On iterative roots of the identity and the groups $S_{n+1} \times\left(\{ \pm 1\} \imath S_{n}\right)$

Harald Fripertinger
Karl-Franzens-Universität Graz
57-th ISFE, June 2-9, 2019, Jastarnia, Poland

During the last ISFE in Graz I was presenting a talk on iteration of bijective functions with discontinuities, which disappeared after some iterations. We were studying three types of functions defined on a compact interval $I=[0, n], n \in \mathbb{N}, f: I \rightarrow I$ bijective with finitely many discontinuities.

On iterative roots of the identity and the groups $S_{n+1} \times\left(\{ \pm 1\} \imath S_{n}\right)$

Harald Fripertinger Karl-Franzens-Universität Graz 57-th ISFE, June 2-9, 2019, Jastarnia, Poland

During the last ISFE in Graz I was presenting a talk on iteration of bijective functions with discontinuities, which disappeared after some iterations. We were studying three types of functions defined on a compact interval $I=[0, n], n \in \mathbb{N}, f: I \rightarrow I$ bijective with finitely many discontinuities.
Consider an iterative root F of the identity on a compact real interval J. We will prove: If the union of the orbits of the discontinuities of F is finite, then there exists some $n \in \mathbb{N}$ and a continuous, bijective, and increasing function $\varphi: J \rightarrow[0, n]$, so that $\varphi \circ F \circ \varphi^{-1}$ corresponds to some $(\pi,(\varepsilon, \lambda)) \in S_{n+1} \times\left(\{ \pm 1\} \backslash S_{n}\right), S_{n}$ the symmetric group, i.e. $\varphi \circ f \circ \varphi^{-1}$ is a function of type III.

Functions of type I

Functions of type I have only removable discontinuities in $i \in\{1, \ldots, n-1\}$, e.g.

They are totally described by the permutation $\pi \in S_{n-1}, \pi(i)=f(i)$.

Functions of type II

Functions of type II have jump discontinuities in $i \in\{1, \ldots, n-1\}$, maybe one removable discontinuity in n. On each interval $I_{i}=[i-1, i)$ they are strictly increasing and affine.

They are totally described by the permutation $\pi \in S_{n}, \pi(i)=j$ if and only if $f\left(I_{i}\right)=I_{j}$.

Functions of type III

Functions of type III permute the integers $\{0,1, \ldots, n\}$, permute the open intervals $I_{i}=(i-1, i), i \in\{1, \ldots, n\}$, on each interval they are affine and either strictly increasing or strictly decreasing.

$$
\begin{array}{lll}
\pi(0)=3 & \\
\pi(1)=0 & \lambda(1)=1 & \varepsilon(1)=1 \\
\pi(2)=2 & \lambda(2)=2 & \varepsilon(2)=-1 \\
\pi(3)=4 & \lambda(3)=5 & \varepsilon(3)=1 \\
\pi(4)=5 & \lambda(4)=4 & \varepsilon(4)=-1 \\
\pi(5)=1 & \lambda(5)=3 & \varepsilon(5)=-1
\end{array}
$$

$\varepsilon(i)=1$ iff the values of I_{i} (in the range) appear in an increasing way, iff f is increasing on $I_{\lambda-1(i)}$.

We identify f with $(\pi,(\varepsilon, \lambda)), \pi \in S_{n+1}, \varepsilon \in\{ \pm 1\}^{n}, \lambda \in S_{n}$.
$\varepsilon(\lambda(i))$ is the direction of f on the interval I_{i} in the domain.
f is continuous in $i \in\{1, \ldots, n-1\}$, iff either $\varepsilon(\lambda(i))=\varepsilon(\lambda(i+1))=1, \lambda(i+1)=\lambda(i)+1$, and $\pi(i)=\lambda(i)$, or $\varepsilon(\lambda(i))=\varepsilon(\lambda(i+1))=-1, \lambda(i+1)=\lambda(i)-1$, and $\pi(i)=\lambda(i+1)$.
f is continuous in 0 , iff
either $\varepsilon(\lambda(1))=1$ and $\pi(0)=\lambda(1)-1$
or $\varepsilon(\lambda(1))=-1$ and $\pi(0)=\lambda(1)$.
f is continuous in n must be studied accordingly.
f^{k} is continuous if either $f^{k}=\mathrm{id}$ or $f^{k}=n-\mathrm{id}$.

Structure theorem

Composition of $f \leftrightarrow(\pi,(\varepsilon, \lambda))$ and $f^{\prime} \leftrightarrow\left(\pi^{\prime},\left(\varepsilon^{\prime}, \lambda^{\prime}\right)\right)$ yields

$$
f \circ f^{\prime} \leftrightarrow\left(\pi \circ \pi^{\prime},\left(\varepsilon \varepsilon_{\lambda}^{\prime}, \lambda \circ \lambda^{\prime}\right)\right)
$$

where

$$
\varepsilon \varepsilon_{\lambda}^{\prime}(i)=\varepsilon(i) \varepsilon^{\prime}\left(\lambda^{-1}(i)\right), \quad i \in\{1, \ldots, n\} .
$$

The set of all functions of type III is the direct product

$$
S_{n+1} \times\left(\{ \pm 1\} 2 S_{n}\right)
$$

where the factor on the right side is a wreath product

$$
\{ \pm 1\}\left\langle S_{n}=\left\{(\varepsilon, \lambda) \mid \varepsilon \in\{ \pm 1\}^{n}, \lambda \in S_{n}\right\}\right.
$$

of order $n!\cdot 2^{n}$ with $(\varepsilon, \lambda)\left(\varepsilon^{\prime}, \lambda^{\prime}\right)=\left(\varepsilon \varepsilon_{\lambda}^{\prime}, \lambda \circ \lambda^{\prime}\right)$.

The number of functions of type III on $[0, n]$ is

n	$n!(n+1)!2^{n}$
0	1
1	4
2	48
3	1152
4	46080
5	2764800
6	232243200
7	26011238400
8	3745618329600
9	674211299328000
10	148326485852160000

The order of f

Title Page

Contents

$$
\operatorname{ord}(f)=\operatorname{lcm}(\operatorname{ord}(\pi), \operatorname{ord}(\varepsilon, \lambda))
$$

From $f^{\text {ord }(f)}=\mathrm{id}$ it follows that f is an iterative root of the identity.

General remarks

Theorem 1

Let J be a compact interval, $\varphi: J \rightarrow[0, n]$ be continuous, bijective, and increasing, and $f:[0, n] \rightarrow[0, n]$ be of type III with r discontinuities and $\operatorname{ord}(f)=k$, then

$$
F:=\varphi^{-1} \circ f \circ \varphi: J \rightarrow J
$$

is bijective, has r discontinuities, $F^{k}=\mathrm{id}_{J}$, thus F is an iterative root of the identity of order k.

General remarks

Theorem 1
 Let J be a compact interval, $\varphi: J \rightarrow[0, n]$ be continuous, bijective, and increasing, and $f:[0, n] \rightarrow[0, n]$ be of type III with r discontinuities and $\operatorname{ord}(f)=k$, then
 $$
F:=\varphi^{-1} \circ f \circ \varphi: J \rightarrow J
$$
 is bijective, has r discontinuities, $F^{k}=\mathrm{id}_{J}$, thus F is an iterative root of the identity of order k.

Problem.

Consider an iterative root $F: J \rightarrow J$ of the identity of order k on a compact interval J with finitely many discontinuities. Is it possible to find some $n \in \mathbb{N}$, a continuous, bijective, and increasing function $\varphi: J \rightarrow[0, n]$ and a function $f:[0, n] \rightarrow[0, n]$ of type III so that $F=\varphi^{-1} \circ f \circ \varphi$?

We will prove that the answer is
$\triangleleft>$

Page 10 of 31

Go Back

Full Screen

YES!

How to find n ?

Home Page

In general n is not uniquely determined, so we are looking for the smallest n.

Assume that $F^{k}=\mathrm{id}$ and F has r discontinuities $\xi_{1}, \ldots, \xi_{r} \in J=[a, b]$.
Consider the union of orbits

$$
U=\{a, b\} \cup \bigcup_{j=1}^{r}\left\{F^{i}\left(\xi_{j}\right) \mid 1 \leq i \leq k\right\}
$$

then U is finite

How to find n ?

In general n is not uniquely determined, so we are looking for the smallest n.

Assume that $F^{k}=\mathrm{id}$ and F has r discontinuities $\xi_{1}, \ldots, \xi_{r} \in J=[a, b]$. Consider the union of orbits

$$
U=\{a, b\} \cup \bigcup_{j=1}^{r}\left\{F^{i}\left(\xi_{j}\right) \mid 1 \leq i \leq k\right\},
$$

then U is finite and we determine n by

$$
n=|U|-1 .
$$

We label the $n+1$ elements of U by $a=x_{0}<\ldots<x_{n}=b$. Since $F(U)=U$ we have $F\left(x_{i}\right) \in U$ for all $0 \leq i \leq n$, thus F is a permutation of U.

Let J_{i} be the open interval $\left(x_{i-1}, x_{i}\right), 1 \leq i \leq n$, then

$$
[a, b]=U \cup J_{1} \cup \cdots \cup J_{n} .
$$

Title Page

Contents
For all $i \in\{1, \ldots, n\}$ it is obvious that:

- F is continuous on J_{i},
- there exists some $j \in\{1, \ldots, n\}$ so that $F\left(J_{i}\right)=J_{j}$, thus F permutes the intervals J_{i}.

This particular n will be called $n(F)$.

How to find φ ?

We will construct φ in several steps:

How to find φ ?

We will construct φ in several steps:

1. We determine some $\varphi: J \rightarrow[0, n]$ so that $\varphi\left(J_{i}\right)=(i-1, i)$ for $1 \leq i \leq n$. Let $\varphi\left(x_{i}\right)=i, 0 \leq i \leq n$.

For $x \in J_{i}=\left(x_{i-1}, x_{i}\right)$ let

$$
\varphi(x)=i-1+\frac{x-x_{i-1}}{x_{i}-x_{i-1}},
$$

then φ is continuous in J_{i}, and $\lim _{x \rightarrow x_{i-1}^{+}} \varphi(x)=i-1=\varphi\left(x_{i-1}\right)$ and $\lim _{x \rightarrow x_{i}^{-}} \varphi(x)=i=\varphi\left(x_{i}\right)$. Therefore φ is continuous on J.
Moreover φ is strictly increasing and bijective.

Let $\tilde{F}=\varphi \circ F \circ \varphi^{-1}:[0, n] \rightarrow[0, n]$, then

- \tilde{F} is bijective,
- $\tilde{F}^{j}=\mathrm{id}_{[0, n]}$, iff $F^{j}=\mathrm{id}_{J}$,
- \tilde{F} is an iterative root of the identity of order k,
- \tilde{F} has discontinuities in $\varphi\left(\xi_{i}\right), 1 \leq i \leq r$,
- $\tilde{F}(i) \in\{0, \ldots, n\}, i \in\{0, \ldots, n\}, \tilde{F}$ permutes these elements,
- \tilde{F} is continuous on $I_{i}=(i-1, i), 1 \leq i \leq r$,
- \tilde{F} is a permutation of the intervals $I_{i}, 1 \leq i \leq r$,
- \tilde{F} is increasing on I_{i}, iff F is increasing on $J_{i}, 1 \leq i \leq r$.

Home Page

Title Page

$\tilde{F}=\varphi \circ F \circ \varphi^{-1}$

$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$

Go Back

From
2. Now we must find some $\psi:[0, n] \rightarrow[0, n]$ so that $\psi \circ \tilde{F} \circ \psi^{-1}$ is affine on each interval $I_{i}=(i-1, i)$.

Lemma 2

Assume that $f:=\left.\tilde{F}\right|_{I_{i}}$ is a mapping $I_{i} \rightarrow I_{j}$ for $i \neq j$.
If f is strictly increasing, then there exists some $\psi_{j}: I_{j} \rightarrow I_{j}$ bijective and increasing, so that $\psi_{j}(f(x))=j+x-i, x \in I_{i}$.

If f is strictly decreasing, then there exists some $\psi_{j}: I_{j} \rightarrow I_{j}$ bijective and increasing, so that $\psi_{j}(f(x))=j-x+i-1, x \in I_{i}$.
2. Now we must find some $\psi:[0, n] \rightarrow[0, n]$ so that $\psi \circ \tilde{F} \circ \psi^{-1}$ is affine on each interval $I_{i}=(i-1, i)$.

Lemma 2

Assume that $f:=\left.\tilde{F}\right|_{I_{i}}$ is a mapping $I_{i} \rightarrow I_{j}$ for $i \neq j$.
If f is strictly increasing, then there exists some $\psi_{j}: I_{j} \rightarrow I_{j}$ bijective and increasing, so that $\psi_{j}(f(x))=j+x-i, x \in I_{i}$.

If f is strictly decreasing, then there exists some $\psi_{j}: I_{j} \rightarrow I_{j}$ bijective and increasing, so that $\psi_{j}(f(x))=j-x+i-1, x \in I_{i}$.

Proof.

1. Let $\psi_{j}(x)=j+f^{-1}(x)-i$, for $x \in I_{j}$, then ψ_{j} is a bijective and increasing mapping $I_{j} \rightarrow I_{j}$, and

$$
\psi_{j}(f(x))=j+f^{-1}(f(x))-i=j+x-i, x \in I_{i} .
$$

2. Let $\psi_{j}(x)=j-f^{-1}(x)+i-1$, for $x \in I_{j}$, then ψ_{j} is a bijective and increasing mapping $I_{j} \rightarrow I_{j}$, and $\psi_{j}(f(x))=j-f^{-1}(f(x))+i-1, x \in I_{i}$.

Let $\psi_{j}(x)=x$ for $x \notin I_{j}$, then ψ_{j} is bijective and increasing on $[0, n]$.
\tilde{F} is a permutation of the intervals I_{i}. Consider a cycle

$$
I_{i_{1}} \rightarrow I_{i_{2}} \rightarrow \ldots \rightarrow I_{i_{\ell}} \rightarrow I_{i_{1}} \text { of length } \ell \geq 1 . \text { Then } F^{\ell}\left(I_{i_{j}}\right)=I_{i_{j}}, 1 \leq j \leq \ell .
$$

Composition of two increasing or two decreasing functions yields an increasing function, composition of one increasing and one decreasing function yields a decreasing function.

Therefore, if \tilde{F} is decreasing on an even number of intervals in this cycle, then \tilde{F}^{ℓ} is increasing on all $I_{i_{j}}$, otherwise \tilde{F}^{ℓ} is decreasing on all $I_{i j}$.

Since ψ_{j} restricted to I_{i} is a bijective mapping $I_{i} \rightarrow I_{i}, 1 \leq i \leq n$, the restriction $\psi_{j} \circ \tilde{F} \circ \psi_{j}^{-1}$ to I_{i} involves only $\left.\tilde{F}\right|_{I_{i}}$.

First case

Home Page
\tilde{F} contains a cycle of intervals of length ℓ with an even number of decreasing functions in this cycle, then $\tilde{F}^{\ell}=\mathrm{id}$ on this cycle.

Page 19 of 31

Go Back

First case

\tilde{F} contains a cycle of intervals of length ℓ with an even number of decreasing functions in this cycle, then $\tilde{F}^{\ell}=$ id on this cycle.

In the first case $\left.\tilde{F}^{\ell}\right|_{I_{j}}=$ id for all $1 \leq j \leq \ell$.
$\left.\tilde{F}\right|_{i_{i_{1}}}: I_{i_{1}} \rightarrow I_{i_{2}}$
According to Lemma 2 there exists a bijective and increasing mapping $\psi_{i_{2}}$ on $[0, n]$ so that $\left.\psi_{i_{2}} \circ \tilde{F}\right|_{i_{1}}$ is affine, i.e. it is either $x \mapsto i_{2}+x-i_{1}$ or $x \mapsto i_{2}-1+i_{1}-x$. Then also $\psi_{i_{2}} \circ \tilde{F} \circ \psi_{i_{2}}^{-1}$ is affine on $I_{i_{1}}$.
$\left.\psi_{i_{2}} \circ \tilde{F} \circ \psi_{i_{2}}^{-1}\right|_{I_{i_{2}}}: I_{i_{2}} \rightarrow I_{i_{3}}$
According to Lemma 2 there exists a bijective and increasing mapping $\psi_{i_{3}}$ on $[0, n]$ so that $\psi_{i_{3}} \circ \psi_{i_{2}} \circ \tilde{F} \circ \psi_{i_{2}}^{-1}$ is affine on $I_{i_{2}}$. Then also $\psi_{i_{3}} \circ \psi_{i_{2}} \circ \tilde{F} \circ \psi_{i_{2}}^{-1} \circ \psi_{i_{3}}^{-1}, j=1,2$, is affine on $I_{i_{j}}$.

Continuing in the same way:
$\psi_{i_{\ell-1}} \circ \cdots \circ \psi_{i_{2}} \circ \tilde{F} \circ \psi_{i_{2}}^{-1} \circ \cdots \circ \psi_{i_{\ell-1}}^{-1} I_{i_{\ell-1}}: I_{i_{\ell-1}} \rightarrow I_{i_{\ell}}$
There exists a bijective and increasing mapping $\psi_{i_{\ell}}$ on $[0, n]$ so that $\psi_{i_{\ell}} \circ \psi_{i_{\ell-1}} \circ \cdots \circ \psi_{i_{2}} \circ \tilde{F} \circ \psi_{i_{2}}^{-1} \circ \cdots \circ \psi_{i_{\ell-1}}^{-1}$ is affine on $I_{i_{\ell-1}}$. Then also $\psi_{i_{\ell}} \circ \cdots \circ \psi_{i_{2}} \circ \tilde{F} \circ \psi_{i_{2}}^{-1} \circ \cdots \circ \psi_{i_{\ell}}^{-1}, 1 \leq j \leq \ell-1$, is affine on $I_{i_{j}}$.

The mapping $\psi=\psi_{i_{\ell}} \circ \cdots \circ \psi_{i_{2}}$ is bijective and increasing on $[0, n]$, $\left.\psi \circ \tilde{F} \circ \psi^{-1}\right|_{I_{i}}$ is affine, $1 \leq j \leq \ell-1$, and $\psi(x)=x$ for $x \in I_{i_{1}}$.

We have id $\left.\right|_{I_{i_{1}}}=\left.\tilde{F}^{\ell}\right|_{I_{i_{1}}}=\left.\left.\tilde{F}\right|_{I_{i_{\ell}}} \circ \cdots \circ \tilde{F}\right|_{I_{i_{1}}}$. Therefore id $\left.\right|_{I_{i_{1}}}=\left.\psi \circ \mathrm{id} \circ \psi^{-1}\right|_{i_{i_{1}}}=\left.\psi \circ \tilde{F}^{\ell} \circ \psi^{-1}\right|_{I_{i_{1}}}=\left.\left(\psi \circ \tilde{F} \circ \psi^{-1}\right)^{\ell}\right|_{I_{i_{1}}}=$ $\left.\left(\psi \circ \tilde{F} \circ \psi^{-1}\right) \circ\left[\left(\psi \circ \tilde{F} \circ \psi^{-1}\right) \circ \cdots \circ\left(\psi \circ \tilde{F} \circ \psi^{-1}\right)\right]\right|_{I_{i_{1}}}=$ $\left.\left(\psi \circ \tilde{F} \circ \psi^{-1}\right)\right|_{i_{\ell}} \circ\left[\left.\left.\left(\psi \circ \tilde{F} \circ \psi^{-1}\right)\right|_{i_{\ell-1}} \circ \cdots \circ\left(\psi \circ \tilde{F} \circ \psi^{-1}\right)\right|_{i_{1}}\right]$.

The term between [and] is a composition of affine function, thus it is affine, whence also $\psi \circ \tilde{F} \circ \psi^{-1} \mid I_{I_{\ell}}$ is affine.

Consequently $\psi \circ \tilde{F} \circ \psi^{-1}$ is affine on $I_{i_{j}}$ for each $1 \leq j \leq \ell$.

$\psi_{I_{3}} \circ \psi_{I_{2}} \circ \tilde{F} \circ \psi_{I_{2}}^{-1} \quad \psi_{I_{3}} \circ \psi_{I_{2}} \circ \tilde{F} \circ \psi_{I_{2}}^{-1} \circ \psi_{I_{3}}^{-1}$

since id $=\left.\tilde{F}^{3}\right|_{I_{1}}=\left.\psi \circ \tilde{F} \circ \psi^{-1}\right|_{I_{3}} \circ\left(\left.\left.\psi \circ \tilde{F} \circ \psi^{-1}\right|_{I_{2}} \circ \psi \circ \tilde{F} \circ \psi^{-1}\right|_{I_{1}}\right)$.

Second case

\tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

Second case

\tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

Second case

\tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

Second case

\tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

$$
\psi_{I_{2}} \tilde{\psi} \tilde{F} \tilde{\psi}^{-1}
$$

$$
\psi_{I_{2}} \tilde{\psi} \tilde{F} \tilde{\psi}^{-1} \psi_{I_{2}}^{-1}
$$

Second case

\tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

$$
\psi_{I_{2}} \tilde{\psi} \tilde{F} \tilde{\psi}^{-1} \psi_{I_{2}}^{-1}
$$

$$
\psi_{I_{3}} \psi_{I_{2}} \tilde{\psi} \tilde{F} \tilde{\psi}^{-1} \psi_{I_{2}}^{-1}
$$

Second case

\tilde{F} contains a cycle of intervals of length ℓ with an odd number of decreasing functions in this cycle, then \tilde{F}^{ℓ} need not be affine on these intervals, but there exists some bijective increasing function $\tilde{\psi}$ so that $\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}$ is affine on these intervals.

$$
\psi_{I_{2}} \tilde{\psi} \tilde{F} \tilde{\psi}^{-1} \psi_{I_{2}}^{-1}
$$

$\psi_{I_{3}} \psi_{I_{2}} \tilde{\psi} \tilde{F} \tilde{\psi}^{-1} \psi_{I_{2}}^{-1}$
$\psi_{I_{3}} \psi_{I_{2}} \tilde{\psi} \tilde{F} \tilde{\psi}^{-1} \psi_{I_{2}}^{-1} \psi_{I_{3}}^{-1}$

In the second case $\left.\tilde{F}^{\ell}\right|_{i_{i j}}$ is a bijective and decreasing mapping on $I_{I_{j}}$, thus a decreasing involution, for each $1 \leq j \leq \ell$. There exists a bijective and increasing function $\tilde{\psi}$ so that $\left.\left(\tilde{\psi} \circ \tilde{F}^{\ell} \circ \tilde{\psi}^{-1}\right)\right|_{i_{j}}$ is also affine, i.e. $x \mapsto 2 i_{j}-1-x, x \in I_{i_{j}}$ for each $1 \leq j \leq \ell$.

Without loss of generality $\left.\tilde{F}^{\ell}\right|_{I_{i}}$ is affine for each $1 \leq j \leq \ell$.
Similar to the first case, there exists $\psi=\psi_{i_{\ell}} \circ \ldots \circ \psi_{i_{2}}$ so that $\left.\left.\psi \circ \tilde{F}\right|_{I_{i_{j}}} \circ \psi\right|_{I_{i j}}$ is affine on $I_{i_{j}}$ for $1 \leq j \leq \ell-1$. By construction $\psi(x)=x$ for $x \in I_{i_{1}}$.

Therefore we have
$\left.\psi \circ \tilde{F}^{\ell}\right|_{i_{1}} \circ \psi^{-1} \mid I_{i_{1}}=\psi\left(2 i_{1}-1-\psi^{-1}(x)\right)=2 i_{1}-1-x=$
$\left.\psi \circ \tilde{F}\right|_{I_{\ell}} \circ \psi^{-1} \mid I_{i_{\ell}} \circ\left(\left.\left.\left.\left.\psi \circ \tilde{F}\right|_{I_{\ell-1}} \circ \psi^{-1}\right|_{I_{\ell-1}} \circ \cdots \circ \psi \circ \tilde{F}\right|_{i_{i_{1}}} \circ \psi^{-1}\right|_{I_{i_{1}}}\right)(x)$.
The term between (and) is a composition of affine function, thus it is affine, whence also $\left.\left.\psi \circ \tilde{F}\right|_{i_{i}} \circ \psi^{-1}\right|_{i_{i}}$ is affine.
Consequently $\left.\psi \circ \tilde{F}\right|_{I_{i_{j}}} \circ \psi^{-1}$ is affine on $I_{i_{j}}$ for each $1 \leq j \leq \ell$.

Equivalence

Two bijective functions $F_{1}: J_{1} \rightarrow J_{1}$ and $F_{2}: J_{2} \rightarrow J_{2}$ defined on compact intervals J_{1} and J_{2} are considered in relation

$$
F_{1} \sim F_{2}
$$

iff there exists a bijective increasing function $\varphi: J_{1} \rightarrow J_{2}$ so that

$$
F_{2}=\varphi \circ F_{1} \circ \varphi^{-1}
$$

We have:

$$
\begin{gathered}
F_{1} \sim F_{1} \\
F_{1} \sim F_{2} \Leftrightarrow F_{2} \sim F_{1} \\
F_{1} \sim F_{2} \text { and } F_{2} \sim F_{3} \Rightarrow F_{1} \sim F_{3}
\end{gathered}
$$

Theorem 3
Consider $f_{1}, f_{2} \in S_{n+1} \times\left(\{ \pm 1\}\left\langle S_{n}\right)\right.$ with $n=n\left(f_{1}\right)=n\left(f_{2}\right)$. Then

$$
f_{1} \sim f_{2} \Leftrightarrow f_{1}=f_{2} .
$$

Theorem 3

Consider $f_{1}, f_{2} \in S_{n+1} \times\left(\{ \pm 1\}\left\langle S_{n}\right)\right.$ with $n=n\left(f_{1}\right)=n\left(f_{2}\right)$. Then

$$
f_{1} \sim f_{2} \Leftrightarrow f_{1}=f_{2} .
$$

Theorem 4

Consider an iterative root $F: J \rightarrow J$ of the identity of order k on a compact interval J with finitely many discontinuities. Let $n=n(F)$. Then there exists exactly one $f \in S_{n+1} \times\left(\{ \pm 1\} 2 S_{n}\right)$ so that

$$
F \sim f
$$

Theorem 3

Consider $f_{1}, f_{2} \in S_{n+1} \times\left(\{ \pm 1\}\left\langle S_{n}\right)\right.$ with $n=n\left(f_{1}\right)=n\left(f_{2}\right)$. Then

$$
f_{1} \sim f_{2} \Leftrightarrow f_{1}=f_{2} .
$$

Theorem 4

Consider an iterative root $F: J \rightarrow J$ of the identity of order k on a compact interval J with finitely many discontinuities. Let $n=n(F)$. Then there exists exactly one $f \in S_{n+1} \times\left(\{ \pm 1\}\left\langle S_{n}\right)\right.$ so that

$$
F \sim f
$$

Remark.

Consider $f \in S_{n+1} \times\left(\{ \pm 1\} 2 S_{n}\right)$ with $m=n(f)<n$. Then there exists $f^{\prime} \in S_{m+1} \times\left(\{ \pm 1\} \imath S_{m}\right)$ so that $f \sim f^{\prime}$. It is possible that there exists $f^{\prime \prime} \in S_{n+1} \times\left(\{ \pm 1\} \imath S_{n}\right), f^{\prime \prime} \neq f$, so that $f \sim f^{\prime \prime}$.

Number of non-equivalent functions with $n(f)=n$

n	$n!(n+1)!2^{n}$	$n(f)<n$	$n(f)=n$
0	1		
1	4	4	44
2	48	40	1112
3	1152	892	45188
4	46080	37708	2727092
5	2764800	2337808	229905392
6	232243200	201311920	25809926480
7	26011238400	22951808356	3722666521244
8	3745618329600		
9	674211299328000		
10	148326485852160000		

How to enumerate them? How to construct them?

Stetigkeiten in $[1,3,6]$
A permutation λ for $n=7$, where neither 1,3 nor 6 occur in the orbit of a discontinuity of f if $f(1)=3, f(3)=6$ and $f(6)=1$. Thus they could be omitted in order to get a function on $n=4$.
[\backslash]
[/]
[
[/]
Depending on $f(i), i \in\{0,2,4,5,7\}$ there are $(8-3)$! functions of this particular form with $n(f)=4$.

How to construct functions with $n(f)<n$?

Divide all intervals $(i-1, i)$ belonging to a cycle of λ into k intervals of length $1 / k$, then form a cycle of length ℓ we obtain $k \cdot \ell$ intervals.
E.g. a function f with $n(f)=3$, where $\lambda=(1,2,3)$, and $k=1, k=2$, $k=3$, which yield $n=3, n=6, n=9$.

Open questions

Do the functions f with $n(f)=n$ generate the set of all functions of type III on n ?

If so, is it true that for each f with $n(f)<n$ there exists some \tilde{f} with $n(\tilde{f})=n$ and some j so that $f=\tilde{f}^{j}$?

Contents

On iterative roots of the identity and the groups
Structure theorem
The order of f
General remarks
How to find n ?
How to find φ ?
First case
Second case
Equivalence
Number of non-equivalent functions with $n(f)=n$

