscr{B}_{ \pm}\left(G_{0}\right)$, which implies that $3 \in \mathrm{~L}_{\mathscr{B}_{ \pm}}\left(G_{0}\right)\left(A_{1} A_{2}\right)$;
(iv) For any two atoms $A_{1}, A_{2} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$ of length 3 , we have either $3 \in \mathrm{~L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(A_{1} A_{2}\right)$ or $A_{1} A_{2}=U_{1} U_{2}$ for some atoms $U_{1}, U_{2} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$ with $\left|U_{1}\right|=2$ and $\left|U_{2}\right|=4$;
(v) We have $\Delta\left(\mathscr{P}_{ \pm}\left(\left\{e_{1}, e_{2}, e_{1}+2 e_{2}\right\}\right)\right)=\{2\}$;
(vi) We have $\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(U_{1}^{2}\right)=\{2,4\}, \mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(U_{2}^{2}\right)=[2,4]$, and $\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(U_{1} U_{2} U_{3}\right)=[3,6]$, where $U_{1}=e_{2}^{2} e_{1}\left(e_{1}+2 e_{2}\right), U_{2}=e_{2}\left(e_{1}+e_{2}\right) e_{1}\left(2 e_{2}\right)$, and $U_{3}=e_{2}\left(e_{1}+e_{2}\right)\left(2 e_{2}\right)\left(e_{1}+2 e_{2}\right)$;
(vii) For all atoms $A \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right) \backslash \mathscr{A}\left(\mathscr{B}_{ \pm}\left(\left\{e_{1}, 2 e_{2}, e_{1}+2 e_{2}\right\}\right)\right)$, we have $\sigma_{ \pm}(A)=\left\{0,2 e_{2}\right\}$.

A3. $\Delta\left(\mathscr{B}_{ \pm}(G)\right)=[1,2]$.
Proof of A3. Relation (vi) shows that $[1,2] \subset \Delta\left(\mathscr{B}_{ \pm}(G)\right)$. Thus, by Inequality (4-1), it suffices to verify that $\omega\left(\mathscr{B}_{ \pm}(G)\right) \leq 4$.

Let $A, A_{1}, \ldots, A_{\ell} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right) \backslash\{0\}$ such that $A \mid A_{1} \cdot \ldots \cdot A_{\ell}$ in $\mathscr{B}_{ \pm}\left(G_{0}\right)$. If $\ell \leq 4$, then there is nothing to do. Suppose $\ell \geq 5$. Since $|A| \leq 4$, after renumbering if necessary, we may assume that $A \mid A_{1} \cdot \ldots \cdot A_{4}$. If $A=g_{1} g_{2} g_{3} g_{4}$ such that $g_{i} \mid A_{i}$ for every $i \in[1,4]$, then $A^{-1} A_{1} \cdot \ldots \cdot A_{4} \in \mathscr{B}_{ \pm}\left(G_{0}\right)$ and hence $A \mid A_{1} \cdot \ldots \cdot A_{4}$ in $\mathscr{B}_{ \pm}\left(G_{0}\right)$. Otherwise after renumbering if necessary we may assume that $A \mid A_{1} A_{2} A_{3}$. Set $A^{\prime}=A^{-1} A_{1} A_{2} A_{3}$. Then (vii) implies that $\sigma_{ \pm}\left(A^{\prime}\right) \subset \sigma_{ \pm}\left(A_{1} A_{2} A_{3}\right)=\left\{0,2 e_{2}\right\}$. If $0 \in \sigma_{ \pm}\left(A^{\prime}\right)$, then $A \mid A_{1} A_{2} A_{3}$ in $\mathscr{B}_{ \pm}\left(G_{0}\right)$. Suppose $\sigma_{ \pm}\left(A^{\prime}\right)=\left\{2 e_{2}\right\}$. Since $A \mid A_{1} \cdot \ldots \cdot A_{\ell}$ in $\mathscr{B}_{ \pm}\left(G_{0}\right)$, there exists $i \in[4, \ell]$ such that $\sigma_{ \pm}\left(A_{i}\right)=\left\{0,2 e_{2}\right\}$, whence $0 \in \sigma_{ \pm}\left(A^{\prime} A_{i}\right)$. It follows that $A \mid A_{1} A_{2} A_{3} A_{i}$. Therefore, $\omega\left(\mathscr{B}_{ \pm}(G)\right)=\omega\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right) \leq 4$.
A4. $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right) \supset\left\{y+k+[0, k]: y \in \mathbb{N}_{0}, k \geq 2\right\} \cup\left\{y+2 k+2 \cdot[0, k]: y, k \in \mathbb{N}_{0}\right\}$.

Proof of A4. Let $L=y+2 k+2 \cdot[0, k]$ for some $y, k \in \mathbb{N}_{0}$. Then (v) implies that $\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(0^{y} U_{1}^{2 k}\right)=L$, whence $\left\{y+2 k+2 \cdot[0, k]: y, k \in \mathbb{N}_{0}\right\} \subset \mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$.

Let $L=y+k+[0, k]$ for some $y \in \mathbb{N}_{0}$ and some $k \geq 2$. Suppose k is even. Then (vi) implies that $\mathrm{L}_{\mathscr{R}_{ \pm}\left(G_{0}\right)}\left(0^{y} U_{2}^{k}\right)=L$. Suppose $k \geq 3$ is odd. Then (v) and (vi) imply that $\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(0^{y} U_{1}^{k-2} U_{2} U_{3}\right)=L$, whence $\left\{y+k+[0, k]: y \in \mathbb{N}_{0}, k \geq 2\right\} \subset \mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$.
A5. $\mathscr{L}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right) \subset\left\{y+k+[0, k]: y \in \mathbb{N}_{0}, k \geq 2\right\} \cup\left\{y+2 k+2 \cdot[0, k]: y, k \in \mathbb{N}_{0}\right\}$.
Proof of A5. Let $B \in \mathscr{B}_{ \pm}\left(G_{0}\right)$. We distinguish three cases.
Case 1. Assume $\Delta\left(\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B)\right)=\varnothing$.
Then $\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B) \in\left\{y+2 k+2 \cdot[0, k]: y, k \in \mathbb{N}_{0}\right\}$.
Case 2. Assume $2 \in \Delta\left(\mathrm{~L}_{\mathscr{R}_{ \pm}}\left(G_{0}\right)(B)\right)$.
We set

$$
B=\prod_{i=1}^{r} U_{i}^{u_{i}} \prod_{j=1}^{s} V_{j}^{v_{j}} \prod_{k=1}^{t} W_{k},
$$

where $r, s, t, u_{i}, v_{j} \in \mathbb{N}_{0}, U_{i} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$ for $i \in[1, r]$ are distinct atoms of length $4, V_{j} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$ for $j \in[1, s]$ are distinct atoms of length 3 , and $W_{k} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(G_{0}\right)\right)$ for $k \in[1, t]$ are atoms of length 2 , such that

$$
\sum_{i=1}^{r} u_{i}+\sum_{j=1}^{s} v_{j}+t+1 \notin \mathrm{~L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B) \quad \text { and } \quad \sum_{i=1}^{r} u_{i}+\sum_{j=1}^{s} v_{j}+t+2 \in \mathrm{~L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B) .
$$

We may assume that the factorization

$$
B=\prod_{i=1}^{r} U_{i}^{u_{i}} \prod_{j=1}^{s} V_{j}^{v_{j}} \prod_{k=1}^{t} W_{k}
$$

is the one such that $\sum_{i=1}^{r} u_{i}$ is maximal. By (iv), we obtain that $\sum_{j=1}^{s} v_{j} \leq 1$, whence $s=1$ and $v_{1} \in\{0,1\}$. By (iii), we have $r=1$ and by (i) and (ii), we have $U_{1} \in\left\{e_{2}^{2} e_{1}\left(e_{1}+2 e_{2}\right),\left(e_{1}+e_{2}\right)^{2} e_{1}\left(e_{1}+2 e_{2}\right)\right\}$. After changing bases if necessary, we may assume that $U_{1}=e_{2}^{2} e_{1}\left(e_{1}+2 e_{2}\right)$. Moreover, we have $u_{1} \geq 2$ since $u_{1}+v_{1}+t+2 \in \mathrm{~L}_{\mathscr{R}_{ \pm}\left(G_{0}\right)}(B)$. If $\operatorname{supp}(B)=\left\{e_{1}, e_{2}, e_{1}+2 e_{2}\right\}$, then $v_{1}=0$ and (v) implies that $\Delta\left(\mathrm{L}_{\mathscr{B}_{ \pm}}\left(G_{0}\right)(B)\right)=\{2\}$, whence

$$
\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B)=u_{1}+t+2 \cdot\left[0,\left\lfloor u_{1} / 2\right\rfloor\right] \in\left\{y+2 k+2 \cdot[0, k]: y, k \in \mathbb{N}_{0}\right\} .
$$

Otherwise there exists $g \in G_{0} \backslash\left\{e_{1}, e_{2}, e_{1}+2 e_{2}\right\}$, and hence $g=e_{1}+e_{2}$ or $2 e_{2}$. If there exists $k \in[1, t]$ such that $g \mid W_{k}$, then $4 \in \mathrm{~L}_{\mathfrak{B}_{ \pm}\left(G_{0}\right)}\left(U_{1}^{2} W_{k}\right)$, a contradiction. Suppose $g \mid V_{1}$. If $V_{1} \neq\left(e_{1}+e_{2}\right)^{2}\left(2 e_{2}\right)$, then $3 \in \mathrm{~L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(U_{1} V_{1}\right)$, a contradiction. If $V_{1}=\left(e_{1}+e_{2}\right)^{2}\left(2 e_{2}\right)$, then $4 \in \mathrm{~L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}\left(U_{1}^{2} V_{1}\right)$, a contradiction. Case 3. Assume $1 \in \Delta\left(\mathrm{~L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B)\right)$.

Then $\Delta\left(\mathrm{L}_{\mathscr{B}_{ \pm}}\left(G_{0}\right)(B)\right)=1$ and $\min \mathrm{L}_{\mathscr{F}_{ \pm}}\left(G_{0}\right)(B) \geq 2$, whence

$$
\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B)=\left[\min \mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B), \max \mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B)\right] \subset\left[\min \mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B), 2 \min \mathrm{~L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B)\right] .
$$

Therefore, $\mathrm{L}_{\mathscr{B}_{ \pm}\left(G_{0}\right)}(B) \in\left\{y+k+[0, k]: y \in \mathbb{N}_{0}, k \geq 2\right\}$.
This completes the proof of Theorem 4.5.
Theorem 4.6. Let G be a finite abelian group, and let $n \geq 5$ be odd such that $\mathscr{L}\left(\mathscr{B}_{ \pm}(G)\right)=\mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{n}\right)\right)$. Then $G \cong C_{n}$.

Proof. Since n is odd, [4, Corollary 6.2] implies that $\mathrm{D}_{ \pm}\left(C_{n}\right)=\mathrm{D}\left(C_{n}\right)$, whence $n=\mathrm{D}\left(C_{n}\right)=$ $\mathrm{D}_{ \pm}\left(C_{n}\right)=\mathrm{D}_{ \pm}(G)$ by Lemma 4.4. Let $L \in \mathscr{L}\left(\mathscr{B}_{ \pm}\left(C_{n}\right)\right)$ be such that $\{2, n\} \subset L$. Then there exist atoms $A_{1}, A_{2}, U_{1}, \ldots, U_{n} \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(C_{n}\right)\right)$ such that $A_{1} A_{2}=U_{1} \cdot \ldots \cdot U_{n}$ and $\mathrm{L}_{\mathscr{B}_{ \pm}\left(C_{n}\right)}\left(A_{1} A_{2}\right)=L$. Since $\left|A_{i}\right| \leq n$ for every $i \in[1,2]$ and $\left|U_{j}\right| \geq 2$ for every $j \in[1, n]$, we have that $\left|A_{1}\right|=\left|A_{2}\right|=n$ and $\left|U_{j}\right|=2$ for all $j \in[1, n]$. It follows that $\operatorname{supp}\left(A_{1}\right), \operatorname{supp}\left(A_{2}\right) \subset\{g,-g\}$ for some $g \in C_{n}$ with $\operatorname{ord}(g)=n$, whence $L=\{2, n\}$. Therefore, for every $L \in \mathscr{L}\left(\mathscr{P}_{ \pm}(G)\right)$ such that $\{2, n\} \subset L$, we have $L=\{2, n\}$.

Let $U \in \mathscr{A}\left(\mathscr{B}_{ \pm}(G)\right)$ with $|U|=\mathrm{D}_{ \pm}(G)=n$. Without loss of generality, we may assume that $U \in \mathscr{A}(\mathscr{B}(G))$. Since $\{2, n\} \subset \mathrm{L}_{\mathscr{B}_{ \pm}(G)}\left(U^{2}\right)$, we have $\{2, n\}=\mathrm{L}_{\mathscr{B}_{ \pm}(G)}\left(U^{2}\right)$, whence for every atom $W \in \mathscr{A}\left(\mathscr{P}_{ \pm}(G)\right)$ dividing U^{2}, we obtain $|W| \in\{2, n\}$.

If $|\operatorname{supp}(U)|=1$, then $U=g^{n}$ for some $g \in G$ with $\operatorname{ord}(g)=n$, and hence $G \cong C_{n}$.
Suppose $|\operatorname{supp}(U)| \geq 2$. If there exists $g \in \operatorname{supp}(U)$ with $\operatorname{ord}(g) \geq 3$ such that $\mathrm{v}_{g}(U)=1$, then we set $V=g^{-1}(2 g)(-g) U \in \mathscr{B}_{ \pm}(G)$. Since $|V|>n$, we have that $g^{-1} U$ has a decomposition $g^{-1} U=T_{1} T_{2}$ such that $(2 g) T_{1},(-g) T_{2} \in \mathscr{B}_{ \pm}(G)$. Since $g T_{2} \in \mathscr{B}_{ \pm}(G)$ and $\left|g T_{2}\right|<n$, we have that $g T_{2}$ is a product of atoms of length 2 , a contradiction to the fact that $g \notin \operatorname{supp}\left(T_{2}\right)$ and $-g \notin \operatorname{supp}\left(T_{2}\right)$. Thus, $\mathrm{h}(U)=1$ implies that all terms of U have order 2. If $\mathrm{h}(U)=1$, then $\langle\operatorname{supp}(U)\rangle=G$ implies that G is an elementary 2-group, whence $G \cong C_{2}^{n-1}$ and $\mathscr{B}_{ \pm}(G)=\mathscr{B}(G)$. By [9, Corollary 6.8.3], we have $n-3 \in \Delta_{1}(\mathscr{B}(G))=\Delta_{1}\left(\mathscr{B}_{ \pm}\left(C_{n}\right)\right)$. For every $k \in \mathbb{N}$, there exists $S_{k} \in \mathscr{B}_{ \pm}\left(C_{n}\right)$ such that $\mathrm{L}_{\mathscr{B}_{ \pm}}\left(C_{n}\right)\left(S_{k}\right)$ is an AAP with difference $n-3$ and length at least k. Since $\mathscr{A}\left(\mathscr{P}_{ \pm}\left(C_{n}\right)\right)$ is finite, for every large enough $k \in \mathbb{N}$, there exists $V \in \mathscr{A}\left(\mathscr{B}_{ \pm}\left(C_{n}\right)\right)$ such that $V^{2 n} \mid S_{k}$ in $\mathscr{B}_{ \pm}\left(C_{n}\right)$. Whence for every $g \in C_{n}$, we have $g^{2 \operatorname{ord}(g)} \mid S_{k}$ in $\mathscr{B}_{ \pm}\left(C_{n}\right)$. It follows that $\operatorname{ord}(g)-2 \in \Delta\left(\mathrm{~L}_{\mathscr{B}\left(C_{n}\right)}\left(S_{k}\right)\right)$, and hence $\operatorname{ord}(g)-2$ is a multiple of $n-3$, a contradiction. Therefore, we have $\mathrm{h}(U) \geq 2$.

Next we distinguish two cases depending on $|\operatorname{supp}(U)|$.
Case 1. Assume $|\operatorname{supp}(U)|=2$.
Then there exists $g_{1} \in \operatorname{supp}(U)$ such that $\mathrm{v}_{g_{1}}(U) \geq 3$. Let $g_{2} \in \operatorname{supp}(U) \backslash\left\{g_{1}\right\}$ and set $V=$ $g_{1}^{-2}\left(g_{1}+g_{2}\right)\left(g_{1}-g_{2}\right) U$. If V is not an atom, then $\left(g_{1}\right)^{-2} U$ has a decomposition $\left(g_{1}\right)^{-2} U=T_{1} T_{2}$ such that $\left(g_{1}+g_{2}\right) T_{1},\left(g_{1}-g_{2}\right) T_{2} \in \mathscr{B}_{ \pm}(G)$, whence $g_{1} g_{2} T_{1}, g_{1} g_{2} T_{2} \in \mathscr{B}_{ \pm}(G)$ are both subsequences of U^{2} and $3 \leq\left|g_{1} g_{2} T_{1}\right|,\left|g_{1} g_{2} T_{2}\right|<n$. It follows that both $g_{1} g_{2} T_{1}$ and $g_{1} g_{2} T_{2}$ are products of atoms of length 2 , whence $U=g_{1}^{2} T_{1} T_{2}$ is a product of atoms of length 2 , a contradiction. Therefore, V is an atom of length n. Similarly we can show that $\mathrm{L}_{\mathfrak{B}_{ \pm}(G)}\left(V^{2}\right)=\{2, n\}$, a contradiction to the fact that $\left(g_{1}+g_{2}\right) g_{1} g_{2} \mid V$.
Case 2. Assume $|\operatorname{supp}(U)| \geq 3$.
Then there exist $g_{1} \in \operatorname{supp}(U)$ with $\mathrm{v}_{g_{1}}(U) \geq 2$ and distinct $g_{2}, g_{3} \in \operatorname{supp}(U) \backslash\left\{g_{1}\right\}$. Set $V=$ $\left(g_{1} g_{2}\right)^{-1}\left(g_{1}-g_{3}\right)\left(g_{2}+g_{3}\right) U$. Assume to the contrary that V is not an atom. Then $\left(g_{1} g_{2}\right)^{-1} U$ has a decomposition $\left(g_{1} g_{2}\right)^{-1} U=T_{1} T_{2}$ such that $\left(g_{1}-g_{3}\right) T_{1},\left(g_{2}+g_{3}\right) T_{2} \in \mathscr{P}_{ \pm}(G)$, whence $g_{1} g_{3} T_{1}, g_{2} g_{3} T_{2} \in \mathscr{B}_{ \pm}(G)$ are both subsequences of U^{2} and $3 \leq\left|g_{1} g_{3} T_{1}\right|,\left|g_{2} g_{3} T_{2}\right|<n$. It follows that both $g_{1} g_{3} T_{1}$ and $g_{2} g_{3} T_{2}$ are products of atoms of length 2 , whence $U=g_{1} g_{2} T_{1} T_{2}$ is a product of atoms of length 2 , a contradiction. Therefore, V is an atom of length n. Similarly, we can show that $\mathrm{L}_{\mathscr{B}_{ \pm}(G)}\left(V^{2}\right)=\{2, n\}$, a contradiction to the fact that $\left(g_{1}-g_{3}\right) g_{1} g_{3} \mid V$.

Acknowledgement

We would like to thank the referees for going through the manuscript carefully and for all their comments.

References

[1] S. D. Adhikari, D. J. Grynkiewicz, and Z.-W. Sun, "On weighted zero-sum sequences", Adv. in Appl. Math. 48:3 (2012), 506-527.
[2] A. Bashir and A. Reinhart, "On transfer Krull monoids", Semigroup Forum 105:1 (2022), 73-95.
[3] P.-Y. Bienvenu and A. Geroldinger, "On algebraic properties of power monoids of numerical monoids", preprint, 2022. To appear in Israel J. Math. arXiv 2205.00982
[4] S. Boukheche, K. Merito, O. Ordaz, and W. A. Schmid, "Monoids of sequences over finite abelian groups defined via zero-sums with respect to a given set of weights and applications to factorizations of norms of algebraic integers", Comm. Algebra 50:10 (2022), 4195-4217.
[5] C. Bruce, "C*-algebras from actions of congruence monoids on rings of algebraic integers", Trans. Amer. Math. Soc. 373:1 (2020), 699-726.
[6] C. Bruce, "Phase transitions on C*-algebras from actions of congruence monoids on rings of algebraic integers", Int. Math. Res. Not. 2021:5 (2021), 3653-3697.
[7] K. Cziszter, M. Domokos, and A. Geroldinger, "The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics", pp. 43-95 in Multiplicative ideal theory and factorization theory, edited by S. Chapman et al., Springer Proc. Math. Stat. 170, Springer, Cham, 2016.
[8] V. Fadinger and Q. Zhong, "On product-one sequences over subsets of groups", Period. Math. Hungar. 86:2 (2023), 454-494.
[9] A. Geroldinger and F. Halter-Koch, Non-unique factorizations: algebraic, combinatorial and analytic theory, Pure and Applied Mathematics 278, Chapman \& Hall, Boca Raton, FL, 2006.
[10] A. Geroldinger and F. Kainrath, "On the arithmetic of tame monoids with applications to Krull monoids and Mori domains", J. Pure Appl. Algebra 214:12 (2010), 2199-2218.
[11] A. Geroldinger and J. S. Oh, "On the isomorphism problem for monoids of product-one sequences", preprint, 2023. arXiv 2304.01459
[12] A. Geroldinger and Q. Zhong, "Factorization theory in commutative monoids", Semigroup Forum 100:1 (2020), 22-51.
[13] A. Geroldinger, F. Kainrath, and A. Reinhart, "Arithmetic of seminormal weakly Krull monoids and domains", J. Algebra 444 (2015), 201-245.
[14] A. Geroldinger, W. A. Schmid, and Q. Zhong, "Systems of sets of lengths: transfer Krull monoids versus weakly Krull monoids", pp. 191-235 in Rings, polynomials, and modules, edited by M. Fontana et al., Springer, Cham, 2017.
[15] A. Geroldinger, F. Halter-Koch, and Q. Zhong, "On monoids of weighted zero-sum sequences and applications to norm monoids in Galois number fields and binary quadratic forms", Acta Math. Hungar. 168:1 (2022), 144-185.
[16] D. J. Grynkiewicz, "A weighted Erdős-Ginzburg-Ziv theorem", Combinatorica 26:4 (2006), 445-453.
[17] D. J. Grynkiewicz, Structural additive theory, Developments in Mathematics 30, Springer, Cham, 2013.
[18] D. J. Grynkiewicz and F. Hennecart, "A weighted zero-sum problem with quadratic residues", Unif. Distrib. Theory 10:1 (2015), 69-105.
[19] D. J. Grynkiewicz, L. E. Marchan, and O. Ordaz, "A weighted generalization of two theorems of Gao", Ramanujan J. 28:3 (2012), 323-340.
[20] D. J. Grynkiewicz, A. Philipp, and V. Ponomarenko, "Arithmetic-progression-weighted subsequence sums", Israel J. Math. 193:1 (2013), 359-398.
[21] F. Halter-Koch, Ideal systems: an introduction to multiplicative ideal theory, Monographs and Textbooks in Pure and Applied Mathematics 211, Marcel Dekker, New York, 1998.
[22] F. Halter-Koch, "Arithmetical interpretation of weighted Davenport constants", Arch. Math. (Basel) 103:2 (2014), 125-131.
[23] F. Kainrath, "Arithmetic of Mori domains and monoids: the global case", pp. 183-218 in Multiplicative ideal theory and factorization theory, edited by S. Chapman et al., Springer Proc. Math. Stat. 170, Springer, Cham, 2016.
[24] L. E. Marchan, O. Ordaz, D. Ramos, and W. A. Schmid, "Some exact values of the Harborth constant and its plus-minus weighted analogue", Arch. Math. (Basel) 101:6 (2013), 501-512.
[25] L. E. Marchan, O. Ordaz, and W. A. Schmid, "Remarks on the plus-minus weighted Davenport constant", Int. J. Number Theory 10:5 (2014), 1219-1239.
[26] L. E. Marchan, O. Ordaz, I. Santos, and W. A. Schmid, "Multi-wise and constrained fully weighted Davenport constants and interactions with coding theory", J. Combin. Theory Ser. A 135 (2015), 237-267.
[27] L. E. Marchan, O. Ordaz, D. Ramos, and W. A. Schmid, "Inverse results for weighted Harborth constants", Int. J. Number Theory 12:7 (2016), 1845-1861.
[28] L. Margolis, "The modular isomorphism problem: a survey", Jahresber. Dtsch. Math.-Ver. 124:3 (2022), 157-196.
[29] J. S. Oh, "On the algebraic and arithmetic structure of the monoid of product-one sequences", J. Commut. Algebra 12:3 (2020), 409-433.
[30] A. Reinhart, "On integral domains that are C-monoids", Houston J. Math. 39:4 (2013), 1095-1116.
[31] D. J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics 80, Springer, New York, 1996.
[32] S. Tringali and W. Yan, "A conjecture by Bienvenu and Geroldinger on power monoids", preprint, 2023. To appear in Proc. Amer. Math. Soc. arXiv 2310.17713

FLORIN FABSITS: florin.fabsits@student.tugraz.at
Department of Mathematics and Scientific Computing, University of Graz, Graz, Austria
ALfred Geroldinger: alfred.geroldinger@uni-graz.at
Department of Mathematics and Scientific Computing, University of Graz, Graz, Austria
Andreas Reinhart: andreas.reinhart@uni-graz.at
Department of Mathematics and Scientific Computing, University of Graz, Graz, Austria
QINGHAI ZHONG: qinghai.zhong@uni-graz.at
Department of Mathematics and Scientific Computing, University of Graz, Graz, Austria
and
School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong, China

[^0]: This work was supported by the Austrian Science Fund FWF (P36852-N) and by the National Natural Science Foundation of China (12001331).
 2020 AMS Mathematics subject classification: primary 20M12, 20M13, 13A05, 13A15, 11B30; secondary 11R27.
 Keywords and phrases: Krull monoids, Mori monoids, sets of lengths, weighted zero-sum sequences.
 Received by the editors on April 28, 2023, and in revised form on September 6, 2023.

