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ON MONOIDS OF PLUS-MINUS WEIGHTED ZERO-SUM SEQUENCES:
THE ISOMORPHISM PROBLEM AND THE CHARACTERIZATION PROBLEM

FLORIN FABSITS, ALFRED GEROLDINGER, ANDREAS REINHART AND QINGHAI ZHONG

Let G be an additive abelian group. A sequence S D g1 � : : : � g` of terms from G is a plus-minus
weighted zero-sum sequence if there are "1; : : : ; "` 2 f1;�1g such that "1g1C : : :C "`g` D 0. We first
characterize (in terms of G) when the monoid B˙.G/ of plus-minus weighted zero-sum sequences is
Mori, respectively, Krull, respectively, finitely generated. After that, we study the isomorphism problem
and the characterization problem for monoids of plus-minus weighted zero-sum sequences.

1. Introduction

Let G be an additively written abelian group. We consider (finite unordered) sequences (with repetition
allowed) of terms from G as elements of the (multiplicatively written) free abelian monoid F.G/ with
basis G. Let � � End.G/ be a nonempty subset of the endomorphism group of G. A sequence
S D g1 � : : : � g` 2 F.G/ is called a (�-)weighted zero-sum sequence if there are 1; : : : ; ` 2 � such
that 1.g1/C : : :C `.g`/D 0. Then the set B�.G/ of all �-weighted zero-sum sequences over G is a
submonoid of F.G/. A special emphasis has been laid on the case � D fidG ;�idGg. In that case one
speaks of plus-minus weighted zero-sum sequences, and the associated monoid is denoted by B˙.G/.

For the last decade, combinatorial and number theoretic problems of weighted zero-sum sequences have
seen a lot of interest. Many of the classical zero-sum invariants (including the Davenport constant D.G/,
the Erdős–Ginzburg–Ziv constant s.G/, Gao’s constant E.G/ and the Harborth constant g.G/) have found
their weighted analogs (for a weighted version of E.G/ see [17, Chapter 16], for connections with coding
theory see [26], and for a sample of papers with a strong number theoretic flavor see [1; 16; 18; 19; 20;
22; 24; 25; 27]; see also the remark at the end of Section 2).

Algebraic properties of the monoid of weighted zero-sum sequences were first studied by Boukheche
et al. [4]. There are transfer homomorphisms from norm monoids in orders of algebraic number fields
(and others) to monoids of weighted zero-sum sequences; see [4, Theorem 7.1] and [15, Theorems 3.2
and 3.5]. This implies that arithmetic questions in norm monoids (in particular, their sets of lengths) can
be studied in monoids of weighted zero-sum sequences, and it demonstrates the connection of the latter
with questions in commutative ring theory.
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In the present paper, we focus on the monoid B˙.G/ of plus-minus weighted zero-sum sequences.
In Section 3, we characterize when B˙.G/ is a Mori monoid (Theorem 3.4), when it is a Krull monoid
(Corollary 3.5) and when it is finitely generated, respectively, a C-monoid (Theorem 3.7).

In Section 4, we study the isomorphism problem and the characterization problem. We recall these
two problems.

The isomorphism problem (for plus-minus weighted zero-sum sequences). Let G1 and G2 be abelian
groups such that the monoids B˙.G1/ and B˙.G2/ are isomorphic. Are the groups G1 and G2 isomor-
phic?

It is well known that the isomorphism problem has an affirmative answer for monoids of (unweighted)
zero-sum sequences over abelian groups [9, Corollary 2.5.7]. The isomorphism problem was recently
studied for power monoids of numerical monoids [3; 32] and for monoids of product-one sequences over
nonabelian groups [11]. For the isomorphism problem for group rings, we refer to the survey [28]. In
the present paper, we give an affirmative answer to the isomorphism problem for plus-minus weighted
zero-sum sequences in the case where one group is a direct sum of cyclic groups (Theorem 4.3).

The characterization problem asks whether or not two monoids (or domains), from a given class of
monoids, are already uniquely determined by their systems of sets of lengths. This problem has its origin
in algebraic number theory. Indeed, in the 1970s, Narkiewicz asked whether or not the ideal class group
of a number field can be characterized by arithmetic properties of the ring of integers. Nowadays, this
question got reformulated in terms of monoids of (unweighted) zero-sum sequences over finite abelian
groups, where an affirmative answer is expected (for an overview, we refer to the survey [12]).

The characterization problem (for plus-minus weighted zero-sum sequences). Let G1 and G2 be
finite abelian groups with Davenport constant D˙.G1/ � 4 such that their systems of sets of lengths
L.B˙.G1// and L.B˙.G2// coincide. Are the groups G1 and G2 isomorphic?

Clearly, a necessary condition for an affirmative answer to the characterization problem (for a class of
abelian groups) is an affirmative answer to the isomorphism problem. Any work on the characterization
problem (both for unweighted, as well as for weighted zero-sum sequences) requires a lot of ingredients
from additive combinatorics. If L.B˙.G1//D L.B˙.G2//, respectively, L.B.G1//D L.B.G2//, then
one easily gets that for the associated Davenport constants we have D˙.G1/D D˙.G2/, respectively,
D.G1/D D.G2/. In spite of being studied for decades, the precise value of the Davenport constant of a
finite abelian group G (in terms of the group invariants) is unknown for general groups of rank r.G/� 3.
In Section 4, we settle the characterization problem for plus-minus weighted zero-sum sequences in the
case when G1 is a cyclic group of odd order (Theorem 4.6).

2. Prerequisites

We denote by P � N � N0 � Z the sets of prime number, positive integers, nonnegative integers and
integers. For a; b 2Z, let Œa; b�Dfx 2Z W a� x� bg be the discrete interval between a and b. For subsets
A;B � Z, we denote by ACB D faC b W a 2 A; b 2 Bg the sumset of A and B , and for k 2 Z, we set
kCAD fkgCA. For k 2N, let N�k D fa 2N W a� kg, and let k �AD fka W a 2Ag be the dilation of A
by k. If AD fm0; : : : ; mkg � Z, with k 2N0 and m0 < : : : < mk , then �.A/D fmi �mi�1 W i 2 Œ1; k�g
is the set of distances of A.
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By a monoid, we mean a commutative cancellative semigroup with identity element, and we use
multiplicative notation. Let H be a monoid. Then H� denotes the group of invertible elements and q.H/

denotes the quotient group. Furthermore, let

� H 0 D fx 2 q.H/ W there is some n 2 N such that xm 2 H for each m 2 N�ng be the seminormal
closure of H ,

� eH D fx 2 q.H/ W there is some n 2 N such that xn 2H g be the root closure of H ,

� bH D fx 2 q.H/ W there is some c 2 H such that cxn 2 H for all n 2 Ng be the complete integral
closure of H .

Then H �H 0� eH � bH � q.H/, and H is said to be seminormal, or root closed, or completely integrally
closed, if H DH 0, or H D eH , or H D bH . For a set P , we denote by F.P / the free abelian monoid with
basis P , and we will use multiplicative notation for F.P /. The monoid H is factorial if its associated
reduced monoid Hred D faH

� W a 2H g is free abelian. A monoid homomorphism ' WH !D is said to
be a

� divisor homomorphism if a; b 2H and '.a/ j '.b/ (in D) implies that a j b (in H ),

� divisor theory (for H ) if D is free abelian, ' is a divisor homomorphism and for every ˛ 2D there
are a1; : : : ; am 2H such that ˛ D gcd.'.a1/; : : : ; '.am//.

If ' WH !D is a divisor theory, then C.H/D q.D/=q.'.H// is the .divisor/ class group of H . If H
is a submonoid of D, then it is easily checked that the inclusion H ,!D is a divisor homomorphism
if and only if H D q.H/\D.

Ideal theory of monoids. Our main references are [9; 21]. To fix notation, we gather some key concepts
needed in the sequel. For subsets I; J � q.H/, we set .I W J /D fx 2 q.H/ W xJ � I g, I�1 D .H W I /
and Iv D .I�1/�1. Then I � H is called an s-ideal if IH D I , and it is called a divisorial ideal (or
a v-ideal) if I D Iv. We denote by s-spec.H/ the set of prime s-ideals of H and by X.H/ the set of
minimal nonempty prime s-ideals of H . The monoid H is said to be a

� Mori monoid if it satisfies the ascending chain condition on divisorial ideals,

� Krull monoid if it is a completely integrally closed Mori monoid (equivalently, if it has a divisor
theory).

If H is a Krull monoid, then every v-ideal is v-invertible and the monoid of v-ideals is free abelian
(with v-multiplication as operation) with basis X.H/. If Fv.H/ denotes the semigroup of fractional
v-ideals, then Cv.H/D Fv.H/

�=faH W a 2 q.H/g is the v-class group of H . If H is a Krull monoid,
then Cv.H/ is isomorphic to the divisor class group of H .

We need the concept of C-monoids (for details, see [9, Chapter 2]). Let F be a factorial monoid, and let
H � F be a submonoid. Two elements y; y0 2 F are called H -equivalent if y�1H \F D .y0/�1H \F ,
equivalently, if

for all x 2 F; we have xy 2H if and only if xy0 2H:

This defines a congruence relation onF , and for y2F , we denote by Œy�FH D Œy� its congruence class. Then

C�.H; F /D
˚
Œy� W y 2 .F nF �/[f1g

	
� C.H; F /D fŒy� W y 2 F g
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are commutative semigroups with identity element Œ1�, C.H; F / is the class semigroup and C�.H; F /

is the reduced class semigroup of H in F . A monoid H is said to be a C-monoid (defined in F ) if it is
a submonoid of F such that H \F �DH� and C�.H; F / is finite. If H is a C-monoid, then H is Mori,
.H W bH/¤∅ and C.bH/ is finite. Every Krull monoid with finite class group is a C-monoid, and in that
case, the class semigroup and the class group coincide. A commutative ring is a C-ring if its monoid of
regular elements is a C-monoid (for a sample of work on C-monoids and C-rings, see [5; 6; 8; 23; 29; 30]).

Arithmetic theory of monoids. We denote by A.H/ the set of atoms of H , and we say that H is atomic
if every noninvertible element of H can be written as a finite product of atoms. If aD u1 � : : : �uk 2H ,
where k 2 N and u1; : : : ; uk 2A.H/, then k is called a factorization length of a, and the set L.a/� N

of all possible factorization lengths of a is called the set of lengths of a. It is convenient to set L.a/D f0g
for a 2H�, and then L.H/D fL.a/ W a 2H g denotes the system of sets of lengths of H . Thus, H is
atomic if and only if all sets of lengths are nonempty. Furthermore, H is said to be

� half-factorial if jLj D 1 for all L 2 L.H/,

� a BF-monoid if all L 2 L.H/ are finite and nonempty.

Every Mori monoid is a BF-monoid and every factorial monoid is half-factorial.

Sequences over abelian groups. Let G be an additively written abelian group, and let G0 � G be a
subset. Then ŒG0��G denotes the submonoid generated by G0 and hG0i �G is the subgroup generated
by G0. Let exp.G/ 2 N [ f1g denote the exponent of G. For n 2 N, let Cn be an additive cyclic
group with n elements, and let nG D fng W g 2 Gg. For a prime p 2 P, the group G is called an
elementary p-group if pGD 0 (equivalently, every nonzero element has order p). We denote by F.G/ the
multiplicatively written free abelian monoid with basis G. In additive combinatorics, elements of F.G/

are called sequences over G. Let

S D g1 � : : : �g` D
Q
g2G

gvg.S/

be a sequence over G, where ` 2 N0, g1; : : : ; g` 2 G and vg.S/ 2 N0 with vg.S/ D 0 for almost all
g 2G. Then

� jS j D ` 2 N0 is the length of S ,

� supp.S/D fg 2G W vg.S/ > 0g �G is the support of S ,

� h.S/Dmaxfvg.S/ W g 2Gg is the maximum multiplicity of a term of S ,

� �.S/D g1C : : :Cg` D
P
g2G vg.S/g 2G is the sum of S ,

� �˙.S/D f"1g1C : : :C "`g` W "1; : : : ; "` 2 f�1; 1gg is the set of plus-minus weighted sums of S .

The sequence S is called a

� zero-sum sequence if �.S/D 0,

� plus-minus weighted zero-sum sequence if 0 2 �˙.S/.

Then
B.G0/D fS 2 F.G0/ W S is a zero-sum sequenceg � F.G0/
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is the monoid of zero-sum sequences over G0,

B˙.G0/D fS 2 F.G0/ W S is a plus-minus weighted zero-sum sequenceg

is the monoid of plus-minus weighted zero-sum sequences over G0 and we have

B.G0/�B˙.G0/� F.G0/:

Furthermore,

� D.G0/D sup
˚
jS j W S 2A.B.G0//

	
is the Davenport constant of G0,

� D˙.G0/D sup
˚
jS j W S 2A.B˙.G0//

	
is the plus-minus weighted Davenport constant of G0.

It is easy to see that B.G0/ and B˙.G0/ are BF-monoids, and it is well known that each of A.B.G//,
A.B˙.G//, D.G/ and D˙.G/ is finite if and only if G is finite.

We end with a remark on notation. For sequences over G0, as well as for plus-minus weighted
sequences over G0, the following three properties have been studied (for simplicity, we formulate them
only for plus-minus weighted sequences):

(a) What is the smallest integer N 2N such that every sequence S 2F.G0/ has a plus-minus weighted
zero-sum subsequence?

(b) What is the maximal length of a sequence that has no plus-minus weighted zero-sum subsequence?

(c) What is the maximal length of a minimal plus-minus weighted zero-sum sequence?

All these integers have been called weighted Davenport constants and were denoted as D˙.G0/, or
as d˙.G0/, or similarly. The constant addressed in (c) fits into the general concept of a Davenport
constant of a monoid, embedded in a free abelian monoid, as introduced in [7] and further used in [4].
Since in the present paper, we do not need constants fulfilling properties (a) and (b), we use the shorthand
notation D˙.G0/ for the Davenport constant of the monoid B˙.G0/, whence we have

D˙.G0/D D.B˙.G0//;

where the latter notation is used in [4; 7].

3. Characterizations of ideal theoretic properties

In this section, we study algebraic properties of the monoid B˙.G/. We characterize when it is Mori
or Krull (equivalently, completely integrally closed, respectively, root closed) or finitely generated
(equivalently, a C-monoid); see Theorems 3.4 and 3.7 and Corollary 3.5.

Lemma 3.1. Let G be an abelian group.

(1) If jGj � 2, then
B.G/DB˙.G/Š F.G/Š

�
N
jGj
0 ;C

�
:

(2) The following statements are equivalent:

(a) jGj � 2.
(b) B˙.G/ is factorial.
(c) B˙.G/ is half-factorial.
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Proof. (1) Obvious.

(2) Note that (a) D) (b) follows from (1) and (b) D) (c) is obvious.
Consider (c)D) (a). We suppose that jGj � 3 and show that B˙.G/ is not half-factorial. To do so, it is

sufficient to find some atom U D g1 � : : : �g` 2B˙.G/ with jU j � 3. Then we have U 2D .g21/ � : : : � .g
2
`
/.

If there is an element g 2G with ord.g/D n� 3 odd, then U D gn is an atom. If there is an element
g 2 G with ord.g/D1, then U D g2.2g/ is an atom. If there are two distinct elements e1 and e2 of
order two, then U D e1e2.e1C e2/ is an atom. If none of these conditions hold, then G has an element g
with ord.g/D 4, whence U D g2.2g/ is an atom. �

Theorem 3.2. Let G be an abelian group.

(1) BB˙.G/D2B˙.G/ is a Krull monoid.

(2) If jGj ¤ 2, then the inclusion BB˙.G/ ,! F.G/ is a divisor theory. Its class group is isomorphic to a
factor group of G, and every class contains a prime divisor.

Proof. If jGj � 2, then all statements hold true by Lemma 3.1. Thus, we suppose that jGj � 3. We set

B�˙.G/D q.B˙.G//\F.G/:

Since
B˙.G/�B�˙.G/ and B�˙.G/� q.B˙.G//;

it follows that
q.B˙.G//� q.B�˙.G//� q.B˙.G//:

This implies that
B�˙.G/D q.B�˙.G//\F.G/;

whence B�
˙
.G/ ,! F.G/ is a divisor homomorphism and B�

˙
.G/ is a Krull monoid. Thus, B�

˙
.G/ is

completely integrally closed, which implies that

BB˙.G/�2B˙.G/�B�˙.G/:

If S 2 q.B˙.G//\F.G/, then S2 2B˙.G/, whence

q.B˙.G//\F.G/DB�˙.G/�
BB˙.G/:

Thus, it follows that
BB˙.G/D2B˙.G/DB�˙.G/:

By [9, Proposition 2.5.6], the inclusion B.G/ ,! F.G/ is a divisor theory with class group

q.F.G//=q.B.G//ŠG

and every class contains precisely one prime divisor. Therefore, every S 2 F.G/ is a greatest common
divisor of elements from B.G/, and hence it is a greatest common divisor of elements from BB˙.G/.
Thus, the inclusion BB˙.G/ ,! F.G/ is a divisor theory with class group

q.F.G//=q.B˙.G//Š q.F.G//=q.B.G//
ı
q.B˙.G//=q.B.G//ŠG

ı
q.B˙.G//=q.B.G//: �

Lemma 3.3. Let G be an abelian group, and let g 2 G with ord.g/ D 1. For every n 2 N, let
Sn D g.2

nC1g/2..2nC2� 1/g/ and an D .2g/
Qn
jD1..3 � 2

j /g/.
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(1) For every n 2 N,

Sn 2B˙.G/; an 2 q.B˙.G//; anSnC1 62B˙.G/; anSi 2B˙.G/

for each i 2 Œ1; n�.

(2) B˙.G/ is not a Mori monoid.

Proof. Let Q be the quotient group of B˙.G/.

(1) Let n 2 N. Since 1� 2nC1� 2nC1C .2nC2� 1/D 0, we have that

gC .�1/.2nC1g/C .�1/.2nC1g/C .2nC2� 1/g D 0;

and thus Sn 2B˙.G/. Next we show that zg 2Q for each z 2 2Z. Let z 2 2Z. Then�
1
2
zg
�2
; .zg/

�
1
2
zg
�2
2B˙.G/;

and hence

zg D
.zg/

�
1
2
zg
�2�

1
2
zg
�2 2Q:

Consequently, an 2Q.
Now we prove that anSnC1 62B˙.G/. Assume that anSnC1 2B˙.G/. Then there are some "; ."j /njD1

and .�i /4iD1 such that "; "j ; �i 2 f�1; 1g for each j 2 Œ1; n� and i 2 Œ1; 4� and

".2g/C
nP

jD1

"j ..3 � 2
j /g/C �1gC .�2C �3/.2

nC2g/C �4..2
nC3
� 1/g/D 0:

Since ord.g/D1, it follows that

2"C
nP

jD1

3"j 2
j
C �1C .�2C �3/2

nC2
C �4.2

nC3
� 1/D 0:

Without restriction, we can assume that �4 D 1. Suppose that �3 D 1. Then

2nC2C 2nC3� 1D j2"C
nP

jD1

3"j 2
j
C �1C �22

nC2
j

� 2C 3
nP

jD1

2j C 1C 2nC2

D 2nC2C 3
nP

jD0

2j D 2nC2C 3.2nC1� 1/D 2nC2C 3 � 2nC1� 3

< 2nC2C 2nC3� 1;

a contradiction. Consequently, �3 D�1. It follows by analogy that �2 D�1. Therefore,

2"C
nP

jD1

3"j 2
j
C �1� 1D 0;

and hence

3�2n D
ˇ̌̌
2"C

n�1P
jD1

3"j 2
j
C�1�1

ˇ̌̌
� 2C

n�1P
jD1

3�2jC1C1D 1C3
n�1P
jD0

2j D 1C3.2n�1/D 3�2n�2 < 3�2n;

a contradiction.
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Let i 2 Œ1; n�. Note that

2.�1/iC1C
i�1P
jD1

3.�1/iC1�j 2j �
n�1P
jDi

3 � 2j C 3 � 2n� 1C 2iC1� 2iC1� .2iC2� 1/

D 2.�1/iC1C 3.�1/iC1
i�1P
jD1

.�2/j � 3
n�1P
jDi

2j C 3 � 2n� 2iC2

D .�1/iC1
�
2C 3

�
.�2/i � 1

�2� 1
� 1

��
� 3

�
2n�1

2�1
�
2i�1

2�1

�
C 3 � 2n� 2iC2

D .�1/iC1
�
2� ..�2/i C 2/

�
� 3.2n� 2i /C 3 � 2n� 2iC2

D .�1/iC2.�2/i � 2i D .�1/2iC22i � 2i D 0:

We infer that

.�1/iC1.2g/C
i�1P
jD1

.�1/iC1�j ..3 � 2j /g/C
n�1P
jDi

.�1/..3 � 2j /g/

C .3 � 2n/gC .�1/gC 2iC1gC .�1/.2iC1g/C .�1/..2iC2� 1/g/D 0:

Therefore, anSi 2B˙.G/.

(2) It follows from (1) that for each n 2 N,�
B˙.G/ W fSi W i 2 Œ1; n�g

�
©
�
B˙.G/ W fSi W i 2 Œ1; nC 1�g

�
;

and hence, .fSi W i 2 Œ1; n�g/v ¨ .fSi W i 2 Œ1; nC 1�g/v for each n 2 N. Therefore, B˙.G/ is not a Mori
monoid. �

Let H and D be monoids, and let ' WH !D be a divisor homomorphism. Note that H is seminormal
if and only if for each x 2 q.H/ with x2; x3 2H , we have that x 2H (e.g., see [13]). Moreover, it follows
from [13, Lemma 3.2.2] that H �D is seminormal if and only if H and D are seminormal. Finally, if D
is seminormal, then H is seminormal. (This can be proved along similar lines as [13, Lemma 3.2.4].) We
use these facts about seminormality without further mention.

Theorem 3.4. Let G be an abelian group. Then the following statements are equivalent:

(a) B˙.G/ is a Mori monoid.

(b) .B˙.G/ W2B˙.G// 6D∅.

(c) 2G is finite.

(d) G DG1˚G2, where G1 is an elementary 2-group and G2 is a finite group.

If these equivalent conditions are satisfied, then B˙.G/ is seminormal if and only if exp.G/ j 4.

Proof. Let Q be the quotient group of B˙.G/.

(a) D) (c): It follows from Lemma 3.3 that G is a torsion group. Assume that 2G is infinite. Clearly,
there is some e0 2 G such that 2e0 6D 0. Now let i 2 N0, and let .ej /ijD1 be elements of G such that
2ek 62 hfej W j 2 Œ0; k � 1�gi for each k 2 Œ1; i �. Note that hfej W j 2 Œ0; i �gi is finite, and hence there is
some eiC1 2G such that 2eiC1 62 hfej W j 2 Œ0; i �gi. Consequently, there exists a sequence .ei /i2N0

of
elements of G such that 2e0 6D 0 and for each i 2 N0, 2eiC1 62 hfej W j 2 Œ0; i �gi.
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For each n 2 N let

Sn D .2e0/.e0C en/.e0� en/ and an D

Qn
iD1 e

2
i

2e0
:

It is sufficient to show that for each n 2 N, we have Sn 2 B˙.G/, an 2Q, anSnC1 62 B˙.G/ and for
each i 2 Œ1; n�, anSi 2 B˙.G/. (Then .fSi W i 2 Œ1; n�g/v ¨ .fSi W i 2 Œ1; nC 1�g/v for each n 2 N, a
contradiction.) Let n 2 N. Since .�1/.2e0/C .e0C en/C .e0 � en/ D 0, we have that Sn 2 B˙.G/.
Clearly, .2e0/2; e20.2e0/ 2B˙.G/, and thus,

e20
2e0
D
e20.2e0/

.2e0/2
2Q:

Since e2j 2B˙.G/ for each j 2 Œ0; n�, we infer that

an D

Qn
iD1 e

2
i

e20

e20
2e0
2Q:

Let i 2 Œ1; n�. Then
nP

jD1;j 6Di

ej C
nP

jD1;j 6Di

.�1/ej C .�1/ei C .�1/ei C .e0C ei /C .�1/.e0� ei /D 0;

and hence, anSi 2B˙.G/.
Assume that anSnC1 2B˙.G/. Then there are some . j̨ /njD1; . ǰ /

n
jD1 2 f�1; 1g

n and ; ı 2 f�1; 1g
such that

nP
jD1

. j̨ C ǰ /ej C .e0C enC1/C ı.e0� enC1/D 0:

If  6D ı, then 2enC12hfej Wj 2 Œ0; n�gi, a contradiction. Therefore, D ı and
Pn
jD1. j̨C ǰ /ejC2e0D

0. Assume that j̨ C ǰ 6D 0 for some j 2 Œ1; n�. Let j 2 Œ1; n� be maximal with j̨ C ǰ 6D 0. Then
2ej 2 hfei W i 2 Œ0; j �1�gi, a contradiction. Consequently, j̨ C ǰ D 0 for all j 2 Œ1; n�, and thus 2e0D 0,
a contradiction.

(b) D) (c): First we show that 2G � 2B˙.G/. Let z 2 2G. Then z D 2g for some g 2 G. Note that
g2; zg2 2B˙.G/, and hence, z D zg2=g2 2Q. Since z2 2B˙.G/, we infer that z 22B˙.G/. There is
some S 2B˙.G/ such that Sz 2B˙.G/ for each z 22G. Observe that 2G��˙.S/, and thus 2G is finite.

(c) D) (d): If N D j2Gj, then .2N /g D 0 for each g 2 G. Thus G is bounded, whence it is a direct
sum of cyclic groups; see [31, Chapter 4]. Therefore, there is a set I, a family .Gi /i2I of subgroups
of G and .ni /i2I 2 .N�2/

I such that Gi is cyclic of order ni for each i 2 I and G D
L
i2IGi . Let

JD fi 2 I W ni D 2g, KD fi 2 I W ni 6D 2g, G1 D
L
i2JGi and G2 D

L
i2KGi . Note that G1 and G2

are subgroups of G, G DG1˚G2 and G1 is an elementary 2-group. Moreover, since 2G is finite, we
have that K is finite, and thus G2 is finite.

(d) D) (a): Let

' WB˙.G/! F.G/�B.G1/�B˙.G2/;
rQ
iD1

.x0i C x
00
i / 7!

� rQ
iD1

.x0i C x
00
i /;

rQ
iD1

x0i ;
rQ
iD1

x00i

�
for each r 2 N0, .x0i /

r
iD1 2G

r
1 and .x00i /

r
iD1 2G

r
2 .
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We prove that ' is a divisor homomorphism. Let r 2N0, .x0i /
r
iD1 2G

r
1 and .x00i /

r
iD1 2G

r
2 be such thatQr

iD1.x
0
i Cx

00
i / 2B˙.G/. Then there is some .˛i /riD1 2 f�1; 1g

r with
Pr
iD1 ˛i .x

0
i Cx

00
i /D 0, and thus,

rP
iD1

x0i D
rP
iD1

˛ix
0
i D 0 and

rP
iD1

˛ix
00
i D 0:

Therefore, � rQ
iD1

.x0i C x
00
i /;

rQ
iD1

x0i ;
rQ
iD1

x00i

�
2 F.G/�B.G1/�B˙.G2/:

This implies that ' is well defined, since each element of B˙.G/ has a unique representation (up to
order) as a formal product of sums of elements of G1 and G2. It is straightforward to prove that ' is
a monoid homomorphism.

Let S; T 2B˙.G/, A2F.G/, B 2B.G1/ and C 2B˙.G2/ be such that '.T /D '.S/.A;B; C / (i.e.,
'.S/ divides '.T / in F.G/�B.G1/�B˙.G2/). There are somem; n2N0, .g0i /

n
iD12G

n
1 , .g00i /

n
iD12G

n
2 ,

.h0j /
m
jD1 2G

m
1 and .h00j /

m
jD1 2G

m
2 such that

S D
nQ
iD1

.g0i Cg
00
i / and AD

mQ
jD1

.h0j C h
00
j /:

We have that T D SA, and hence�
T;

nQ
iD1

g0i

mQ
jD1

h0j ;
nQ
iD1

g00i

mQ
jD1

h00j

�
D '.T /D '.S/.A;B; C /D

�
SA;

� nQ
iD1

g0i

�
B;
� nQ
iD1

g00i

�
C
�
:

It follows that
Qm
jD1 h

0
j D B 2B.G1/ and

Qm
jD1 h

00
j D C 2B˙.G2/. Therefore,

mP
jD1

h0j D 0 and
mP
jD1

ǰh
00
j D 0

for some . ǰ /mjD1 2 f�1; 1g
m. Note that

mP
jD1

ǰ .h
0
j C h

00
j /D

mP
jD1

ǰh
0
j C

mP
jD1

ǰh
00
j D

mP
jD1

h0j D 0;

and thus A 2B˙.G/ and S divides T in B˙.G/. This shows that ' is a divisor homomorphism.
Clearly, F.G/ and B.G1/ are Mori monoids (since they are Krull monoids). It follows from [15, The-

orem 5.1] and [9, Theorem 2.9.13] that B˙.G2/ is a Mori monoid. Therefore, F.G/�B.G1/�B˙.G2/

is a Mori monoid by [9, Proposition 2.1.11]. We infer by [9, Proposition 2.4.4 (b)] that B˙.G/ is a Mori
monoid.

(d) D) (b): Since G2 is finite,
.B˙.G2/ W3B˙.G2// 6D∅

by [15, Theorem 5.1] and [9, Theorem 2.9.11]. There is some a 2 .B˙.G2/ W3B˙.G2//. It suffices
to show that a 2 .B˙.G/ W2B˙.G//. Note that

a 2B˙.G2/�B˙.G/ and a3B˙.G2/�B˙.G2/:

Let x 22B˙.G/. It remains to show that ax 2B˙.G/.
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There is some y 2 B˙.G/ such that xy 2 B˙.G/. Furthermore, there are some `;m; n 2 N0,
.ak/

`
kD1
2G`2, .xi /niD1 2G

n and .yj /mjD1 2G
m such that aD

Q`
kD1 ak , xD

Qn
iD1 xi and yD

Qm
jD1 yj .

Finally, there are some .x0i /
n
iD1 2 G

n
1 , .x00i /

n
iD1 2 G

n
2 , .y0j /

m
jD1 2 G

m
1 and .y00j /

m
jD1 2 G

m
2 such that

xi D x
0
i C x

00
i for each i 2 Œ1; n� and yj D y0j Cy

00
j for each j 2 Œ1;m�.

Since y 2B˙.G/, there is some . j̨ /mjD1 2 f�1; 1g
m with

Pm
jD1 j̨yj D 0. Since G DG1˚G2 and

G1 is an elementary 2-group, this implies that
mP
jD1

y0j D
mP
jD1

j̨y
0
j D 0 and

mP
jD1

j̨y
00
j D 0:

Consequently,
Qm
jD1 y

00
j 2B˙.G2/.

Since xy 2B˙.G/, there are some .ˇi /niD1 2 f�1; 1g
n and .j /mjD1 2 f�1; 1g

m with

nP
iD1

ˇixi C
mP
jD1

jyj D 0:

Again since G DG1˚G2 and G1 is an elementary 2-group, we have that

nP
iD1

x0i D
nP
iD1

x0i C
mP
jD1

y0j D
nP
iD1

ˇix
0
i C

mP
jD1

jy
0
j D 0 and

nP
iD1

ˇix
00
i C

mP
jD1

jy
00
j D 0:

This implies that
Qn
iD1 x

00
i

Qm
jD1 y

00
j 2B˙.G2/.

Observe that, by the proof of Theorem 3.2,

nQ
iD1

x00i 2
3B˙.G2/

since
Qn
iD1 x

00
i 2 F.G2/,

Qm
jD1 y

00
j 2B˙.G2/ and

Qn
iD1 x

00
i

Qm
jD1 y

00
j 2B˙.G2/. It follows that

a

nY
iD1

x00i 2B˙.G2/;

and hence there are some .ık/`kD1 2 f�1; 1g
` and ."i /niD1 2 f�1; 1g

n with
P`
kD1 ıkakC

Pn
iD1 "ix

00
i D 0.

Since G1 is an elementary 2-group, we infer that

P̀
kD1

ıkakC
nP
iD1

"ixi D
P̀
kD1

ıkakC
nP
iD1

"ix
00
i C

nP
iD1

"ix
0
i D

nP
iD1

"ix
0
i D

nP
iD1

x0i D 0:

Therefore, ax 2B˙.G/.
Now let the equivalent conditions be satisfied and let ' W B˙.G/! F.G/�B.G1/�B˙.G2/ be

the divisor homomorphism from above. Furthermore, let  W B˙.G2/! F.G2/�B˙.G/ be defined
by  .S/ D .S; S/ for each S 2 B˙.G2/. Then  is a divisor homomorphism (e.g., see the proof of
Corollary 3.5 below).

First let B˙.G/ be seminormal. Since F.G2/ is seminormal, F.G2/�B˙.G/ is seminormal, and hence
B˙.G2/ is seminormal (since  is a divisor homomorphism). Consequently, we have that exp.G2/ j 4
[15, Theorem 5.3.2]. Since exp.G1/ j 2, we obtain that exp.G/D lcm.exp.G1/; exp.G2// j 4.
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Now let exp.G/ j4. Then exp.G2/ j4 and B˙.G2/ is seminormal [15, Theorem 5.3.2]. Since F.G/ and
B.G1/ are Krull monoids (and thus seminormal), we have that F.G/�B.G1/�B˙.G2/ is seminormal.
Therefore, B˙.G/ is seminormal (since ' is a divisor homomorphism). �

A monoid homomorphism � WH ! B is said to be a transfer homomorphism if the following two
conditions hold:

(T1) B D �.H/B� and ��1.B�/DH�.

(T2) If u 2H, b;c 2 B and �.u/D bc, then there exist v;w 2H such that uD vw, �.v/ 2 bB� and
�.w/ 2 cB�.

A monoid is said to be transfer Krull if it has a transfer homomorphism to a Krull monoid. Thus, every
Krull monoid is transfer Krull, because the identity is a transfer homomorphism. For a list of transfer
Krull monoids, that are not Krull, we refer to [12, Section 5] and to [2].

Corollary 3.5. Let G be an abelian group. Then the following statements are equivalent:

(a) B˙.G/ is a Krull monoid.

(b) B˙.G/ is completely integrally closed.

(c) B˙.G/ is root closed.

(d) B˙.G/ is a transfer Krull monoid.

(e) G is an elementary 2-group.

Proof. (a) D) (b): Every Krull monoid is completely integrally closed.

(b) D) (c): Every completely integrally closed monoid is root closed.

(c) D) (a): If B˙.G/ is root closed, then B˙.G/DBB˙.G/ is a Krull monoid by Theorem 3.2 (1).

(a)() (d): Every Krull monoid is transfer Krull and the reverse implication was proved in [4, Proposi-
tion 3.8].

(e)D) (a): IfG is an elementary 2-group, then B˙.G/DB.G/ is a Krull monoid by [9, Proposition 2.5.6].

(a) D) (e): It follows from Theorem 3.4 that there are some subgroups G1 and G2 of G such that
G D G1˚G2, G1 is an elementary 2-group and G2 is finite. Let ' W B˙.G2/! F.G2/�B˙.G/ be
defined by '.S/ D .S; S/ for each S 2 B˙.G2/. Clearly, ' is a monoid homomorphism. Moreover,
since F.G2/\B˙.G/ D B˙.G2/, we obtain that ' is a divisor homomorphism. It follows from [9,
Proposition 2.3.7] that F.G2/�B˙.G/ is a Krull monoid, and hence B˙.G2/ is a Krull monoid by [9,
Proposition 2.4.4 (b)]. Therefore, G2 is an elementary 2-group by [15, Theorem 4.4], and thus, G is an
elementary 2-group. �

Lemma 3.6. Let G be an abelian group and let G1 and G2 be subgroups of G such that G DG1˚G2,
G1 is an elementary 2-group and G2 is finite. Then q.B˙.G//=q.B.G// is finitely generated.

Proof. Let N D jG2j and let E D fg2 W g 2 G2g. First we show that for each S 2 B˙.G/, there is
some e 2 ŒE� such that S 2 eq.B.G//. Let S 2 B˙.G/. Then there are some n 2 N0, .g0i /

n
iD1 2 G

n
1
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and .g00i /
n
iD1 2G

n
2 such that S D

Qn
iD1.g

0
i Cg

00
i /. Moreover, there is some .˛i /niD1 2 f�1; 1g

n such thatPn
iD1 ˛i .g

0
i Cg

00
i /D 0. Observe that

nP
iD1

g0i D 0 and
nP
iD1

˛ig
00
i D 0:

Set e D
Qn
iD1;˛iD1

.g00i /
2. Then e 2 ŒE�. Since

nP
iD1

N.g0i Cg
00
i /DN

nP
iD1

g0i C
nP
iD1

Ng00i D 0;

we have that SN 2B.G/. Moreover,
nP
iD1

.N � 1/.g0i Cg
00
i /C

nP
iD1;˛iD1

2g00i D .N � 1/
nP
iD1

g0i C
nP
iD1

.N � 1/g00i C
nP

iD1;˛iD1

.1C˛i /g
00
i

D

nP
iD1

.N � 1/g00i C
nP
iD1

.1C˛i /g
00
i D

nP
iD1

Ng00i C
nP
iD1

˛ig
00
i D 0:

Consequently, SN�1e 2B.G/. This implies that

S D e
SN

SN�1e
2 eq.B.G//:

Since E is finite, it is sufficient to show that q.B˙.G//=q.B.G//D hfyq.B.G// W y 2Egi. Clearly,
E �B˙.G/, and thus hfyq.B.G// W y 2Egi � q.B˙.G//=q.B.G//.

Now, let x 2 q.B˙.G//=q.B.G//. Then there are some S; T 2B˙.G/ such that

x D
S

T
q.B.G//:

As shown before, there are some e; f 2 ŒE� such that S 2 eq.B.G// and T 2 f q.B.G//. It follows that
Sq.B.G//D eq.B.G// 2 hfyq.B.G// W y 2Egi and T q.B.G//D f q.B.G// 2 hfyq.B.G// W y 2Egi.
This implies that

x D
S

T
q.B.G//D

Sq.B.G//

T q.B.G//
2
˝
fyq.B.G// W y 2Eg

˛
: �

Theorem 3.7. Let G be an abelian group. Then the following statements are equivalent:

(a) B˙.G/ is finitely generated.

(b) B˙.G/ is a C-monoid defined in F.G/.

(c) B˙.G/ is a C-monoid.

(d) B˙.G/ is a Mori monoid and Cv
�2B˙.G/� is finitely generated.

(e) G is finite.

Proof. (a) D) (d): It is an immediate consequence of [9, Proposition 2.7.11 and Theorems 2.7.13
and 2.7.14] that B˙.G/ is a Mori monoid, 2B˙.G/ is a finitely generated Krull monoid and X

�2B˙.G/� is
finite (since B˙.G/ and 2B˙.G/ are reduced). We have that

Cv
�2B˙.G/�D ˝˚ŒP �Cv.1B˙.G// W P 2 X

�2B˙.G/�	˛
(since 2B˙.G/ is a Krull monoid), and thus, Cv

�2B˙.G/� is finitely generated.
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(b) D) (c): This is obvious.

(c) D) (d): We have that B˙.G/ is a Mori monoid by [9, Theorem 2.9.13]. Moreover, Cv
�2B˙.G/� is

finite by [9, Theorem 2.9.11].

(d) D) (e): Without restriction, we can assume that jGj � 3. It follows from Lemmas 3.3 and 3.6
and Theorem 3.4 that G is a torsion group and q.B˙.G//=q.B.G// is finitely generated. Since
2B˙.G/ ,! F.G/ is a divisor theory by Theorem 3.2 (2), we infer by [9, Theorem 2.4.7] that

Cv
�2B˙.G/�Š q.F.G//=q

�2B˙.G/�:
Therefore,

q.F.G//=q.B˙.G//D q.F.G//=q
�2B˙.G/�

is finitely generated, and hence q.F.G//=q.B.G// is finitely generated. Since G Š q.F.G//=q.B.G//

by [9, Proposition 2.5.6], we obtain that G is finitely generated. Consequently, G is finite (since G is a
torsion group).

(e) D) (a), (b): This follows from [15, Theorem 5.1] and its proof. �

4. On the isomorphism problem and the characterization problem

In this section, we first give an affirmative answer to the isomorphism problem for groups which are
direct sums of cyclic groups (Theorem 4.3). Then we study the characterization problem (Theorems 4.5
and 4.6).

Proposition 4.1. LetG1 andG2 be abelian groups such that jG1j; jG2j 6D2, and let ' WB˙.G1/!B˙.G2/

be a monoid isomorphism.

(1) '.0/D 0 and jAj D j'.A/j for every A 2B˙.G1/.

(2) For every g 2G1, there exists h 2G2 with ord.h/D ord.g/ such that '.g2/D h2.

(3) For every h 2G2, there exists g 2G1 such that '.g2/D h2.

(4) Let g 2G1. For every k 2 Z n f0g, there exist h 2G2 and " 2 f�1; 1g such that '..kg/2/D ."kh/2.

(5) There is a bijection '0 WG1!G2.

Proof. (1) We first show that '.0/ D 0. Assume to the contrary that there exists U 2 A.B˙.G2//

with U ¤ 0 such that '.0/ D U . Then 0 62 supp.U / and jU j � 2. Suppose U D g1 : : : g`. Then
there exist nontrivial T1; : : : ; T` 2B˙.G1/ such that '.Ti /D g2i , whence '.T1 : : : T`/D U 2 D '.02/.
Thus 02 D T1 : : : T`, whence ` D 2, T1 D T2 D 0, and U D g21 . Let g 2 G2 n f0;�g1g, and let
V1; V2; V 2A.B˙.G1// such that '.V1/D g2, '.V2/D .g1Cg/2, '.V /D g1g.g1Cg/. Then

'.0V1V2/D g
2
1g
2.g1Cg/

2
D .g1g.g1Cg//

2
D '.V 2/;

whence 0V1V2 D V 2 and hence 0 j V . It follows from V 2A.B˙.G1// that V D 0, a contradiction.
Let AD 0kB be such that k 2 N0 and 0 62 supp.B/. Then

jBj Dmax L.B2/Dmax L.'.B2//Dmax L..'.B//2/D j'.B/j;

whence jAj D kCjBj D kCj'.B/j D j'.A/j.
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(2) Let g 2 G1. If g D 0, then the assertion is trivial. Suppose g ¤ 0. Since g2 2 B˙.G1/, we have
'.g2/ 2 B˙.G2/ and j'.g2/j D 2. Thus there exists h 2 G2 such that '.g2/ 2 fh2; h.�h/g. Assume
to the contrary that '.g2/D h.�h/ with ord.h/� 3. Then there exist nontrivial T1; T2 2B˙.G1/ such
that '.T1/ D h2 and '.T2/ D .�h/2, whence '.T1T2/ D h2.�h/2 D '.g2/2 D '.g4/. It follows that
T1 D T2 D g

2 and hD�h, a contradiction to the assumption that ord.h/� 3.
It remains to show that ord.h/D ord.g/. We distinguish three cases.

Case 1. Assume ord.g/ is odd.
Then gord.g/ is an atom and '.gord.g//2 D '.g2 ord.g//D h2 ord.g/, whence

'
�
gord.g/�

D hord.g/
2A.B˙.G2//:

It follows that ord.h/D ord.g/.

Case 2. Assume ord.g/D 2m for some m 2 N.
Then .mg/gm is an atom and '..mg/gm/2 D '..mg/2/'.g2/m D h20h

2m for some h0 2G2, whence
'..mg/gm/D h0h

m 2A.B˙.G2//. It follows that h0 2 fmh;�mhg. Suppose ord.h0/� 3. Then there
exist g0 2G1 with g0 ¤mg and T 2B˙.G1/ such that '..g0/2/D .�h0/2 and '.T /D h0.�h0/. Then

'
�
.mg/2.g0/2

�
D h20.�h0/

2
D .h0.�h0//

2
D '.T 2/;

whence T D .mg/g0 2 B˙.G1/. Note that 2mg D 0. We have g0 D mg, a contradiction. Suppose
ord.h0/ D 2. Then h0 D mh and ord.h/ j 2m D ord.g/. If ord.h/ < 2m, then ord.h/ � m, and hence
.mh/hm D .mh/hm�ord.h/ � hord.h/ is not an atom, a contradiction. Thus, ord.h/D 2mD ord.g/.

Case 3. Assume ord.g/D1.
Then for every k 2N, we have .kg/gk 2A.B˙.G//. Assume to the contrary that ord.h/D n is finite.

Then '..ng/gn/2D'..ng/2g2n/Dh20.h
n/2 for some h02G2, whence '..ng/gn/Dh0hn2A.B˙.G2//,

and hence h0 2 fnh;�nhg D f0g, a contradiction.

(3) Note that '�1 WB˙.G2/!B˙.G1/ is a monoid isomorphism. Let h 2 G2. Then (2) implies that
there exists g 2G1 such that '�1.h2/D g2, and hence '.g2/D h2.

(4) Let g 2G1. Then (2) implies that there exists h2G2 with ord.h/D ord.g/ such that '.g2/D h2. Let
k2Znf0g. We set k0Djkj if ord.g/ is infinite and set k0Dminfk1; ord.g/�k1g, where k12 Œ0; ord.g/�1�
with k1 � k mod ord.g/, if ord.g/ is finite. Then .kg/gk

0

2 A.B˙.G1//. Let h0 2 G2 be such that
'..kg/2/D h20. Then

'
�
.kg/gk

0�2
D '

�
.kg/2g2k

0�
D h20h

2k0
D .h0h

k0/2;

whence '..kg/gk
0

/ D h0h
k0 is an atom. It follows that h0 2 fk0h;�k0hg D fkh;�khg, whence there

exists " 2 f�1; 1g such that h0 D "kh and '..kg/2/D ."kh/2.

(5) An isomorphism B˙.G1/ ! B˙.G2/ lifts to an isomorphism CB˙.G1/ !CB˙.G2/. Since the
inclusions

CB˙.G1/ ,! F.G1/ and CB˙.G2/ ,! F.G2/

are divisor theories by Theorem 3.2, the uniqueness theorem for divisor theories [9, Theorem 2.4.7] shows
that there is an isomorphism  WF.G1/!F.G2/. Each isomorphism between two free abelian monoids
stems from a bijection between the basis sets, whence the claim follows. �



16 FLORIN FABSITS, ALFRED GEROLDINGER, ANDREAS REINHART AND QINGHAI ZHONG

In the next remark, we provide a simple example showing that such a bijection '0 WG1!G2, as given
above, need not be a homomorphism.

Remark 4.2. Let G be an abelian group, and let g 2 G with ord.g/ � 5. Then the map ' W G ! G,
defined by '.g/ D �g, '.�g/ D g, and '.h/ D h for all h 2 G n fg;�gg, is a bijection. Since
'.2g/D 2g ¤�2g D '.g/C'.g/, we observe that ' is not a homomorphism. The bijection ' induces
a monoid isomorphism  W F.G/! F.G/, and it is easy to see that the restriction  jB˙.G/ is also a
monoid isomorphism. Thus, we have an isomorphism between monoids of plus-minus weighted zero-sum
sequences, which does not stem from a group homomorphism.

Theorem 4.3. Let G1 and G2 be abelian groups, and suppose that G1 is a direct sum of cyclic groups.
Then the groups G1 and G2 are isomorphic if and only if their monoids of plus-minus weighted zero-sum
sequences B˙.G1/ and B˙.G2/ are isomorphic.

Proof. If G1 and G2 are isomorphic, then the associated monoids B˙.G1/ and B˙.G2/ are isomorphic.
Conversely, suppose we have a monoid isomorphism ' WB˙.G1/!B˙.G2/. If one of the monoids is
factorial, then both are factorial and Lemma 3.1 shows that G1 and G2 are isomorphic.

Suppose that none of the monoids is factorial. Then Lemma 3.1 implies that jG1j � 3 and jG2j � 3.
Suppose that G1 D

L
j2J hfej gi. By Proposition 4.1 (2), there exist fj 2G2 with ord.fj /D ord.ej / and

'.e2j /D f
2
j for all j 2 J . We define a group homomorphism  WG1!G2 by setting

 
� P
i2I

kiei

�
D
P
i2I

kifi

for all finite subsets I � J and all ki 2 Z, with i 2 I .
We first show that  is surjective. Let h2G2. We need to show that h2 .G1/. By Proposition 4.1 (3),

there exists g2G1 such that '.g2/Dh2 and gD
P
j2J0

tj ej for some finite subset J0�J and tj 2Znf0g

for all j 2 J0, whence

g
Q
j2J0

e
jtj j

j 2B˙.G1/ and '
�
g2
Q
j2J0

e
2jtj j

j

�
D h2

Q
j2J0

f
2jtj j

j :

It follows that '
�
g
Q
j2J0

e
jtj j

j

�
D h

Q
j2J0

f
jtj j

j 2B˙.G2/, whence h 2 hffj W j 2 J0gi �  .G1/.
It remains to show that  is a monomorphism. Assume to the contrary that  is not a monomor-

phism. Then there exist finite ∅ ¤ I � J and ki 2 Z n f0g for i 2 I such that
P
i2I kifi D 0.

By Proposition 4.1 (4), there exist "i 2 f�1; 1g for all i 2 I such that '.."ikiei /2/ D .kifi /2 for all
i 2 I , whence '

�Q
i2I ."ikiei /

2
�
D
�Q

i2I kifi
�2. Let T 2 B˙.G1/ be such that '.T / D

Q
i2I kifi ,

whence

'.T 2/D '
� Q
i2I

."ikiei /
2
�
;

and hence T D
Q
i2I ."ikiei / 2B˙.G1/, a contradiction to the independence of .ei /i2I . �

Our next goal is to settle the characterization problem for cyclic groups of odd order (Theorem 4.6; a
weaker result in this direction is given in [15, Theorem 6.10]). In order to do so, we need some more
invariants controlling the structure of sets of lengths.
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Let H be a BF-monoid. Then
�.H/D

S
L2L.H/

�.L/� N

denotes the set of distances of H . By definition, we have that H is half-factorial if and only if �.H/D∅.
If H is not half-factorial, then min�.H/D gcd�.H/. Let !.H/ be the smallest N 2 N0[f1g with
the following property:

For all u 2 A.H/, all n 2 N and all a1; : : : ; an 2 H with u j a1 � : : : � an, there is � � Œ1; n� such that
j�j �N and u j

Q
�2� a� .

If H is not half-factorial, then, by [10, Proposition 3.6.3], we have

(4-1) 2C sup�.H/� !.H/:

A subset L � Z is said to be an almost arithmetic progression (AAP) with difference d 2 N, length `,
and bound M if

LD yC .L0[L�[L00/� yC dZ;

where L� is an arithmetic progression with difference d , length `, and minL� D 0, L0 � Œ�M;�1�, and
L00 �maxL�C Œ1;M �. We define �1.H/ to be the set of all d 2 N having the following property:

For every k 2 N, there is Lk 2 L.H/ that is an AAP with difference d and length at least k.

For k 2 N, we denote by

� Uk.H/D
S
k2L;L2L.H/L� N the union of sets of lengths (containing k),

� �k.H/D sup Uk.H/ the k-th elasticity of H .

The unions Uk.B˙.G// are finite intervals by [4, Theorem 5.2] and for the elasticity �.H/, we have

�.H/D sup
�

maxL
minL

W f0g ¤ L 2 L.H/

�
D lim
k!1

�k.H/

k
:

Lemma 4.4. Let G1 and G2 be finite abelian groups such that L.B˙.G1//D L.B˙.G2//.

(1) max�1.B˙.G1//Dmax�1.B˙.G2//.

(2) �k.B˙.G1//D �k.B˙.G2// for every k 2 N, and D˙.G1/D D˙.G2/.

Proof. The claims on �1. � / and on �k. � / follow immediately from L.B˙.G1//D L.B˙.G2//. Since
�2.B˙.Gi //D D˙.Gi / for i 2 Œ1; 2� [4, Theorem 5.7], we infer that D˙.G1/D D˙.G2/. �

Let G D Cn1
˚ : : :˚Cnr

with 1 < n1 j : : : j nr . We set

D�.G/D 1C
rP
iD1

.ni � 1/:

Then D�.G/� D.G/ and equality holds if r � 2 or if G is a p-group; see [9, Chapter 5]. If jGj has odd
order, then D˙.G/D D.G/ by [4, Corollary 6.2]. Set n0 D 1. If n is even, then D˙.Cn/D 1Cn=2 and
if t 2 Œ0; r� is maximal such that 2 − nt , then

D˙.G/� 1C
tP
iD1

.ni � 1/C
rP

iDtC1

1
2
ni I
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see [4, Theorem 6.7 and Corollary 6.8]. This shows that G has Davenport constant D˙.G/D 3 if and
only if G is isomorphic to one of the groups

C3; C4; C2˚C2:

Furthermore, we have D˙.G/D 4 if and only if G is either isomorphic to C 32 or to C2˚C4. Indeed, the
above mentioned results on the Davenport constant show that no other finite abelian groups G can have
D˙.G/D 4, and in the following theorem we outline that D˙.C2˚C4/D 4.

Theorem 4.5. (1) L.B˙.C1//D L.B˙.C2//D ffkg W k 2 N0g.

(2) L.B˙.C3//D L.B˙.C4//D L.B˙.C2˚C2//D fyC 2kC Œ0; k� W y; k 2 N0g.

(3) L.B˙.C
3
2 //D

˚
yC .kC 1/C Œ0; k� W y 2 N0; k 2 Œ0; 2�g[ fyC kC Œ0; k� W y 2 N0; k � 3g

[fyC2kC2 � Œ0; k� W y; k 2N0g.

(4) D˙.C2˚C4/D 4, �.B˙.C2˚C4//D Œ1; 2� and
L.B˙.C2˚C4//D fyC kC Œ0; k� W y 2 N0; k � 2g[ fyC 2kC 2 � Œ0; k� W y; k 2 N0g.

In particular, we have L.B˙.C
3
2 //¨ L.B˙.C2˚C4//.

Proof. (1) This follows from Lemma 3.1.

(2) If g 2 C3 with ord.g/D 3, then

A.B˙.C3//D
˚
0; g2; .�g/2; .�g/g; g3; g2.�g/; g.�g/2; .�g/3

	
:

If g 2 C4 with ord.g/D 4, then

A.B˙.C4//D
˚
0; g2; .�g/2; .�g/g; .2g/2; .2g/g2; .2g/.�g/2; .2g/.�g/g

	
:

If e1; e2 2 C2˚C2 are distinct and nonzero, then

A.B˙.C2˚C2//D
˚
0; e21 ; e

2
2 ; .e1C e2/

2; e1e2.e1C e2/
	
:

This shows that, in each of the three groups, the sequence S D 0 is the only prime element and the product
of any two atoms of length three has a factorization as a product of three atoms of length two. Thus, the
assertion follows (details in the case of C2˚C2 are given in [9, Theorem 7.3.2]).

(3) Since B.C 32 /DB˙.C
3
2 /, the assertion follows from [9, Theorem 7.3.2].

(4) We set G D C2 ˚ C4 and choose a basis .e1; e2/ of G with ord.e1/ D 2 and ord.e2/ D 4. Then
G D f0; e1; 2e2; e1C 2e2;˙e2;˙.e1C e2/g. We proceed in five steps.

A1. D˙.G/D 4 and �.B˙.G//D 2.

Proof of A1. Since 5D D.G/ � D˙.G/ � 4, in order to show D˙.G/D 4, it suffices to prove that for
every A 2 A.B.G// with jAj D 5, we have A 62 A.B˙.G//. Let U 2 A.B.G// with jU j D 5. The
elements of A.B.C2˚C4// are written down explicitly in [14, Lemma 4.6]. Here, we go briefly through
the possible cases. By symmetry and after renumbering if necessary, we may assume that ve2

.U /D h.U /.
Note that U has four terms of order 4 and one term of order 2. Moreover,

fe1C e2; e1� e2g 6� fg 2 supp.U / W ord.g/D 4g � fe2; e1C e2; e1� e2g:

We have h.U / D 3, and hence U D e32.e1 C e2/e1 or U D e32.e1 � e2/.e1 C 2e2/, which is not in
A.B˙.G//. Therefore, D˙.G/D 4 and �.B˙.G//D 2 [4, Theorem 5.7]. �
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A2. On A.B˙.G// and some relations.

We set G0 D f0; e1; 2e2; e1C 2e2; e2; e1C e2g and observe that

L.B˙.G//D L.B˙.G0// and D˙.G/D D˙.G0/:

A simple calculation shows that

fA 2A.B˙.G0// W jAj D 4g

D fe22e1.e1C 2e2/; .e1C e2/
2e1.e1C 2e2/; e2.e1C e2/e1.2e2/; e2.e1C e2/.2e2/.e1C 2e2/g

and

fA 2A.B˙.G0// W jAj D 3g

D fe1.2e2/.e1C 2e2/; e
2
2.2e2/; .e1C e2/

2.2e2/; e2.e1C e2/.e1C 2e2/; e2.e1C e2/e1g:

Note that

(i) For every atom A 2A.B˙.G0// of length 4, we have LB˙.G0/.A
2/D f2; 4g if and only if

A 2 fe22e1.e1C 2e2/; .e1C e2/
2e1.e1C 2e2/gI

(ii) For every atom A 2A.B˙.G0// of length 4, we have LB˙.G0/.A
2/D Œ2; 4� if and only if

A 2 fe2.e1C e2/e1.2e2/; e2.e1C e2/.2e2/.e1C 2e2/gI

(iii) For any two distinct atoms A1; A2 2A.B˙.G0// of length 4, we have e1e2.e1C e2/ divides A1A2
in B˙.G0/, which implies that 3 2 LB˙.G0/.A1A2/;

(iv) For any two atoms A1; A2 2 A.B˙.G0// of length 3, we have either 3 2 LB˙.G0/.A1A2/ or
A1A2 D U1U2 for some atoms U1; U2 2A.B˙.G0// with jU1j D 2 and jU2j D 4;

(v) We have �.B˙.fe1; e2; e1C 2e2g//D f2g;

(vi) We have LB˙.G0/.U
2
1 / D f2; 4g, LB˙.G0/.U

2
2 / D Œ2; 4�, and LB˙.G0/.U1U2U3/ D Œ3; 6�, where

U1 D e
2
2e1.e1C 2e2/, U2 D e2.e1C e2/e1.2e2/, and U3 D e2.e1C e2/.2e2/.e1C 2e2/;

(vii) For all atoms A 2A.B˙.G0// nA.B˙.fe1; 2e2; e1C 2e2g//, we have �˙.A/D f0; 2e2g.

A3. �.B˙.G//D Œ1; 2�.

Proof of A3. Relation (vi) shows that Œ1; 2���.B˙.G//. Thus, by Inequality (4-1), it suffices to verify
that !.B˙.G//� 4.

Let A;A1; : : : ; A` 2 A.B˙.G0// n f0g such that A j A1 � : : : � A` in B˙.G0/. If ` � 4, then there
is nothing to do. Suppose ` � 5. Since jAj � 4, after renumbering if necessary, we may assume that
A j A1 � : : : �A4. If AD g1g2g3g4 such that gi j Ai for every i 2 Œ1; 4�, then A�1A1 � : : : �A4 2B˙.G0/

and hence A j A1 � : : : �A4 in B˙.G0/. Otherwise after renumbering if necessary we may assume that
A j A1A2A3. Set A0 D A�1A1A2A3. Then (vii) implies that �˙.A0/ � �˙.A1A2A3/ D f0; 2e2g. If
0 2 �˙.A

0/, then A j A1A2A3 in B˙.G0/. Suppose �˙.A0/D f2e2g. Since A j A1 � : : : �A` in B˙.G0/,
there exists i 2 Œ4; `� such that �˙.Ai /D f0; 2e2g, whence 0 2 �˙.A0Ai /. It follows that A jA1A2A3Ai .
Therefore, !.B˙.G//D !.B˙.G0//� 4. �

A4. L.B˙.G0//� fyC kC Œ0; k� W y 2 N0; k � 2g[ fyC 2kC 2 � Œ0; k� W y; k 2 N0g.
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Proof of A4. Let LD yC2kC2 � Œ0; k� for some y; k 2N0. Then (v) implies that LB˙.G0/.0
yU 2k1 /DL,

whence fyC 2kC 2 � Œ0; k� W y; k 2 N0g � L.B˙.G0//.
Let LD yC kC Œ0; k� for some y 2 N0 and some k � 2. Suppose k is even. Then (vi) implies that

LB˙.G0/.0
yU k2 /D L. Suppose k � 3 is odd. Then (v) and (vi) imply that LB˙.G0/.0

yU k�21 U2U3/DL,
whence fyC kC Œ0; k� W y 2 N0; k � 2g � L.B˙.G0//. �
A5. L.B˙.G0//� fyC kC Œ0; k� W y 2 N0; k � 2g[ fyC 2kC 2 � Œ0; k� W y; k 2 N0g.

Proof of A5. Let B 2B˙.G0/. We distinguish three cases.

Case 1. Assume �.LB˙.G0/.B//D∅.
Then LB˙.G0/.B/ 2 fyC 2kC 2 � Œ0; k� W y; k 2 N0g.

Case 2. Assume 2 2�.LB˙.G0/.B//.
We set

B D
rQ
iD1

U
ui

i

sQ
jD1

V
vj

j

tQ
kD1

Wk;

where r; s; t; ui ; vj 2N0, Ui 2A.B˙.G0// for i 2 Œ1; r� are distinct atoms of length 4, Vj 2A.B˙.G0//

for j 2 Œ1; s� are distinct atoms of length 3, and Wk 2A.B˙.G0// for k 2 Œ1; t � are atoms of length 2,
such that

rP
iD1

ui C
sP

jD1

vj C t C 1 62 LB˙.G0/.B/ and
rP
iD1

ui C
sP

jD1

vj C t C 2 2 LB˙.G0/.B/:

We may assume that the factorization

B D
rQ
iD1

U
ui

i

sQ
jD1

V
vj

j

tQ
kD1

Wk

is the one such that
Pr
iD1 ui is maximal. By (iv), we obtain that

Ps
jD1 vj �1, whence sD1 and v12f0; 1g.

By (iii), we have r D 1 and by (i) and (ii), we have U1 2 fe22e1.e1 C 2e2/; .e1 C e2/
2e1.e1 C 2e2/g.

After changing bases if necessary, we may assume that U1 D e22e1.e1C 2e2/. Moreover, we have u1 � 2
since u1C v1C t C 2 2 LB˙.G0/.B/. If supp.B/D fe1; e2; e1C 2e2g, then v1 D 0 and (v) implies that
�.LB˙.G0/.B//D f2g, whence

LB˙.G0/.B/D u1C t C 2 �
�
0; bu1=2c

�
2 fyC 2kC 2 � Œ0; k� W y; k 2 N0g:

Otherwise there exists g 2G0 nfe1; e2; e1C2e2g, and hence gD e1Ce2 or 2e2. If there exists k 2 Œ1; t �
such that g jWk , then 42 LB˙.G0/.U

2
1Wk/, a contradiction. Suppose g jV1. If V1¤ .e1Ce2/2.2e2/, then

3 2 LB˙.G0/.U1V1/, a contradiction. If V1 D .e1C e2/2.2e2/, then 4 2 LB˙.G0/.U
2
1 V1/, a contradiction.

Case 3. Assume 1 2�.LB˙.G0/.B//.
Then �.LB˙.G0/.B//D 1 and min LB˙.G0/.B/� 2, whence

LB˙.G0/.B/D
�
min LB˙.G0/.B/;max LB˙.G0/.B/

�
�
�
min LB˙.G0/.B/; 2min LB˙.G0/.B/

�
:

Therefore, LB˙.G0/.B/ 2 fyC kC Œ0; k� W y 2 N0; k � 2g. �
This completes the proof of Theorem 4.5. �
Theorem 4.6. Let G be a finite abelian group, and let n� 5 be odd such that L.B˙.G//D L.B˙.Cn//.
Then G Š Cn.
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Proof. Since n is odd, [4, Corollary 6.2] implies that D˙.Cn/ D D.Cn/, whence n D D.Cn/ D

D˙.Cn/ D D˙.G/ by Lemma 4.4. Let L 2 L.B˙.Cn// be such that f2; ng � L. Then there exist
atoms A1; A2; U1; : : : ; Un 2A.B˙.Cn// such that A1A2DU1 � : : : �Un and LB˙.Cn/.A1A2/DL. Since
jAi j � n for every i 2 Œ1; 2� and jUj j � 2 for every j 2 Œ1; n�, we have that jA1j D jA2j D n and jUj j D 2
for all j 2 Œ1; n�. It follows that supp.A1/; supp.A2/�fg;�gg for some g 2Cn with ord.g/D n, whence
LD f2; ng. Therefore, for every L 2 L.B˙.G// such that f2; ng � L, we have LD f2; ng.

Let U 2 A.B˙.G// with jU j D D˙.G/ D n. Without loss of generality, we may assume that
U 2 A.B.G//. Since f2; ng � LB˙.G/

.U 2/, we have f2; ng D LB˙.G/
.U 2/, whence for every atom

W 2A.B˙.G// dividing U 2, we obtain jW j 2 f2; ng.
If jsupp.U /j D 1, then U D gn for some g 2G with ord.g/D n, and hence G Š Cn.
Suppose jsupp.U /j � 2. If there exists g 2 supp.U / with ord.g/� 3 such that vg.U /D 1, then we set

V D g�1.2g/.�g/U 2B˙.G/. Since jV j> n, we have that g�1U has a decomposition g�1U D T1T2
such that .2g/T1; .�g/T2 2 B˙.G/. Since gT2 2 B˙.G/ and jgT2j < n, we have that gT2 is a
product of atoms of length 2, a contradiction to the fact that g 62 supp.T2/ and �g 62 supp.T2/. Thus,
h.U / D 1 implies that all terms of U have order 2. If h.U / D 1, then hsupp.U /i D G implies that G
is an elementary 2-group, whence G Š C n�12 and B˙.G/D B.G/. By [9, Corollary 6.8.3], we have
n� 3 2�1.B.G//D�1.B˙.Cn//. For every k 2 N, there exists Sk 2B˙.Cn/ such that LB˙.Cn/.Sk/

is an AAP with difference n� 3 and length at least k. Since A.B˙.Cn// is finite, for every large enough
k 2 N, there exists V 2A.B˙.Cn// such that V 2n j Sk in B˙.Cn/. Whence for every g 2 Cn, we have
g2 ord.g/ j Sk in B˙.Cn/. It follows that ord.g/�2 2�.LB.Cn/.Sk//, and hence ord.g/�2 is a multiple
of n� 3, a contradiction. Therefore, we have h.U /� 2.

Next we distinguish two cases depending on jsupp.U /j.

Case 1. Assume jsupp.U /j D 2.
Then there exists g1 2 supp.U / such that vg1

.U / � 3. Let g2 2 supp.U / n fg1g and set V D
g�21 .g1C g2/.g1 � g2/U . If V is not an atom, then .g1/�2U has a decomposition .g1/�2U D T1T2
such that .g1Cg2/T1; .g1�g2/T2 2B˙.G/, whence g1g2T1; g1g2T2 2B˙.G/ are both subsequences
of U 2 and 3� jg1g2T1j; jg1g2T2j< n. It follows that both g1g2T1 and g1g2T2 are products of atoms
of length 2, whence U D g21T1T2 is a product of atoms of length 2, a contradiction. Therefore, V is
an atom of length n. Similarly we can show that LB˙.G/

.V 2/D f2; ng, a contradiction to the fact that
.g1Cg2/g1g2 j V .

Case 2. Assume jsupp.U /j � 3.
Then there exist g1 2 supp.U / with vg1

.U / � 2 and distinct g2; g3 2 supp.U / n fg1g. Set V D
.g1g2/

�1.g1 � g3/.g2 C g3/U . Assume to the contrary that V is not an atom. Then .g1g2/�1U
has a decomposition .g1g2/

�1U D T1T2 such that .g1 � g3/T1; .g2 C g3/T2 2 B˙.G/, whence
g1g3T1; g2g3T2 2 B˙.G/ are both subsequences of U 2 and 3 � jg1g3T1j; jg2g3T2j < n. It follows
that both g1g3T1 and g2g3T2 are products of atoms of length 2, whence U D g1g2T1T2 is a product
of atoms of length 2, a contradiction. Therefore, V is an atom of length n. Similarly, we can show that
LB˙.G/

.V 2/D f2; ng, a contradiction to the fact that .g1�g3/g1g3 j V . �
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