13. Proseminar zur Einführung in die komplexe Analysis

Aufgaben für den 21.1.2013

- 71. Sei $u \in \mathbb{C}$. In welchen Stellen $z \in \mathbb{C}$ besitzt $f(z) = \mathrm{e}^{uz}/(\mathrm{e}^z 1)$ Singularitäten. Sei 0 < r < 1. Legen Sie um jede dieser Stellen eine Kreisscheibe mit Radius r deren Mittelpunkt die Singularität ist. Sei Z die Menge \mathbb{C} ohne die Vereinigung der Abschlüsse all dieser Kreisscheiben. Zeigen Sie, dass für $u \in [0,1]$ die Funktion f auf Z beschränkt ist. Ist f für $u \in \mathbb{C} \setminus [0,1]$ auf Z unbeschränkt?
- 72. Die Bernoulli-Polynome sind durch

$$\frac{ze^{zx}}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n(x)}{n!} z^n$$

gegeben.

- (a) Zeigen Sie, dass $B_n(x)$ ein Polynom vom Grad n ist und drücken Sie $B_n(x)$ in den Bernoulli-Zahlen aus.
- (b) Zeigen Sie für $x \in [0,1]$ und $n \geq 2$ die Formel

$$B_n(x) = -n! \sum_{\nu > 1} \frac{e^{2\pi i \nu x} + (-1)^n e^{-2\pi i \nu x}}{(2\pi i \nu)^n}.$$

Hinweis: Verwenden Sie die CIF für Kreise mit Radius $(2\nu+1)\pi$, $\nu \in \mathbb{N}$, um 0 und führen Sie den Grenzübergang $\nu \to \infty$ aus. Wobei brauchen Sie $x \in [0,1]$?

- 73. Finden Sie eine ganze Funktion f, für die f(n) = 1/n für alle $n \in \mathbb{Z} \setminus \{0\}$ gilt.
- 74. Finden Sie eine ganze Funktion, die einfache Nullstellen genau in den Punkten $z_n=n^2,\,n\in\mathbb{N}$ hat. Geben Sie eine Abschätzung für $\max_{|z|\leq R}|f(z)|$ an.
- 75. Zeigen Sie, dass jede auf $\mathbb C$ meromorphe Funktion als Quotient von zwei ganzen Funktionen dargestellt werden kann.