
ON A ZERO-SUM PROBLEM ARISING FROM FACTORIZATION THEORY
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Abstract. We study a zero-sum problem dealing with minimal zero-sum sequences of maximal length

over finite abelian groups. A positive answer to this problem yields a structural description of sets of
lengths with maximal elasticity in transfer Krull monoids over finite abelian groups.

1. Introduction

LetG be an additively written, finite abelian group andG0 ⊂ G be a subset. By a sequence S = g1 . . . g`
over G0, we mean a finite sequence of terms from G0, where the order is disregarded and repetition is
allowed. We say that S has sum zero if g1 + . . .+ g` = 0 and that S is a minimal zero-sum sequence if no
proper subsum equals zero (i.e.,

∑
i∈I gi 6= 0 for all ∅ 6= I ( [1, `]). The set of all zero-sum sequences is a

(multiplicative) monoid with concatenation of sequences as operation. The empty sequence is the identity
element of this monoid and the minimal zero-sum sequences are the irreducible elements. The Davenport
constant D(G) of G is the maximal length of a minimal zero-sum sequence over G (equivalently, D(G) is
the smallest integer ` ∈ N such that every sequence over G of length at least ` has a non-empty zero-sum
subsequence).

In this note we study a conjecture stemming from factorization theory. We first formulate it in basic
terms. Its background and significance will be discussed in Section 2, when we have more terminology at
our disposal (Theorem 2.2 and Corollary 2.3).

Conjecture 1.1. Let G be a finite abelian group, which is neither cyclic nor an elementary 2-group.
Then, for every minimal zero-sum sequence U = g1 . . . g` of length |U | = ` = D(G), there are k ∈ N and
minimal zero-sum sequences U1, . . . , Uk, V1, . . . , Vk+1 with terms from {g1, . . . , g`,−g1, . . . ,−g`} such that
U1 . . . Uk = V1 . . . Vk+1.

Let G be a cyclic group of order |G| = n ≥ 3. Then D(G) = n and every minimal zero-sum sequence
over G of length n consists of an element g of order n repeated n times. Thus all distances s−r, occurring
in equations U1 . . . Ur = V1 . . . Vs over minimal zero-sum sequences with terms from {−g, g}, is a multiple
of n − 2. Similarly, if G is an elementary 2-group of rank r ≥ 2, then D(G) = r + 1 and all distances
s−r are multiplies of r−1. Thus, the above conjecture neither holds for cyclic groups nor for elementary
2-groups with Davenport constant greater than or equal to four.

To describe the challenge of the above conjecture, suppose that G ∼= Cn1
⊕ . . .⊕Cnr

, where r = r(G) =
max{rp(G) : p ∈ P} is the rank of G, rp(G) is the p-rank of G for every prime p, and 1 < n1 | . . . | nr are
positive integers. Then

(1.1) D∗(G) := 1 +

r∑
i=1

(ni − 1) ≤ D(G) .

It is known since the 1960s that equality holds for p-groups and for groups of rank r(G) ≤ 2. There
are further sparse series of groups where equality holds and groups where equality does not hold (see
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[1, 9, 10, 12] for recent progress). Even less is known for the associated inverse question asking for the
structure of minimal zero-sum sequences of length D(G). However, the full structural description of
minimal zero-sum sequences of length D(G) is not always needed in order to settle the Conjecture 1.1.
We summarize what is known so far.

Conjecture 1.1 is settled for groups of rank two and for groups isomorphic to C2⊕C2⊕C2n with n ≥ 2.
These proofs heavily depend on the complete structural description of minimal zero-sum sequences of
length D(G). Furthermore, the conjecture is proved for groups isomorphic to Crpk , where p is a prime

and k, r ∈ N such that pk > 2, although for these groups there is not even a conjecture concerning the
structure of minimal zero-sum sequences of maximal length (for all these results see [7]). We formulate
a main result of the present paper.

Theorem 1.2. Conjecture 1.1 holds true for the following non-cyclic finite abelian groups G.

(a) G is a p-group such that gcd(exp(G)− 2,D(G)− 2) = 1.
(b) G ∼= Cr1ps1 ⊕ C

r2
ps2 , where p is a prime and r1, r2, s1, s2 ∈ N such that s1 divides s2.

(c) G is a group with exponent exp(G) = pq, where p, q are distinct primes satisfying one of the three
properties.

(i) gcd(pq − 2,D(G)− 2) = 1.
(ii) gcd(pq − 2, p+ q − 3) = 1.
(iii) q = 2 and p− 1 is a power of 2.
(iv) q = 2 and rp(G) = 1.

(d) G is a group with exponent exp(G) ∈ [3, 11] \ {8}.

Since Conjecture 1.1 does not hold for groups G with exp(G) = 2, groups that are sums of two
elementary p-groups (as listed in (c)) and groups with small exponents, as listed in (d), are extremal
cases for the validity of the conjecture. Statement (a) has a simple proof. However, since for p-groups
we have D(G) = D∗(G), it yields a variety of groups satisfying the conjecture. The precise value of the
Davenport constant is not known in general for groups with exponent exp(G) = pq, where p and q are
distinct primes. To mention a few examples of what is known so far, let G ∼= Cr2 ⊕ C6 with r ∈ N.
Then D(G) = D∗(G) (i.e., equality holds in (1.1)) if and only if r ∈ [1, 3] (see [6, Corollary 2] and [2]).
Moreover, if a group G with exp(G) = 6 has a subgroup isomorphic to Ci2⊕C5−i

6 for some i ∈ [1, 4], then
D(G) > D∗(G) by [4, Theorem 3.1].

We proceed as follows. In Section 2, we present the background from factorization theory which
motivates the above conjecture. We formulate a conjecture and a theorem in terms of factorization
theory (Conjecture 2.1 and Theorem 2.2), associated to the ones given in the Introduction. In Corollary
2.3, we establish the significance of the two conjectures for the structure of sets of lengths having maximal
elasticity. In Section 3, we prove Theorems 1.2 and 2.2.

2. Background on sets of lengths

For integers a, b ∈ Z, we denote by [a, b] = {x ∈ Z : a ≤ x ≤ b} the discrete interval between a and
b. Let L = {m1, . . . ,mk} ⊂ Z be a finite nonempty subset with k ∈ N and m1 < . . . < mk. Then
∆(L) = {mi −mi−1 : i ∈ [2, k]} ⊂ N denotes the set of distances of L. If L′ ⊂ Z is a finite subset, then
L + L′ = {a + a′ : a ∈ L, a′ ∈ L′} is the sumset of L and L′. If L ⊂ N consists of positive integers,
then ρ(L) = maxL/minL denotes the elasticity of L and for convenience we set ρ({0}) = 1. Let G be
an additively written finite abelian group. If G0 ⊂ G is a subset, then 〈G0〉 is the subgroup generated
by G0. Let r ∈ N and (e1, . . . , er) be an r-tuple of elements of G. Then (e1, . . . , er) is said to be
independent if ei 6= 0 for all i ∈ [1, r] and if for all m1, . . . ,mr ∈ Zr an equation m1e1 + . . . + mrer = 0
implies that miei = 0 for all i ∈ [1, r]. Furthermore, (e1, . . . , er) is a basis of G if it is independent and
G = 〈e1〉 ⊕ . . . ⊕ 〈er〉. A subset G0 ⊂ G is independent if the tuple (g)g∈G0 is independent. We recall
some basics of the arithmetic of monoids and of zero-sum sequences. Our notation and terminology are
consistent with [5, 11].
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Arithmetic of Monoids. By a monoid, we mean a commutative cancellative semigroup with identity
element. Let H be a multiplicatively written monoid. We denote by A(H) the set of atoms (irreducible
elements) of H and say that H is atomic if every non-invertible element can be written as a finite product
of atoms. If a = u1 . . . uk, where k ∈ N and u1, . . . , uk ∈ A(H), then k is a factorization length of a, and

LH(a) = L(a) = {k : k is a factorization length of a} ⊂ N

denotes the set of lengths of a. It is usual to set L(a) = {0} if a ∈ H is invertible. The family

L(H) = {L(a) : a ∈ H}

is called the system of sets of lengths of H and

ρ(H) = sup{ρ(L) : L ∈ L(H)} ∈ R≥1 ∪ {∞}

denotes the elasticity of H. Furthermore,

∆(H) =
⋃

L∈L(H)

∆(L) ⊂ N

is the set of distances of H. By definition, ρ(H) = 1 if and only if ∆(H) = ∅, and otherwise we have
min ∆(H) = gcd ∆(H).

Zero-sum Sequences. Let G be an additively written finite abelian group and G0 ⊂ G be a subset.
We denote by F(G0) the (multiplicatively written) free abelian monoid with basis G0, called the monoid
of sequences over G0. Let

S = g1 . . . g` =
∏
g∈G0

gvg(S) ∈ F(G0)

be a sequence over G0. Then, for every g ∈ G0, vg(S) ∈ N0 is the multiplicity of g in S, supp(S) =
{g1, . . . , g`} ⊂ G0 is the support of S, |S| = ` =

∑
g∈G0

vg(S) ∈ N0 is the length of S, Σ(S) =

{
∑
i∈I gi : ∅ 6= I ⊂ [1, `]} is the set of subsequence sums of S, and σ(S) = g1 + . . . + g` ∈ G is the

sum of S. We say that S is zero-sum free if 0 /∈ Σ(S). The set

B(G0) = {S ∈ F(G0) : σ(S) = 0} ⊂ F(G0)

is a submonoid of F(G0), called the monoid of zero-sum sequences over G0. We set

L(G0) := L(B(G0)), ∆(G0) := ∆(B(G0)), ρ(G0) := ρ(B(G0)) ,

and so on.

Transfer Krull monoids. A monoid H (resp. a domain D) is said to be a transfer Krull monoid
(resp. a transfer Krull domain) over a finite abelian group G if there exists a transfer homomorphism
θ : H → B(G) (resp. θ : D \ {0} → B(G)). The classical example of a transfer Krull domain is the ring
of integers OK of an algebraic number field K, and in this case G is the ideal class group of OK . We
refer to the survey [8] for formal definitions and further examples. The crucial property of a transfer
homomorphism θ : H → B(G) is that it preserves the system of sets of lengths. We have L(H) = L(G),
whence all invariants describing the structure of sets of length coincide. In particular, we have

(2.1) ∆(H) = ∆(G) ⊂ [1,D(G)− 2] and ρ(H) = ρ(G) = D(G)/2 .

We refer to the survey [14] for what is known on the system L(G) and on associated invariants. Let H
be a transfer Krull monoid over G. It is classical that |L| = 1 for all L ∈ L(H) if and only if |G| ≤ 2.
Suppose that |G| ≥ 3. Then there is a ∈ H such that |L(a)| > 1. For every n ∈ N, the n-fold sumset

L(a) + . . .+ L(a) ⊂ L(an) ,

whence |L(an)| > n. Thus, sets of lengths in L(H) can be arbitrarily large.
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On ∆ρ(H). Now we define the crucial invariant of the present paper (see [7, Definition 2.1]). Let ∆ρ(H)
denote the set of all d ∈ N with the following property: for every k ∈ N, there is some Lk ∈ L(H) with
ρ(Lk) = ρ(H) and which has the form

(2.2) Lk = y + (L′ ∪ {0, d, . . . , `d} ∪ L′′) ⊂ y + dZ

where y ∈ Z, ` ≥ k, maxL′ < 0, and minL′′ > `D. If H is a transfer Krull monoid over a finite
abelian group G, then ∆ρ(H) = ∆ρ(G) and there is a constant M ∈ N0 such that L′ ⊂ [−M,−1], and
L′′ ⊂ `d+ [1,M ] ([7, Lemma 2.3]). The following conjecture was first formulated in [7, Conjecture 3.20].

Conjecture 2.1. Let H be a transfer Krull monoid over a finite abelian group G with |G| > 4. Then
∆ρ(H) = {1} if and only if G is neither cyclic nor an elementary 2-group.

In the present note we study ∆ρ(G) and obtain the following result.

Theorem 2.2. Let H be a transfer Krull monoid over a finite abelian non-cyclic group G. Then ∆ρ(H) =
{1} for the following groups.

(a) G is a p-group such that gcd(exp(G)− 2,D(G)− 2) = 1.
(b) G ∼= Cr1ps1 ⊕ C

r2
ps2 , where p is a prime and r1, r2, s1, s2 ∈ N such that s1 divides s2.

(c) G is a group with exponent exp(G) = pq, where p, q are distinct primes satisfying one of the three
properties.

(i) gcd(pq − 2,D(G)− 2) = 1.
(ii) gcd(pq − 2, p+ q − 3) = 1.
(iii) q = 2 and p− 1 is a power of 2.
(iv) q = 2 and rp(G) = 1.

(d) G is a group with exponent exp(G) ∈ [3, 11] \ {8}.

The proof of Theorem 2.2 will be given in Section 3. We derive a corollary, which demonstrates the
significance of the Conjecture 2.1 and of Theorem 2.2. It states that, if ∆ρ(H) = {1}, then all sets of
lengths L with maximal elasticity ρ(L) = ρ(H) are intervals, apart from their globally bounded initial
and end parts.

Corollary 2.3. Let H be a transfer Krull monoid over a finite abelian group G and suppose that ∆ρ(H) =
{1}. Then there exists a constant M∗ ∈ N0 such that every L ∈ L(H) with ρ(L) = ρ(H) has the form

L = y + (L′ ∪ [0, `] ∪ L′′) ,

where y ∈ Z, ` ∈ N0, L′ ⊂ [−M∗,−1], and L′′ ⊂ `+ [1,M∗].

Proof. Since L(H) = L(G), it is sufficient to prove the claim for the monoid B(G) of zero-sum sequences
over G. If D(G) ≤ 3, then ∆(G) ⊂ {1}, whence all L ∈ L(G) are intervals and the claim holds with
M∗ = 0. Suppose that D(G) ≥ 4 and recall that ∆(G) ⊂ [1,D(G) − 2] (see (2.1)). We proceed in four
steps.

1. By [3, Section 4.7], there is a constant M1 ∈ N0 such that every L ∈ L(G) has the form

(2.3) L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y + (D + dZ) ,

where y ∈ Z is a shift parameter,

• d ∈ ∆(G) ⊂ [1,D(G)− 2] and {0, d} ⊂ D ⊂ [0, d],
• L∗ is finite nonempty with minL∗ = 0 and L∗ = (D + dZ) ∩ [0,maxL∗],
• L′ ⊂ [−M1,−1], and L′′ ⊂ maxL∗ + [1,M1].

As a side remark, we recall that the above description is best possible, as it was shown by a realization
result of Schmid ([13]).
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2. Let G0 ⊂ G be a subset with ∆(G0) 6= ∅. By [3, Theorem 4.3.6] (applied to the monoid B(G0)), there
are constants ψ(G0) and M2(G0) ∈ N0 such that for every A ∈ B(G0) with vg(A) ≥ ψ(G0) for all g ∈ G0,

(2.4) L(A) = yA + (L′A ∪ {0, dA, 2dA, . . . , sAdA} ∪ L′′A) ⊂ yA + dAZ ,

where yA ∈ Z, dA = min ∆(G0), sA ≥ M1 + D(G), L′A ⊂ [−M2(G0),−1], and L′′2 ⊂ sAdA + [1,M2(G0)].
Since G has only finitely many subsets G0 with ∆(G0) 6= ∅, we let ψ be the maximum over all ψ(G0)
and let M2 be the maximum over all M2(G0). Then the structural statement (2.4) holds with constants
ψ and M2 for all subsets G0 ⊂ G with ∆(G0) 6= ∅.
3. Clearly, it is sufficient to prove the claim of the corollary for all A ∈ B(G) with ρ(L(A)) = D(G)/2, for
which max L(A) −min L(A) is sufficiently large. Indeed, suppose that there are constants M3,M4 ∈ N0

such that the claim holds for all A with L(A) 6⊂ min L(A) + [0,M3] and with bound M4 for the initial
and end parts of L(A). Then the claim holds for all A with bound max{M3,M4} for the initial and end
parts of L(A).

4. Now let A ∈ B(G) with ρ(L(A)) = D(G)/2. By [7, Lemma 3.2.(a)], there are k, ` ∈ N and
U1, . . . , Uk, V1, . . . , V` ∈ A(G) with |U1| = . . . = |Uk| = D(G) and |V1| = . . . = |V`| = 2 such that
A = U1 . . . Uk = V1 . . . V`. Then k = min L(A) and ` = max L(A) = kD(G)/2. By 3., we may sup-
pose that k ≥ |A(G)|ψ. Then there is i ∈ [1, k], say Ui = U , such that Uψ divides A. This implies
that (−U)ψUψ divides A, say A = (−U)ψUψBψ for some Bψ ∈ B(G). By 2. (applied to the subset
supp

(
(−U)U

)
),

(2.5) L((−U)ψUψ) = yU + (L′U ∪ {0, dU , 2dU , . . . , sUdU} ∪ L′′U ) ⊂ yU + dUZ ,

where yU ∈ Z, sU ∈ N with sU ≥ M1 + D(G), dU = min ∆(GU ), L′U ⊂ [−M2,−1], and L′′U ⊂ sUdU +
[1,M2]. Since ∆ρ(G) = {1}, [7, Corollary 3.3] implies that dU = 1. Since

L(Bψ) + L((−U)ψUψ) ⊂ L(A) ,

L(A) contains an interval [t, t+ sU ] for some t ∈ N0. By 3., we may assume that L(A) is not contained in
min L(A) + [0, 2M1 + D(G)]. Thus, by comparing the two representations (2.3) and (2.5), we infer that
the period D in (2.3) is an interval. Thus, L∗ is an interval, whence L(A) has the required form. �

Remark 2.4. Let G be a finite abelian group. If ∆(G) = {1} (which, for example, holds if G ∼= C3⊕C3),
then all sets of lengths are intervals. In particular, Corollary 2.3 holds with M∗ = 0. Suppose that G = Crp
is an elementary p-group with p ≥ 5 and r ≥ 2.

1. Let (e1, . . . , er) be a basis of G and e0 = e1 + . . . + er. Then U = ep−11 . . . ep−1r e0 ∈ A(G) with
|U | = D(G). For every k ∈ N, we set Ak = (−U)kUk. Then ρ(L(Ak)) = D(G)/2 and min L(Ak) = 2k. It
is easy to see that 2k + 1 /∈ L(Ak), whence the constant M∗, occurring in Corollary 2.3, cannot be zero
but is strictly positive.

2. Every nonzero element g ∈ G can be extended to a basis. Thus, every nonzero element of G occurs
in the support of a minimal zero-sum sequence of length D(G). Therefore, for every k ∈ N, there is
Bk ∈ B(G) with ρ(L(Bk)) = D(G)/2, supp(Bk) = G \ {0}, and min L(Bk) ≥ k. Since L(B) is an interval
for all B ∈ B(G) with supp(B) = G \ {0} ([3, Theorem 7.6.9]), all sets L(Bk) are intervals with elasticity
D(G)/2.

3. Proof of Theorems 1.2 and 2.2

In this section, we prove Theorem 1.2 and Theorem 2.2. We start with two lemmas.

Lemma 3.1. Let G be a finite abelian group with rank r(G) ≥ 2 and exp(G) ≥ 3, and let U ∈ A(G)
with |U | = D(G). If there exist an independent tuple (e1, . . . , et) ∈ Gt with t ≥ 2 and an element g such

that {e1, . . . , et, g} ⊂ supp(U) and ag = k1e1 + . . .+ ktet for some a ∈ [1, ord(g)− 1] \ { ord(g)2 } and with

ki ∈ [1, ord(ei)− 1] for all i ∈ [1, t], then min ∆
(

supp
(
(−U)U

))
= 1. In particular, if supp(U) contains

a basis of G, then min ∆
(

supp
(
(−U)U

))
= 1.
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Proof. See [7, Lemma 3.10]. �

Lemma 3.2. Let G be a finite abelian group such that G ∼= Cr1ps1⊕C
r2
ps2 , where p is a prime, r1, r2, s1, s2 ∈

N with s1 < s2, and let G0 ⊂ G be a subset with 〈G0〉 = G. Then there is a subset G′0 ⊂ G0 such that
〈G′0〉 ∼= Cr2ps2 and G′0 is a basis of 〈G′0〉.

Proof. Let G1 and G2 be subgroups of G such that G = G1 ⊕ G2, G1
∼= Cr1ps1 , and G2

∼= Cr2ps2 . Then
every element g ∈ G0 can be written uniquely as g = ug + vg, where ug ∈ G1 and vg ∈ G2. Hence
〈vg : g ∈ G0〉 = G2 and {vg : g ∈ G0} contains a basis of G2 by [3, Lemma A.7.3]. We choose elements
g1, . . . , gr2 ∈ G0 such that (v1 = vg1 , . . . , vr2 = vgr2 ) is a basis of G2. Note that ord(vi) = ord(gi) = ps2 for

every i ∈ [1, r2]. If k1, . . . , kr2 ∈ [0, ps2 − 1] such that k1g1 + . . .+kr2gr2 = 0, then k1v1 + . . .+kr2vr2 = 0,
whence the independence of (v1, . . . , vr2) implies that k1 = . . . = kr2 = 0. It follows that (g1, . . . , gr2) is
independent and hence 〈g1, . . . , gr2〉 ∼= Cr2ps2 . �

Proof of Theorems 1.2 and 2.2. Let H be a monoid, G be a finite abelian non-cyclic group, and let
θ : H → B(G) be a transfer homomorphism. Then ∆ρ(H) = ∆ρ(G). In order to show that ∆ρ(G) = {1},
it is sufficient to show that

(3.1) min ∆
(

supp
(
(−U)U

))
= 1 for every minimal zero-sum sequence U over G with |U | = D(G)

(see [7, Corollary 3.3.2]). Note that (3.1) is precisely the statement of Conjecture 1.1. Let U be a minimal
zero-sum sequence over G with |U | = D(G). We set d = min ∆

(
supp

(
(−U)U

))
and have to show that

d = 1. Since |U | = D(G), we have G = 〈supp(U)〉 by [3, Proposition 5.1.4].
Let A ⊂ supp(U) be a minimal subset such for every element g ∈ supp(U) \A, there exists h ∈ A such

that g ∈ 〈h〉. Thus, for any two elements g1, g2 ∈ A, we have g1 6∈ 〈g2〉 and 〈A〉 = 〈supp(U)〉 = G is not
cyclic, whence |A| ≥ 2. Assume to the contrary that A is independent. We set A = {g1, . . . , gm} and
Wi =

∏
g∈〈gi〉 g

vg(U) for every i ∈ [1,m], where m = |A| ≥ 2. Then U =
∏
i∈[1,m]Wi and σ(Wi) ∈ 〈gi〉 for

every i ∈ [1,m]. Since A is independent and U is a zero-sum sequence, we obtain that Wi are zero-sum
sequences for all i ∈ [1,m], a contradiction to the minimality of U . Thus A is not independent.

We start with two simple observations. Let V be a minimal zero-sum sequence over supp
(
U(−U)

)
.

Since (−V )V has a factorization of length |V |, it follows that

(3.2) d divides |V | − 2 . In particular, d divides D(G)− 2 .

If g ∈ supp
(
(−U)U

)
with ord(g) = n, then V = gn is a minimal zero-sum sequence over supp

(
U(−U)

)
,

whence (3.2) implies that d | (n− 2). Thus we obtain that

(3.3) d divides ord(g)− 2 for all g ∈ supp
(
(−U)U

)
.

We distinguish four cases. Whenever it is convenient, an elementary p-group will be considered as a
vector space over the field with p elements.

CASE 1: G is a p-group such that gcd(exp(G)− 2,D(G)− 2) = 1.
By [3, Corollary 5.1.13], supp(U) contains an element of order exp(G). Thus d = 1 by (3.3) and (3.2).

CASE 2: G ∼= Cr1ps1 ⊕ C
r2
ps2 , where p is a prime and r1, r2, s1, s2 ∈ N such that s1 divides s2.

If s1 = s2, then the assertion follows from [7, Theorem 3.11]. Suppose that s1 < s2. Then exp(G) =
ps2 ≥ 4. By Lemma 3.2, there is a subset A2 ⊂ A such that 〈A2〉 ∼= Cr2ps2 and A2 is a basis of 〈A2〉, say
A2 = {g1, . . . , gr2}. Since 〈A2〉 is a direct summand of G, there is a subgroup G1 of G with G = G1⊕〈A2〉,
whence G1

∼= Cr1ps1 . Every element g of A can be written uniquely as g = ug + vg, where ug ∈ G1 and
vg ∈ 〈A2〉. Hence 〈ug : g ∈ A〉 = G1 and {ug : g ∈ A} contains a basis of G1 by [3, Lemma A.7.3]. We
choose h1, . . . , hr1 ∈ A such that (u1 = uh1

, . . . , ur1 = uhr1
) is a basis of G1. We distinguish two cases.

Suppose ord(hi) = ps1 for every i ∈ [1, r1]. Then the tuple (h1, . . . , hr1) is independent, whence the
tuple (h1, . . . , hr1 , g1, . . . , gr2) forms a basis of G. Then the assertion follows by Lemma 3.1.

Suppose there exists i ∈ [1, r1] such that ord(hi) 6= ps1 . Then 0 6= ps1hi and ps1 is the minimal integer
such that ps1hi ∈ 〈g1, . . . , gr2〉. Set h = hi. There exist ∅ 6= I ⊂ [1, r2] and ki ∈ [1, ps1 − 1] for every
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i ∈ I such that ps1h =
∑
i∈I kigi. After renumbering if necessary, we may assume that I = [1, t] for some

t ∈ [1, r2].

If t = 1, then (−h)p
s1
gk11 and hp

s1
gp

s2−k1
1 are both minimal zero-sum sequences. It follows by(

hp
s1
gp

s2−k1
1

)(
(−h)p

s1
gk11
)

=
(
h(−h)

)ps1
gp

s2

1 that d divides ps1 − 1. Since d divides ps2 − 2 by (3.3),
it follows by the fact that s1 divides s2 that d = 1.

If t ≥ 2 and ps1 6= ord(h)
2 , then d = 1 by Lemma 3.1.

If t ≥ 2 and ord(h) = 2ps1 , then p = 2. Since h2
s1
gk11 . . . gktt is a minimal zero-sum sequence, we obtain

that g2k11 . . . g2ktt is a zero-sum sequence, whence the independence of (g1, . . . , gt) implies that ki = 2s2−1

for all i ∈ [1, t]. Since (−h)2
s1
gk11 . . . gktt is a minimal zero-sum sequence and(

h2
s1
gk11 . . . gktt

)2
= h2

s1+1

g2
s2

1 . . . g2
s2

t and
(
h2

s1
gk11 . . . gktt

) (
(−h)2

s1
gk11 . . . gktt

)
=
(
h(−h)

)2s1
g2

s2

1 . . . g2
s2

t ,

we obtain that d divides (t+ 1− 2)− (2s1 + t− 2) = 1− 2s1 . Since d divides 2s2 − 2 by (3.3), it follows
by the fact that s1 divides s2 that d = 1.

CASE 3: G is the sum of two elementary p-groups, say G = Crp ⊕Csq , where p, q are distinct primes and
r, s ∈ N.

We set U = UpUqUpq, where Up ∈ F(G) consists of elements of order p, Uq ∈ F(G) consists of elements
of order q, and Upq ∈ F(G) consists of elements of order pq. Since U is a minimal zero-sum sequence and
0 = σ(U) = σ(Up) + σ(Uq) + σ(Upq), it follows that Upq cannot be the empty sequence. Thus, supp(U)
contains an element of order pq = exp(G) and hence by (3.3), we have

(3.4) d divides pq − 2 .

CASE 3.(i): gcd(pq − 2,D(G)− 2) = 1.
Then d = 1 by (3.2) and (3.4).

CASE 3.(ii): gcd(pq − 2, p+ q − 3) = 1.
We first note that gcd(pq − 2, p + q − 3) = 1 implies that p, q are both odd, gcd(pq − 2, p − 2) = 1,

gcd(pq − 2, q − 2) = 1, and

(3.5) gcd(pq − 2, p− 1) = 1 .

If there exists an element h ∈ supp(U) such that ord(h) 6= pq, then d divides p − 2 or q − 2 by (3.3).
In each case we infer that d = 1 by (3.4). Now, we assume that every element of supp(U) has order pq.

Let G1 and G2 be subgroups of G such that G = G1 ⊕ G2, G1
∼= Crp , and G2

∼= Csq . Since G is not
cyclic, we have r ≥ 2 or s ≥ 2. By symmetry, we may assume that r ≥ s. Every element g of A can be
written uniquely as g = ug + vg, where ug ∈ G1 and vg ∈ G2. Hence 〈ug : g ∈ A〉 = G1 and {ug : g ∈ A}
contains a basis of G1. We choose g1, . . . , gr ∈ A such that (u1 = ug1 , . . . , ur = ugr ) is a basis of G1. We
distinguish two cases.

First, suppose that (v1 = vg1 , . . . , vr = vgr ) ∈ Gr2 is independent. Since r ≥ s = r(G2) = s, we infer
that r = s. Therefore, G ∼= Crpq and (g1, . . . , gr) is a basis of G. The assertion follows by Lemma 3.1.

Now, suppose that (v1 = vg1 , . . . , vr = vgr ) is not independent. Since 〈v1, . . . , vr〉 is a q-group, there
exists I ⊂ [1, r] such that (vi)i∈I is a basis of 〈v1, . . . , vr〉. After renumbering if necessary, we may assume
that I = [1, y], where y ∈ [1, r − 1]. Then (g1, . . . , gy) is independent and p is the minimal integer such
that pgr ∈ 〈g1, . . . , gy〉. If there exists i ∈ [1, y] such that pgr ∈ 〈gi〉, then there exists k ∈ [1, pq − 1]

such that gprg
k
i and (−gr)pgpq−ki are atoms, whence it follows by (gprg

k
i ) ((−gr)pgpq−ki ) = (gr(−gr))p gpqi

that d divides p − 1. The assertion follows by (3.5). Otherwise there exist J ⊂ [1, y] with |J | ≥ 2 and
kj ∈ [1, pq − 1] for every j ∈ J such that pgr =

∑
j∈J kjgj . Now the assertion follows by Lemma 3.1.

CASE 3.(iii): q = 2 and p− 1 is a power of 2.
If there is an element g ∈ supp(U) such that ord(g) = p, then d divides gcd(p− 2, 2p− 2) = 1 by (3.3)

and (3.4), whence d = 1. Now, we suppose that supp(U) contains no element of order p. Since d divides
2(p− 1) and p− 1 is a power of 2, it suffices to prove that d divides an odd number.
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Let G1 and G2 be subgroups of G such that G = G1 ⊕ G2, G1
∼= Crp , and G2

∼= Cs2 . Then every
element g of supp(U) can be written uniquely as g = ug + vg, where ug ∈ G1 and vg ∈ G2. Hence
〈ug : g ∈ supp(U)〉 = G1 and {ug : g ∈ supp(U)} contains a basis of G1. We choose g1, . . . , gr ∈ supp(U)
such that (u1 = ug1 , . . . , ur = ugr ) is a basis of G1. Since supp(U) has no element of order p, it follows
that ord(gi) = 2p for all i ∈ [1, r].

We set

T0 =
∏

g∈supp(U) with ord(g)=2

g and Ti =
∏

g∈〈gi〉 with ord(g)=2p

gvg(U) for all i ∈ [1, r] .

Assume to the contrary that U = T0T1 . . . Tr. Then σ(Ti) has order 2 for every i ∈ [1, r]. If |Ti| ≥
p + 1 = D(Cp) + 1, then there exists a subsequence T ′i of Ti such that 1 ≤ |T ′i | ≤ p and σ(T ′i ) has order

2, which implies that T ′i or TiT
′−1
i is a nonempty zero-sum sequence, a contradiction to the minimality

of U . Thus |Ti| ≤ p for every i ∈ [1, r]. Since T0 is zero-sum free, we infer that |T0| ≤ r + s. Hence
|U | ≤ pr + (r + s) = (p+ 1)r + s < D∗(G) ≤ D(G), a contradiction.

Therefore, U 6= T0T1 . . . Tr, whence there is an element h ∈ supp(U)\{g1, . . . , gr} such that ord(h) = 2p
and h 6∈ 〈gi〉 for any i ∈ [1, r]. Let I ⊂ [1, r] be a minimal subset such that uh ∈ 〈ui : i ∈ I〉. After
renumbering if necessary, we may assume that I = [1, x], where x ∈ [1, r].

Suppose x = 1. Note that h 6∈ 〈g1〉 and 2h ∈ 〈g1〉. Then there exists k ∈ [1, 2p − 1] such that h2gk1
is a minimal zero-sum sequence, and then the same is true for (−h)2g2p−k1 . Since (h2gk1 )((−h)2g2p−k1 ) =

(h(−h))2g2p1 , we obtain d = 1.
Suppose x ≥ 2 and vh ∈ 〈v1, . . . , vx〉, where vi = vgi for all i ∈ [1, x]. For all i ∈ [1, x], let ki ∈ [1, p−1]

be such that uh = k1u1 + . . . + kxux. The elements vh, v1, . . . , vx have order 2. After renumbering if
necessary, we may assume that vhv1 . . . vy is a minimal zero-sum sequence over G2 for some y ∈ [1, x].
Therefore, the tuple (v1, . . . , vy) is independent, whence (g1, . . . , gy) is independent. If y = x, then
h ∈ 〈g1, . . . , gx〉 and the assertion follows by Lemma 3.1. Suppose y < x. Then h 6∈ 〈g1, . . . , gy〉 and p
is the minimal integer such that ph ∈ 〈g1, . . . , gy〉. If y is even, then hpgp1 . . . g

p
y is a minimal zero-sum

sequence of odd length, whence d divides an odd number by (3.2). Suppose y is odd. We replace gi by
−gi, ui by −ui, and ki by p− ki, if necessary, in order to make ki to be odd for all i ∈ [1, y] and kj to be
even for all j ∈ [y + 1, x]. Then

W = (−h)gk11 . . . gkxx and V = hp−1(−g1)p−k1 . . . (−gy)p−kyg
ky+1

y+1 . . . gkxx

are minimal zero-sum sequences over supp(U(−U)), T = g
pky+1

y+1 . . . gpkxx is a zero-sum sequence,

W p = T ((−h)g1 . . . gy)p
y∏
i=1

(g2pi )
ki−1

2 and V p = T ((−h)2p)
p−1
2

y∏
i=1

((−gi)2p)
p−ki

2 .

If `0 ∈ L(T ), then d divides`0 +
p− 1

2
+
∑
i∈[1,y]

p− ki
2
− p

−
`0 + 1 +

∑
i∈[1,y]

ki − 1

2
− p

 =
p− 1

2
+
p+ 1

2
y −

y∑
i=1

ki − 1

Since y is odd and ki are odd for all i ∈ [1, y], it follows that p−1
2 + p+1

2 y −
∑y
i=1 ki − 1 ≡ 1 (mod 2),

whence d divides an odd number.
Suppose x ≥ 2 and vh 6∈ 〈v1, . . . , vx〉. Then h 6∈ 〈g1, . . . , gx〉 and 2h ∈ 〈g1, . . . , gx〉. Let 2uh =

k1u1 + . . .+ kxuk, where ki ∈ [1, p− 1]. We replace gi by −gi, ui by −ui, and ki by p− ki, if necessary,
in order to make ki to be even for all i ∈ [1, x]. If (g1, . . . , gx) is independent, then the assertion follows
by Lemma 3.1. Otherwise the tuple (v1 = vg1 , . . . , vx = vgx) is not independent. After renumbering if
necessary, we may assume that v1 . . . vy is a minimal zero-sum sequence over G2, where y ∈ [2, x], whence
gp1 . . . g

p
y is a minimal zero-sum sequence. If y is odd, then d divides an odd number by (3.2). Suppose
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y is even. Then W = (−h)2gk11 . . . gkxx and V = (−h)2(−g1)p−k1 . . . (−gy)p−kyg
ky+1

y+1 . . . gkxx are minimal

zero-sum sequences, T = (−h)2pg
pky+1

y+1 . . . gpkxx is a zero-sum sequence,

W p = T

y∏
i=1

(g2pi )
ki
2 and V p = T ((−g1) . . . (−gy))p

y∏
i=1

((−gi)2p)
p−ki−1

2 .

If `0 ∈ L(T ), then d divides`0 + 1 +
∑
i∈[1,y]

p− ki − 1

2
− p

−
`0 +

∑
i∈[1,y]

ki
2
− p

 = 1 +
p− 1

2
y −

y∑
i=1

ki .

Since y is even and ki are even for all i ∈ [1, y], it follows that 1 + p−1
2 y −

∑y
i=1 ki ≡ 1 (mod 2), whence

d divides an odd number.

CASE 3.(iv): q = 2 and r = 1.
Let h ∈ supp(U) such that ord(h) = 2p. Since 〈h〉 is a direct summand of G, there is a subgroup G1 of G

with G ∼= G1⊕〈h〉, whence G1
∼= Cs2 . Every element g of supp(U) can be written uniquely as g = ug+vg,

where ug ∈ G1 and vg ∈ 〈h〉. Hence 〈ug : g ∈ supp(U) \ {h}〉 = G1 and {ug : g ∈ supp(U) \ {h}} contains
a basis of G1. We choose g1, . . . , gs ∈ supp(U) \ {h} such that (u1 = ug1 , . . . , us = ugs) is a basis of G1.
We distinguish two cases.

Suppose ord(gi) = 2 for every i ∈ [1, s]. Then the tuple (g1, . . . , gs) is independent, whence the tuple
(g1, . . . , gs, h) forms a basis of G. Then the assertion follows by Lemma 3.1.

Suppose there exists i ∈ [1, s] such that ord(gi) = 2p. Then 2 is the minimal integer such that 2gi ∈ 〈h〉,
whence there exists k ∈ [1, 2p−1] such that both g2i h

k and (−gi)2h2p−k are minimal zero-sum sequences.
Then d = 1 because (

g2i h
k
) (

(−gi)2h2p−k
)

=
(
gi(−gi)

)2
h2p .

CASE 4: G is a group with exp(G) ∈ [3, 11] \ {8}.
If exp(G) is prime, then the claim follows from CASE 2 (with s1 = s2 = 1). The case, when exp(G) ∈

{4, 9}, is also handled in CASE 2, and the case exp(G) ∈ {6, 10} is handled in CASE 3.(iii). �
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