

On iterative roots of the identity and the groups $S_{n+1} \times (\{\pm 1\} \wr S_n)$

Harald Fripertinger Karl-Franzens-Universität Graz 57-th ISFE, June 2–9, 2019, Jastarnia, Poland

During the last ISFE in Graz I was presenting a talk on iteration of bijective functions with discontinuities, which disappeared after some iterations. We were studying three types of functions defined on a compact interval $I = [0, n], n \in \mathbb{N}, f: I \to I$ bijective with finitely many discontinuities.

On iterative roots of the identity and the groups $S_{n+1} \times (\{\pm 1\} \wr S_n)$

Harald Fripertinger Karl-Franzens-Universität Graz 57-th ISFE, June 2–9, 2019, Jastarnia, Poland

During the last ISFE in Graz I was presenting a talk on iteration of bijective functions with discontinuities, which disappeared after some iterations. We were studying three types of functions defined on a compact interval $I = [0, n], n \in \mathbb{N}, f: I \to I$ bijective with finitely many discontinuities.

Consider an iterative root *F* of the identity on a compact real interval *J*. We will prove: If the union of the orbits of the discontinuities of *F* is finite, then there exists some $n \in \mathbb{N}$ and a continuous, bijective, and increasing function $\varphi: J \to [0, n]$, so that $\varphi \circ F \circ \varphi^{-1}$ corresponds to some $(\pi, (\varepsilon, \lambda)) \in S_{n+1} \times (\{\pm 1\} \wr S_n), S_n$ the symmetric group, i.e. $\varphi \circ f \circ \varphi^{-1}$ is a function of type III.

Functions of type I

Functions of type II

Page 3 of 31

Functions of type II have jump discontinuities in $i \in \{1, ..., n-1\}$, maybe one removable discontinuity in *n*. On each interval $I_i = [i-1, i)$ they are strictly increasing and affine.

They are totally described by the permutation $\pi \in S_n$, $\pi(i) = j$ if and only if $f(I_i) = I_j$.

Functions of type III

Page 4 of 31

Functions of type III permute the integers $\{0, 1, ..., n\}$, permute the open intervals $I_i = (i - 1, i), i \in \{1, ..., n\}$, on each interval they are affine and either strictly increasing or strictly decreasing.

 $\lambda(1) \lambda(2) \lambda(3) \lambda(4) \lambda(5)$

 $\pi(0) = 3$ $\pi(1) = 0 \quad \lambda(1) = 1 \quad \varepsilon(1) = 1$ $\pi(2) = 2 \quad \lambda(2) = 2 \quad \varepsilon(2) = -1$ $\pi(3) = 4 \quad \lambda(3) = 5 \quad \varepsilon(3) = 1$ $\pi(4) = 5 \quad \lambda(4) = 4 \quad \varepsilon(4) = -1$ $\pi(5) = 1 \quad \lambda(5) = 3 \quad \varepsilon(5) = -1$

 $\varepsilon(i) = 1$ iff the values of I_i (in the range) appear in an increasing way, iff f is increasing on $I_{\lambda^{-1}(i)}$.

UNI GRAZ We identify f with $(\pi, (\varepsilon, \lambda))$, $\pi \in S_{n+1}$, $\varepsilon \in \{\pm 1\}^n$, $\lambda \in S_n$.

 $\varepsilon(\lambda(i))$ is the direction of f on the interval I_i in the domain.

f is continuous in $i \in \{1, ..., n-1\}$, iff either $\varepsilon(\lambda(i)) = \varepsilon(\lambda(i+1)) = 1$, $\lambda(i+1) = \lambda(i) + 1$, and $\pi(i) = \lambda(i)$, or $\varepsilon(\lambda(i)) = \varepsilon(\lambda(i+1)) = -1$, $\lambda(i+1) = \lambda(i) - 1$, and $\pi(i) = \lambda(i+1)$.

```
f is continuous in 0, iff
either \varepsilon(\lambda(1)) = 1 and \pi(0) = \lambda(1) - 1
or \varepsilon(\lambda(1)) = -1 and \pi(0) = \lambda(1).
```

f is continuous in n must be studied accordingly.

$$f^k$$
 is continuous if either $f^k = id$ or $f^k = n - id$.

Page **5** of **31**

J

Structure theorem

The number of functions of type III on [0, n] is

 $n!(n+1)!2^n$

n	$n!(n+1)!2^n$
0	1
1	4
2	48
3	1152
4	46080
5	2764800
6	232243200
7	26011238400
8	3745618329600
9	674211299328000
10	148326485852160000

General remarks

Theorem 1

Let J be a compact interval,

 $\varphi: J \to [0, n]$ be continuous, bijective, and increasing, and $f: [0, n] \to [0, n]$ be of type III with r discontinuities and ord(f) = k, then

$$F:=\varphi^{-1}\circ f\circ\varphi\colon J\to J$$

is bijective, has *r* discontinuities, $F^k = id_J$,

thus F is an iterative root of the identity of order k.

Page 9 of 31

General remarks

Theorem 1

Let J be a compact interval,

 $\varphi: J \to [0, n]$ be continuous, bijective, and increasing, and $f: [0, n] \to [0, n]$ be of type III with r discontinuities and ord(f) = k, then

$$F:=\varphi^{-1}\circ f\circ\varphi:J\to J$$

is bijective, has *r* discontinuities, $F^k = id_J$, thus *F* is an iterative root of the identity of order *k*.

Problem.

Page 9 of 31

Consider an iterative root $F: J \to J$ of the identity of order k on a compact interval J with finitely many discontinuities. Is it possible to find some $n \in \mathbb{N}$, a continuous, bijective, and increasing function $\varphi: J \to [0, n]$ and a function $f: [0, n] \to [0, n]$ of type III so that $F = \varphi^{-1} \circ f \circ \varphi$?

We will prove that the answer is

YES!

How to find *n*?

In general *n* is not uniquely determined, so we are looking for the smallest *n*.

Assume that $F^k = id$ and F has r discontinuities $\xi_1, \ldots, \xi_r \in J = [a, b]$. Consider the union of orbits

$$U = \{a, b\} \cup \bigcup_{j=1}^{\prime} \{F^{i}(\xi_{j}) \mid 1 \le i \le k\},\$$

then U is finite

UN

Page 11 of 31

How to find *n*?

In general n is not uniquely determined, so we are looking for the smallest n.

Assume that $F^k = id$ and F has r discontinuities $\xi_1, \ldots, \xi_r \in J = [a, b]$. Consider the union of orbits

$$U = \{a, b\} \cup \bigcup_{j=1}^{\prime} \{F^{i}(\xi_{j}) \mid 1 \le i \le k\},\$$

then U is finite and we determine n by

$$n=|U|-1.$$

We label the n + 1 elements of U by $a = x_0 < ... < x_n = b$. Since F(U) = U we have $F(x_i) \in U$ for all $0 \le i \le n$, thus F is a permutation of U.

Quit

Page 11 of 31

 $[a,b] = U \cup J_1 \cup \cdots \cup J_n.$

How to find φ ?

How to find φ ?

We will construct φ in several steps:

1. We determine some $\varphi: J \to [0, n]$ so that $\varphi(J_i) = (i - 1, i)$ for $1 \le i \le n$. Let $\varphi(x_i) = i, 0 \le i \le n$.

For
$$x \in J_i = (x_{i-1}, x_i)$$
 let

$$\varphi(x) = i - 1 + \frac{x - x_{i-1}}{x_i - x_{i-1}},$$

then φ is continuous in J_i , and $\lim_{x \to x_{i-1}^+} \varphi(x) = i - 1 = \varphi(x_{i-1})$ and $\lim_{x \to x_i^-} \varphi(x) = i = \varphi(x_i)$. Therefore φ is continuous on J.

Moreover φ is strictly increasing and bijective.

Page 13 of 31

Let
$$ilde{F} = oldsymbol{arphi} \circ F \circ oldsymbol{arphi}^{-1}$$
: $[0,n] o [0,n]$, then

- \tilde{F} is bijective,
- $\tilde{F}^j = \operatorname{id}_{[0,n]}$, iff $F^j = \operatorname{id}_J$,
- \tilde{F} is an iterative root of the identity of order k,
- \tilde{F} has discontinuities in $\varphi(\xi_i)$, $1 \le i \le r$,
- $\tilde{F}(i) \in \{0, \dots, n\}$, $i \in \{0, \dots, n\}$, \tilde{F} permutes these elements,
- \tilde{F} is continuous on $I_i = (i 1, i), 1 \le i \le r$,
- \tilde{F} is a permutation of the intervals I_i , $1 \le i \le r$,
- \tilde{F} is increasing on I_i , iff F is increasing on J_i , $1 \le i \le r$.

Full Screen

Close

Qui

- Page 16 of 31
 - Close

2. Now we must find some $\psi: [0, n] \to [0, n]$ so that $\psi \circ \tilde{F} \circ \psi^{-1}$ is affine on each interval $I_i = (i - 1, i)$.

Lemma 2

Assume that $f := \tilde{F}|_{I_i}$ is a mapping $I_i \to I_j$ for $i \neq j$.

If *f* is strictly increasing, then there exists some $\psi_j: I_j \to I_j$ bijective and increasing, so that $\psi_j(f(x)) = j + x - i, x \in I_i$.

If *f* is strictly decreasing, then there exists some $\psi_j: I_j \to I_j$ bijective and increasing, so that $\psi_j(f(x)) = j - x + i - 1$, $x \in I_i$.

- Home Page
- 2. Now we must find some $\psi: [0, n] \to [0, n]$ so that $\psi \circ \tilde{F} \circ \psi^{-1}$ is affine on each interval $I_i = (i 1, i)$.

Lemma 2

Assume that $f := \tilde{F}|_{I_i}$ is a mapping $I_i \to I_j$ for $i \neq j$. If *f* is strictly increasing, then there exists some $\psi_i : I_i \to I_j$ bijective

and increasing, so that $\psi_j(f(x)) = j + x - i$, $x \in I_i$.

If *f* is strictly decreasing, then there exists some $\psi_j: I_j \to I_j$ bijective and increasing, so that $\psi_j(f(x)) = j - x + i - 1$, $x \in I_i$.

Proof.

1. Let $\psi_j(x) = j + f^{-1}(x) - i$, for $x \in I_j$, then ψ_j is a bijective and increasing mapping $I_j \to I_j$, and $\psi_j(f(x)) = j + f^{-1}(f(x)) - i = j + x - i$, $x \in I_i$.

2. Let $\psi_j(x) = j - f^{-1}(x) + i - 1$, for $x \in I_j$, then ψ_j is a bijective and increasing mapping $I_j \to I_j$, and $\psi_j(f(x)) = j - f^{-1}(f(x)) + i - 1$, $x \in I_i$.

Let $\psi_j(x) = x$ for $x \notin I_j$, then ψ_j is bijective and increasing on [0, n].

 \tilde{F} is a permutation of the intervals I_i . Consider a cycle $I_{i_1} \to I_{i_2} \to \ldots \to I_{i_\ell} \to I_{i_1}$ of length $\ell \ge 1$. Then $F^{\ell}(I_{i_j}) = I_{i_j}$, $1 \le j \le \ell$.

Composition of two increasing or two decreasing functions yields an increasing function, composition of one increasing and one decreasing function yields a decreasing function.

Therefore, if \tilde{F} is decreasing on an even number of intervals in this cycle, then \tilde{F}^{ℓ} is increasing on all I_{i_j} , otherwise \tilde{F}^{ℓ} is decreasing on all I_{i_j} .

Page 18 of 31

Since ψ_j restricted to I_i is a bijective mapping $I_i \to I_i$, $1 \le i \le n$, the restriction $\psi_j \circ \tilde{F} \circ \psi_j^{-1}$ to I_i involves only $\tilde{F}|_{I_i}$.

First case

UNI GRAZ

	$ ilde{F}$ contains a cycle of intervals of length ℓ with an even number of decreasing functions in this cycle, then $ ilde{F}^{\ell} = \mathrm{id}$ on this cycle.
]	
]	

Qui

First case

Page 19 of 31

In the first case $\tilde{F}^{\ell}|_{I_{i_i}} = \text{id}$ for all $1 \leq j \leq \ell$.

 $F|_{I_{i_1}}:I_{i_1}\to I_{i_2}$

According to Lemma 2 there exists a bijective and increasing mapping ψ_{i_2} on [0, n] so that $\psi_{i_2} \circ \tilde{F}|_{I_{i_1}}$ is affine, i.e. it is either $x \mapsto i_2 + x - i_1$ or $x \mapsto i_2 - 1 + i_1 - x$. Then also $\psi_{i_2} \circ \tilde{F} \circ \psi_{i_2}^{-1}$ is affine on I_{i_1} .

 $\begin{array}{l} \psi_{i_2} \circ \tilde{F} \circ \psi_{i_2}^{-1}|_{I_{i_2}} : I_{i_2} \to I_{i_3} \\ \text{According to Lemma 2 there exists a bijective and increasing mapping} \\ \psi_{i_3} \text{ on } [0,n] \text{ so that } \psi_{i_3} \circ \psi_{i_2} \circ \tilde{F} \circ \psi_{i_2}^{-1} \text{ is affine on } I_{i_2}. \text{ Then also} \\ \psi_{i_3} \circ \psi_{i_2} \circ \tilde{F} \circ \psi_{i_2}^{-1} \circ \psi_{i_3}^{-1}, \ j = 1, 2, \text{ is affine on } I_{i_j}. \end{array}$

Continuing in the same way:

$$\begin{split} &\psi_{i_{\ell-1}} \circ \cdots \circ \psi_{i_2} \circ \tilde{F} \circ \psi_{i_2}^{-1} \circ \cdots \circ \psi_{i_{\ell-1}}^{-1} |_{I_{i_{\ell-1}}} : I_{i_{\ell-1}} \to I_{i_{\ell}} \\ &\text{There exists a bijective and increasing mapping } \psi_{i_{\ell}} \text{ on } [0,n] \text{ so that} \\ &\psi_{i_{\ell}} \circ \psi_{i_{\ell-1}} \circ \cdots \circ \psi_{i_2} \circ \tilde{F} \circ \psi_{i_2}^{-1} \circ \cdots \circ \psi_{i_{\ell-1}}^{-1} \text{ is affine on } I_{i_{\ell-1}}. \text{ Then also} \\ &\psi_{i_{\ell}} \circ \cdots \circ \psi_{i_2} \circ \tilde{F} \circ \psi_{i_2}^{-1} \circ \cdots \circ \psi_{i_{\ell}}^{-1}, 1 \leq j \leq \ell-1, \text{ is affine on } I_{i_j}. \end{split}$$

Page 20 of 31

The mapping $\psi = \psi_{i_{\ell}} \circ \cdots \circ \psi_{i_2}$ is bijective and increasing on [0, n], $\psi \circ \tilde{F} \circ \psi^{-1}|_{I_{i_j}}$ is affine, $1 \leq j \leq \ell - 1$, and $\psi(x) = x$ for $x \in I_{i_1}$.

We have
$$\operatorname{id}|_{I_{i_1}} = \tilde{F}^{\ell}|_{I_{i_1}} = \tilde{F}|_{I_{i_\ell}} \circ \cdots \circ \tilde{F}|_{I_{i_1}}$$
. Therefore
 $\operatorname{id}|_{I_{i_1}} = \psi \circ \operatorname{id} \circ \psi^{-1}|_{I_{i_1}} = \psi \circ \tilde{F}^{\ell} \circ \psi^{-1}|_{I_{i_1}} = (\psi \circ \tilde{F} \circ \psi^{-1})^{\ell}|_{I_{i_1}} = (\psi \circ \tilde{F} \circ \psi^{-1})^{\ell}|_{I_{i_1}} = (\psi \circ \tilde{F} \circ \psi^{-1})^{\ell}|_{I_{i_1}} = (\psi \circ \tilde{F} \circ \psi^{-1})|_{I_{i_1}} = (\psi \circ \tilde{F} \circ \psi^{-1})|_{I_{i_1}} = (\psi \circ \tilde{F} \circ \psi^{-1})|_{I_{i_1}} = (\psi \circ \tilde{F} \circ \psi^{-1})|_{I_{i_\ell}} = (\psi \circ \tilde{F} \circ \psi^{-1})|_{I_{i_\ell}}$

The term between [and] is a composition of affine function, thus it is affine, whence also $\psi \circ \tilde{F} \circ \psi^{-1}|_{I_{i_{\ell}}}$ is affine.

Consequently $\psi \circ \tilde{F} \circ \psi^{-1}$ is affine on I_{i_j} for each $1 \leq j \leq \ell$.

Qui

Page 21 of 31

Close

Full Screen

Close

Qui

Full Screen

Close

Qui

Full Screer

Clos

 $\psi_{I_2} \circ \tilde{F} \circ \psi_{I_2}^{-1}$

since $\operatorname{id} = \tilde{F}^3|_{I_1} = \psi \circ \tilde{F} \circ \psi^{-1}|_{I_3} \circ (\psi \circ \tilde{F} \circ \psi^{-1}|_{I_2} \circ \psi \circ \tilde{F} \circ \psi^{-1}|_{I_1}).$

Second case

Page 23 of 31

UNI

 \tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

Second case

Page 23 of 31

UNI

 \tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

Second case

Page 23 of 31

UNI

 \tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

 \tilde{F}^3

3

 \tilde{F}

 $\psi_{I_2} \tilde{\psi} \tilde{F} \tilde{\psi}^{-1}$

 $\tilde{\psi} \circ \tilde{F}^3 \circ \tilde{\psi}^{-1}$

2

Second case

Page 23 of 31

UNI

 \tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

Second case

Page 23 of 31

UNI

 \tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

Second case

Page 23 of 31

 \tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

UNI GRAZ

Page 24 of 31

In the **second case** $\tilde{F}^{\ell}|_{I_{i_j}}$ is a bijective and decreasing mapping on I_{I_j} , thus a decreasing involution, for each $1 \leq j \leq \ell$. There exists a bijective and increasing function $\tilde{\psi}$ so that $(\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1})|_{I_{i_j}}$ is also affine, i.e. $x \mapsto 2i_j - 1 - x, x \in I_{i_j}$ for each $1 \leq j \leq \ell$.

Without loss of generality $\tilde{F}^{\ell}|_{I_{i_j}}$ is affine for each $1 \leq j \leq \ell$.

Similar to the first case, there exists $\psi = \psi_{i_{\ell}} \circ \ldots \circ \psi_{i_2}$ so that $\psi \circ \tilde{F}|_{I_{i_j}} \circ \psi|_{I_{i_j}}$ is affine on I_{i_j} for $1 \le j \le \ell - 1$. By construction $\psi(x) = x$ for $x \in I_{i_1}$.

Therefore we have
$$\begin{split} &\psi \circ \tilde{F}^{\ell}|_{I_{i_1}} \circ \psi^{-1}|_{I_{i_1}} = \psi(2i_1 - 1 - \psi^{-1}(x)) = 2i_1 - 1 - x = \\ &\psi \circ \tilde{F}|_{I_{i_\ell}} \circ \psi^{-1}|_{I_{i_\ell}} \circ \left(\psi \circ \tilde{F}|_{I_{i_{\ell-1}}} \circ \psi^{-1}|_{I_{i_{\ell-1}}} \circ \cdots \circ \psi \circ \tilde{F}|_{I_{i_1}} \circ \psi^{-1}|_{I_{i_1}}\right)(x). \\ &\text{The term between (and) is a composition of affine function, thus it is affine, whence also } \psi \circ \tilde{F}|_{I_{i_\ell}} \circ \psi^{-1}|_{I_{i_\ell}} \text{ is affine.} \end{split}$$

Consequently $\psi \circ \tilde{F}|_{I_{i_j}} \circ \psi^{-1}$ is affine on I_{i_j} for each $1 \leq j \leq \ell$.

Equivalence

Two bijective functions $F_1: J_1 \rightarrow J_1$ and $F_2: J_2 \rightarrow J_2$ defined on compact intervals J_1 and J_2 are considered in relation

$$F_1 \sim F_2$$

iff there exists a bijective increasing function $\varphi: J_1 \to J_2$ so that $F_2 = \varphi \circ F_1 \circ \varphi^{-1}.$ We have: $F_1 \sim F_1$ $F_1 \sim F_2 \Leftrightarrow F_2 \sim F_1$ $F_1 \sim F_2$ and $F_2 \sim F_3 \Rightarrow F_1 \sim F_3$

UNI GRAZ	Theorem 3 Consider $f_1, f_2 \in S_{n+1} \times (\{\pm 1\} \wr S_n)$ with $n = n(f_1) = n(f_2)$. Then				
Home Page	$f_1 \sim f_2 \Leftrightarrow f_1 = f_2.$				
Title Page Contents	Theorem 4 Consider an iterative root $F: J \to J$ of the identity of order k on a compact interval J with finitely many discontinuities. Let $n = n(F)$. Then there exists exactly one $f \in S_{n+1} \times (\{\pm 1\} \wr S_n)$ so that				
Page 26 of 31	$F \sim f.$				
Go Back					
Full Screen					
Close					
Quit					

	Theorem 3 Consider $f_1, f_2 \in S_{n+1} \times (\{\pm 1\} \wr S_n)$ with $n = n(f_1) = n(f_2)$. Then
Home Page	$f_1 \sim f_2 \Leftrightarrow f_1 = f_2.$
Title Page Contents	Theorem 4 Consider an iterative root $F: J \to J$ of the identity of order k on a compact interval J with finitely many discontinuities. Let $n = n(F)$. Then there exists exactly one $f \in S_{n+1} \times (\{\pm 1\} \wr S_n)$ so that
Page 26 of 31	$F \sim f.$
Go Back Full Screen	Remark. Consider $f \in S_{n+1} \times (\{\pm 1\} \wr S_n)$ with $m = n(f) < n$. Then there exists $f' \in S_{m+1} \times (\{\pm 1\} \wr S_m)$ so that $f \sim f'$. It is possible that there exists $f'' \in S_{n+1} \times (\{\pm 1\} \wr S_n), f'' \neq f$, so that $f \sim f''$.

Number of non-equivalent functions with n(f) = n

п	$ n!(n+1)!2^n$	n(f) < n	n(f) = n
0	1		
1	4		
2	48	4	44
3	1152	40	1112
4	46080	892	45188
5	2764800	37708	2727092
6	232243200	2337808	229905392
7	26011238400	201311920	25809926480
8	3745618329600	22951808356	3722666521244
9	674211299328000		
10	148326485852160000		

How to enumerate them? How to construct them?

Quit

Page 27 of 31

UNI GRAZ

How to construct functions with n(f) < n?

Divide all intervals (i-1,i) belonging to a cycle of λ into k intervals of length 1/k, then form a cycle of length ℓ we obtain $k \cdot \ell$ intervals.

E.g. a function f with n(f) = 3, where $\lambda = (1, 2, 3)$, and k = 1, k = 2, k = 3, which yield n = 3, n = 6, n = 9.

Open questions

me Pag

UNI

Do the functions f with n(f) = n generate the set of all functions of type III on n?

If so, is it true that for each f with n(f) < n there exists some \tilde{f} with $n(\tilde{f}) = n$ and some j so that $f = \tilde{f}^j$?

Page 30 of 31

Contents

UN

On iterative roots of the identity and the groups Structure theorem The order of f**General remarks** How to find *n*? How to find φ ? First case Second case Equivalence Number of non-equivalent functions with n(f) = n