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Abstract. The asymmetric stem-cell division of Drosophila SOP precursor cells is driven by
the asymmetric localisation of the key protein Lgl (Lethal giant larvae) during mitosis, when Lgl is
phosphorylated by the kinase aPKC on a subpart of the cortex and subsequently released into the
cytoplasm.

In this paper, we present a volume-surface reaction-diffusion system, which models the localisation
of Lgl within the cell cytoplasm and on the cell cortex. We prove well-posedness of global solutions as
well as regularity of the solutions. Moreover, we rigorously perform the fast reaction limit to a reduced
quasi-steady-state approximation system, when phosphorylated Lgl is instantaneously expelled from the
cortex. Finally, we apply a suitable first order finite element scheme to simulate and discuss interesting
numerical examples, which illustrate i) the influence of the presence/absence of surface-diffusion to the
behaviour of the system and the complex balance steady state and ii) the dependency on the release
rate of phosphorylated cortical Lgl.
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1. Introduction
In stem cells undergoing asymmetric cell division, particular proteins (so-called cell-

fate determinants) are localised at the cortex of only one of the two daughter cells during
mitosis. These cell-fate determinants trigger in the following the differentiation of one
daughter cell into specific tissue while the other daughter cell remains a stem cell.

In Drosophila, SOP precursor stem cells provide a well-studied biological example
model of asymmetric stem cell division, see e.g. [6, 29, 34] and the references therein. In
particular, asymmetric cell division of SOP cells is driven by the asymmetric localisation
of the key protein Lgl (Lethal giant larvae), which exists in two conformational states: a
non-phosphorylated form which regulates the localisation of the cell-fate-determinants
in the membrane of one daughter cell, and a phosphorylated form which is inactive.

The asymmetric localisation of Lgl during mitosis is the result of the activation of
the kinase aPKC, which phosphorylates Lgl (as part of a highly evolutionary conserved
protein complex) only on a subpart of the cortex, as well as the weakly reversible reac-
tion/sorption dynamics of the two conformations of Lgl between cortex and cytoplasm.
In particular, it is the (fast) irreversible release of phosphorylated Lgl from the cortex,
which initiates the asymmetric localisation of Lgl upon the activation of aPKC.

While the asymmetric localisation of Lgl is essential for the asymmetric cell division
of SOP cells, the subsequent biological machinery, where the asymmetric localisation of
Lgl leads to the asymmetric localisation allocation of the adaptor protein Pon (Partner
of Numb) and the cell-fate determinate Numb is currently not well enough understood
to be considered here.
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2 A reaction-diffusion model of asymmetric stem-cell divisions

In this paper, we shall present and study a volume-surface reaction-diffusion model
system describing the evolution of Lgl in its non-phosphorylated and phosphorylated
conformations both in the cytoplasm (i.e. in the cell volume) and at the cortex (i.e. the
surface/membrane of the cell).

More precisely, we shall denote by L(t,x) and P (t,x) the cytoplasmic concentrations
of non-phosphorylated and phosphorylated Lgl within the bounded cell domain Ω⊂Rn,
while l(t,x) and p(t,x) denote the cortical concentrations of the non-phosphorylated
and phosphorylated Lgl at the boundary Γ :=∂Ω, which is assumed sufficiently smooth
(e.g. C2+α with α>0).

The reaction kinetics between the species L, P , l and p are depicted in Figure
1.1 and summarise the following processes: i) a reversible reaction between L and P
with rates α and β on the domain Ω, ii) a reversible exchange between L and l at the
boundary Γ with rates λ and γ, iii) an irreversible phosphorylation of l-Lgl into p-Lgl at
the boundary Γ with rate σ and iv) an irreversible release of p-Lgl from the boundary
Γ into the domain Ω with rate ξ.

We emphasise that these reaction/sorption processes jointly conserve the total mass
of Lgl (see the conservation law (1.4) below). Moreover, the dynamics of Fig. 1.1
forms a so-called weakly-reversible or complex balance reaction network, for which the
convergence towards a steady state and well as the structure of the steady states are
significantly more subtle than for detailed balance models, see the discussion of the
numerical examples in Section 4 or also [21, 26] and the references therein.
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Fig. 1.1: The weakly-reversible reaction dynamics of L,P,l and p.

In the following, we propose a continuum model of partial differential equations,
which describe the reactions and the diffusion processes of these species both on the
domain Ω and on its surface Γ. The choice of a continuum model is based on the
biological observation that protein concentrations in SOP cells are rather large and that
stochastic effects in the concentrations can thus be neglected, see [6].

The aim of the model is to qualitatively study, mathematically analyse and nu-
merically simulate the reaction-diffusion dynamics between phosphorylated and un-
phosphorylated Lgl in the cytoplasm and on the cortex with particular emphasis on
the effect of surface diffusion, see Sections 4 and 5.

In SOP stem cells, the phosphorylation of Lgl occurs at the boundary Γ by means
of an atypical protein kinase aPKC, which is pre-located at a sub-part Γ2⊂Γ. We
shall thus assume that Γ is the union of two disjoint subsets Γ = Γ1∪Γ2, in which Γ2 is
connected has a smooth boundary ∂Γ2. In case that Γ1 =∅, then Γ2≡Γ is a surface in
Rn without boundary.
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We consider the following equations for the volume concentrations L and P :
Lt−dL∆L=αP −βL, x∈Ω, t>0,

Pt−dP∆P =−αP +βL, x∈Ω, t>0,

L(0,x) =L0(x), P (0,x) =P0(x), x∈Ω,

(1.1)

where ∆ denotes the Laplacian on the domain Ω, dL, dP are positive volume-diffusion
coefficients, α, β are positive and constant reaction rates, and L0(x) and P0(x) are given
initial concentrations.

The volume concentrations L and P are connected to the surface concentrations l
and p in terms of Robin- and Neumann boundary conditions{

dL
∂L
∂ν =−λL+γl, x∈Γ, t>0,

dP
∂P
∂ν =χΓ2

ξp, x∈Γ, t>0,
(1.2)

where ν(x) denotes the unit normal outward vector at x∈Γ, γ, λ, and ξ are positive
and constant reaction rates and χΓ2

denotes the characteristic function localising the
aPKC-active part of the boundary Γ2, i.e. χΓ2(x) = 1 if x∈Γ2 and χΓ2(x) = 0 otherwise.
We remark that we consider smoothed versions of χΓ2(x) biologically equally justified,
yet mathematically less general and challenging.

Thirdly, the surface concentrations l and p satisfy

lt−dl∆Γl=λL−(γ+σχΓ2
)l, x∈Γ, t>0,

pt−dp∆Γ2
p=σl−ξp, x∈Γ2, t>0,

dp
∂p
∂νΓ2

= 0, x∈∂Γ2,

l(0,x) = l0(x), x∈Γ,

p(0,x) =p0(x), x∈Γ2,

(1.3)

where ∆Γ and ∆Γ2
are Laplace-Beltrami operators (see e.g. [23]) acting on the surfaces

Γ and Γ2, respectively, dl, dp are non-negative surface-diffusion coefficients and σ>0 is
the positive and constant phosphorylation rate.

The considered evolution process conserves the total mass of Lgl, which is expressed
in the following conservation law:∫

Ω

(L(t,x)+P (t,x))dx+

∫
Γ

l(t,x)dS+

∫
Γ2

p(t,x)dS=M0>0, ∀t>0 (1.4)

where M0 is the initial mass, which is assumed to be positive,

M0 :=

∫
Ω

(L0(x)+P0(x))dx+

∫
Γ

l0(x)dS+

∫
Γ2

p0(x)dS>0.

Linear VSRDs like (1.1)–(1.3) appear recently in many related cell-biological mod-
els, such as signalling models, see e.g. [22], models for transcription and translation of
genes, see e.g. [33], models of the reversible transitions between various conformational
states of proteins, see e.g. [30], models of the transitions between various folding states
of RNA, see e.g. [8], and models of ”field-road” coupling in ecology, see e.g. [3, 4, 5].

The content of this paper is the following: In Section 2, we first study the well-
posedness of the volume-surface reaction-diffusion (VSRD for short) system (1.1)–(1.3)
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and the regularity of solutions. The well-posedness will be shown by reformulating the
system in a variational form where the bilinear form is not coercive but satisfies instead
a G̊ardings inequality. Global existence of solutions follows then from the conservation
of mass and a suitable L2 functional. Previous related results of VSRD systems can be
found, for instance, in [18, 31] for linear models and [3, 4, 5, 20] for nonlinear models.

The next major part of this paper is the quasi-steady-state approximation (QSSA for
short) for (1.1)–(1.3) which will be done in Section 3. The biological data for the model
system (1.1)–(1.3) suggests that the release rate ξ from cortical p-Lgl to cytoplasmic
P -Lgl is much larger than the others reaction rates. We shall thus prove rigorously
the QSSA for (1.1)–(1.3) towards a reduced QSSA system (see Section 3), which occurs
when considering the limit ξ→∞ for the release rate of cortical phosphorylated p-Lgl.
The QSSA thus leads to a reduced system, where the phosphorylation of l-Lgl at the
cortex yields directly the inflow for P -Lgl and the cortical concentration p-Lgl no longer
needs to be considered.

QSSAs of reactive systems occur commonly in chemical engineering and although
applying QSSAs has been routinely done by chemical engineers since a long time, the
mathematical theory is usually missing. Recent however, a lot of mathematical attention
has been paid to rigorously prove QSSAs (see e.g. [7, 9, 10, 11, 12, 13] and references
therein).

In the present paper, the novelty lies in the surface-volume coupling of the QSSA
since the limiting parameter ξ→∞ appears as inhomogeneity in the Neumann boundary
condition for P -Lgl, which introduces new technical difficulties and requires appropriate
a priori estimates in order to deal with the reactions connecting volume and surface.

Here, we are able present a first result concerning such a QSSA of a VSRD system
in the case that no surface diffusion terms are present. The proof is based on a dual-
ity argument, which was already successfully applied to a nonlinear reaction-diffusion
system in [11], yet without surface-volume coupling. We remark that the QSSA of the
weakly-reversible model system (1.1)–(1.3) with surface diffusion poses technique dif-
ficulties, which we were unable to overcome so far. The QSSA of a simpler, detailed
balance VSRD system was recently studied in [25].

In Section 4, we present a suitable finite element method (FEM) discretisation of
the model system (1.1)–(1.3) and discuss some numerical test cases, which illustrate the
complexity of this four species system. The chosen examples present particular inter-
esting aspects of the interplay between volume and surface diffusion and the reactions
connecting cytoplasm and cortex.

The numerical simulations demonstrate the remarkable influence of surface diffusion
and the complex balance reaction kinetics to the behaviour of the system. On one hand,
surface diffusion clearly helps to smooth jumps in of concentrations on the boundary.
More interestingly, the presence/absence of surface diffusion strongly affects the shape
of the attained complex balance equilibrium (see e.g. Fig 4.2 and it’s discussion for
details). The numerical simulation also illustrates the asymptotic behaviour of the
system as ξ→+∞, which confirms the theoretical QSSA done in Section 3.

For relating results on the role of surface diffusion, we refer the interested reader
to recent works of Berestycki et al. [3, 4, 5], where the authors studied the influence of
surface diffusion to the travelling wave speed in the domain for Fisher-KPP models.

Finally, in Section 5, we summarise the conclusions of the paper, while the Appendix
6 provides additional details.

2. Well-posedness of the system (1.1)–(1.3)
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In this section, we first prove the existence of a unique weak solution to (1.1)–
(1.3) by using abstract results for linear PDE systems. Since the bilinear form is not
coercive but only satisfies a G̊arding’s inequality, the uniform bounds in time of solutions
do not follow immediately. We will show that if the initial data is nonnegative, and
consequently the solution is nonnegative, then the solution to (1.1)–(1.2) is bounded
uniformly in time. Some regularities of the solution are studied at the end of the
section.
Notations: Throughout the paper, we will denote by (·, ·)Ω and ‖·‖Ω the inner product
and its induced norm in L2(Ω). Analogously, we will denote the inner products and
norms in L2(Γ),L2(Γ1) and L2(Γ2) (e.g. the norm in L2(Γ) is denoted by ‖·‖Γ). The
tangential derivatives on Γ and Γ2 are denoted by ∇Γ and ∇Γ2

, respectively (see e.g.
[23, Chapter 16].

We will denote by C a generic constant, which only depends on the initial data, all
diffusion and reaction rates. Moreover, CT denotes a generic constant, which addition-
ally depends on the time interval size T >0.

For any given T >0 and q≥1, we shall denote

ΩT := [0,T ]×Ω, ΓT := [0,T ]×Γ, Γ2,T := [0,T ]×Γ2.

The spaces Lq(ΩT ), Lq(ΓT ) or Lq(Γ2,T ) will be used with the usual norms, for example

‖f‖L2(ΩT ) =

(∫ T

0

‖f(t)‖2L2(Ω)dt

)1/2

.

Definition 2.1 (Weak Solutions).
A quadruple (L,P,l,p) is called a weak solution to system (1.1)–(1.3) on (0,T ) if

L,P ∈C([0,T ];L2(Ω))∩L2(0,T ;H1(Ω)),

l∈C([0,T ];L2(Γ))∩L2(0,T ;H1(Γ)),

p∈C([0,T ];L2(Γ2))∩L2(0,T ;H1(Γ2)),

and

L(x,0) =L0(x), P (x,0) =P0(x), `(x,0) = `0(x), p(x,0) =p0(x),

and for all test functions ϕ1,ϕ2∈H1(Ω), ψ∈H1(Γ) and ψ2∈H1(Γ2) we have

d

dt

[
(L,ϕ1)Ω +(P,ϕ2)Ω +(`,ψ1)Γ +(p,ψ2)Γ2

]
+a(L,P,`,p;ϕ1,ϕ2,ψ1,ψ2) = 0 (2.1)

for a.e. 0<t<T , where the bilinear form a is defined as

a(L,P,`,p;ϕ1,ϕ2,ψ1,ψ2)

=dL(∇L,∇ϕ1)Ω +dP (∇P,∇ϕ2)Ω +d`(∇Γ`,∇Γψ1)Γ +dp(∇Γ2
p,∇Γ2

ψ2)Γ2

+(βL−αP,ϕ1−ϕ2)Ω +(λL−γ`,ϕ1−ψ1)Γ

+(σ`,ψ1−ψ2)Γ2
+(ξp,ψ2−ϕ2)Γ2

.

(2.2)

Lemma 2.2 (G̊arding Inequality).
The bilinear form a defined in 2.2 is continuous in H1(Ω)×H1(Ω)×H1(Γ)×H1(Γ2)
and satisfies a G̊arding inequality, i.e. there exists δ1>0 and δ2>0 such that

a(L,P,`,p;L,P,`,p)+δ1(‖L‖2Ω +‖P‖2Ω +‖`‖2Γ +‖p‖2Γ2
)

≥ δ2(‖L‖2H1(Ω) +‖P‖2H1(Ω) +‖`‖2H1(Γ) +‖p‖2H1(Γ2))
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for all (L,P,`,p)∈H1(Ω)×H1(Ω)×H1(Γ)×H1(Γ2).
Proof. The continuity of a is standard so we omit it here. To prove the G̊arding

inequality we use [24, Theorem 1.5.1.10] that for any ε>0, there exists Cε>0 such that

‖f‖2Γ≤ε‖∇f‖2Ω +Cε‖f‖2Ω for all f ∈H1(Ω).

Hence, we can estimate

a(L,P,`,p;L,P,`,p)≥dL‖∇L‖2Ω +dP ‖∇P‖2Ω +d`‖∇Γ`‖2Γ +dp‖∇Γ2
p‖2Γ2

−(α+β)(L,P )Ω−(λ+γ)(L,`)Γ−σ(`,p)Γ2
−ξ(P,p)Γ2

≥ 1

2

(
dL‖∇L‖2Ω +dP ‖∇P‖2Ω +d`‖∇Γ`‖2Γ +dp‖∇Γ2p‖2Γ2

)
−C(‖L‖2Ω +‖P‖2Ω +‖`‖2Γ +‖p‖2Γ2

).

Basing on Lemma 2.2, the existence of unique weak solution to (1.1)–(1.3) follows
from standard theory of linear parabolic equations, see e.g. [15, XVIII §3)].

Theorem 2.3 (Existence of a Unique Weak Global Solution).
For any (L0,P0,`0,p0)∈L2(Ω)×L2(Ω)×L2(Γ)×L2(Γ2), the system (1.1)–(1.3) has a
unique weak solution on (0,T ) for all T >0 which conserves the total mass, that is∫

Ω

L(x,t)dx+

∫
Ω

P (x,t)dx+

∫
Γ

`(x,t)dS+

∫
Γ2

p(x,t)dS

=

∫
Ω

L0(x)dx+

∫
Ω

P0(x)dx+

∫
Γ

`0(x)dS+

∫
Γ2

p0(x)dS.

Moreover, if the initial data is nonnegative then the solution is nonnegative for all time
t>0.

The uniform global bounds of the solution in L2 for the system (1.1)–(1.3) does
not follows immediately from Theorem 2.3 since the bilinear a is not coercive. In the
sequel, we will show that such L2-bounds can be obtained with the help of the mass
conservation in Theorem 2.3.

Theorem 2.4 (Global L2-bounds of Weak Solutions).
Assume that the initial data (L0,P0,l0,p0)≥0 are non-negative. Then, there exists a
constant C, which depends only on the domain, the initial data, the reaction rates and
the diffusion rates such that

∀t≥0 : ‖L(t)‖2Ω +‖P (t)‖2Ω +‖l(t)‖2Γ +‖p(t)‖2Γ2
≤C,

i.e. the global solutions to system (1.1)–(1.3) are bounded uniformly-in-time.
Proof. Define a quadratic functional

H(t) =
1

2

(
‖L(t)‖2Ω +‖P (t)‖2Ω +σ‖l(t)‖2Γ +ξ‖p(t)‖2Ω

)
.

By calculating the time derivative of H along solutions of system (1.1)–(1.3), we get

dH
dt

=−dL‖∇L‖2Ω−dP ‖∇P‖2Ω−β‖L‖2Ω−α‖P‖2Ω−λ‖L‖2Γ
+(α+β)(L,P )Ω +(λσ+γ)(L,l)Γ +ξ(P,p)Γ2

−γσ‖l‖2Γ−σ2‖l‖2Γ2
−ξ2‖p‖2Γ2

+σξ(p,l)Γ2
.

(2.3)
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We recall two well-known interpolation estimates (see e.g. [1, Theorem 1.3, Page 18]
and [24, Theorem 1.5.1.10]): there exists for any ε>0 a constant Cε>0 such that

‖u‖2Ω≤ε‖∇u‖2Ω +Cε‖u‖2L1(Ω), and ‖u‖2Γ≤ε‖∇u‖2Ω +Cε‖u‖2L1(Ω), (2.4)

for all u∈H1(Ω). Now, by using the Cauchy inequality and (2.4), after standard com-
putations we get from (2.3) that

dH
dt
≤− dL

2
‖∇L‖2Ω−

dP
2
‖∇P‖2Ω−β‖L‖2Ω−α‖P‖2Ω−

γσ

2
‖l‖2Γ−

ξ2

2
‖p‖2Γ2

+C(‖L‖2L1(Ω) +‖P‖2L1(Ω)).

By defining η := 1
2 min{2β,2α,γ,ξ} and by using ‖L‖L1(Ω)≤M and ‖P‖L1(Ω)≤M

(thanks to the mass conservation in Theorem 2.3), we have

dH
dt

+ηH≤C. (2.5)

By Gronwall’s inequality, we obtain in particular H(t)≤e−ηtH(0)+C, which completes
the proof.

To study the regularity of solutions to (1.1)–(1.3), we need the following Lemma:

Lemma 2.5 (Regularity of Parabolic Equations, [19, 14]).
Assume that Ω⊂Rn is a bounded domain with regular boundary Γ :=∂Ω (says Γ∈
C2+α,α>0). Consider the following initial boundary value problem

ut−d∆u=f, x∈Ω, t>0,

d∂νu+αu=g, x∈Γ, t>0,

u(0,x) =u0(x), x∈Ω.

(2.6)

Assume that α≥0, u0∈L2(Ω), g∈L2(0,T ;Hθ−1/2(Γ))∩Hθ(0,T ;H−1/2(Γ)) and f ∈
L2(0,T ;(H1−θ(Ω))∗) for some θ∈ [0,1]. Then, (2.6) has a unique weak solution sat-
isfying, for any 0<τ <T <+∞,

u∈L2(τ,T ;H1+θ(Ω))∩H1(τ,T ;(H1−θ(Ω))∗). (2.7)

Theorem 2.6 (Regularity of Solutions). For any I= [τ,T ] with 0<τ <T <+∞,
the weak solution (L,P,l,p) to (1.1)–(1.3) satisfies the following regularities

L∈L2(I;H2(Ω))∩H1(I;L2(Ω)),

P ∈L2(I;H3/2(Ω))∩H1(I;H−1/2(Ω)),

l∈L2(I;H2(Γ))∩H1(I;L2(Γ)),

p∈L2(I;H2(Γ2))∩H1(I;L2(Γ2)).

Proof. First, by considering the equation for l,

lt−dl∆Γl=λL−(γ+χΓ2
σ)l ∈ L2(0,T ;L2(Γ)), l(0) = l0∈L2(Γ),



8 A reaction-diffusion model of asymmetric stem-cell divisions

we observe that l∈L2(I;H2(Γ))∩H1(I;L2(Γ)) thanks to the regularity of solutions to
heat equation on smooth Riemann manifolds Γ without boundary (see, e.g. [32, Chapter
6]). A similar result for heat equation on smooth Riemann manifold Γ2 with smooth
boundary ∂Γ2 applies to

pt−dp∆Γ2
p=σl−ξp ∈ L2(0,T ;L2(Γ2)), dp∂p/∂νΓ2

= 0, p(0) =p0∈L2(Γ2),

which yields p∈L2(I;H2(Γ2))∩H1(0,T ;L2(Γ2)). Turn to the equation for L,

Lt−dL∆L=−βL+αP ∈L2(0,T ;L2(Ω))

dL∂L/∂ν+λL=γl∈L2(I;H1/2(Γ))∩H1(I;H−1/2(Γ)), L(0) =L0∈L2(Ω),

Then, we can apply Lemma 2.5 with θ= 1 to obtain L∈L2(I;H2(Ω))∩H1(I;L2(Ω)).
It remains to show the regularity of P which is the solution to

Pt−dP∆P =βL−αP ∈L2(0,T ;L2(Ω)), dP∂P/∂ν=χΓ2
ξp, P (0) =P0∈L2(Ω).

We cannot expect P to have the same regularity as L because of the low regularity of
the characteristic function χΓ2

(e.g. χΓ2
6∈H1/2(Γ)). However, since χΓ2

∈L∞(Γ) and,
thus, χΓ2ξp∈L2(0,T ;L2(Γ)), we can apply Lemma 2.5 with θ= 0 to conlude

P ∈L2(I;H3/2(Ω))∩W 1,2(I;H−1/2(Ω)).

Remark 2.7. (Further Regularity of Solutions) We remark that the relatively lower
regularity of P in the Theorem 2.6 stems exclusively from the low regularity of the
characteristic function χΓ2

. It is thus a mathematical consequence of the modelling
choice of a bounded cut-off function χΓ2

∈L∞ for the activity range of aPKC.
It seems biologically equally justified to replace χΓ2

by a smoothed cut-off function
χεΓ2

: Γ2→ [0,1], for sufficiently small ε>0, satisfying that χεΓ2
vanished on ∂Γ2. Then,

we obtain the full regularity P ∈L2(I;H2(Ω))∩H1(I;L2(Ω)). In this case, we can fur-
ther bootstrap to obtain arbitrary high Sobolev regularity of l, p, L and P provided
sufficient regularity of the boundaries Γ and ∂Γ2.

3. Quasi-Steady-State Approximation In this section, we study the Quasi-
Steady-State Approximation (QSSA) for the system (1.1)–(1.3) as ξ→+∞. The limit
ξ→+∞ can be interpreted as the instantaneous release of phosphorylated Lgl from the
cell cortex into the cell cytoplasm. For technical reasons (see Lemma 3.2 and Remark
3.3), we shall restrict our analysis to the case without boundary diffusion, i.e. dl= 0 =dp.
The QSSA for system (1.1)–(1.3) with surface diffusion constitutes currently an open
problem.

Quasi-Steady-State Approximations for (bio)chemical reaction systems have long
been studied in terms of asymptotic expansions, but it was not until recently that
rigorous results were obtained for the corresponding fast-reaction limits (see e.g. [9, 10,
11, 12, 7, 13] and references therein).

The QSSA we shall study in this Section can be illustrated as the passage of the
left reaction diagram towards the right reaction diagram in Figure 3.1. Without the
surface diffusion terms, the system (1.1)–(1.3) rewrites as

Lt−dL∆L=−βL+αP, x∈Ω, t>0,

dL
∂L
∂ν +λL=γl, x∈Γ, t>0,

L(0,x) =L0(x), x∈Ω,

(3.1)
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Fig. 3.1: The original Lgl model system (left) and the reduced QSSA system (right).
The reduced QSSA model, like the full model, is still a weakly-reversible system.


Pt−dP∆P =βL−αP, x∈Ω, t>0,

dP
∂P
∂ν =χΓ2

ξp, x∈Γ, t>0,

P (0,x) =P0(x), x∈Ω,

(3.2)


lt=λL−(γ+χΓ2

σ)l, x∈Γ, t>0,

l(0,x) = l0(x), x∈Γ,

pt=σl−ξp, x∈Γ2, t>0,

p(0,x) =p0(x), x∈Γ2.

(3.3)

Intuitively and according to the numerical example Fig. 4.4, we expect from the
second equation in (3.3) that in the limit ξ→+∞ the concentration p(t,x) of phospho-
rylated Lgl on the boundary Γ2 tends to zero for any positive time since all the p-Lgl
on the active part of the cell cortex part is instantaneously released into the cytoplasm
and becomes P -Lgl.

However, if the initial p-Lgl concentration is non-zero, i.e. p0(x) 6= 0, an initial layer
at t= 0 will be forming in the limit ξ→+∞, which expresses the transfer of initial mass
of p0 into P0 (see also Figure 4.5 for a numerical example).

Thus, the expected limiting system has the following form:
Lt−dL∆L=−βL+αP, x∈Ω, t>0,

dL
∂L
∂ν =−λL+γl, x∈Γ, t>0,

L(0,x) =L0(x), x∈Ω,

(3.4)


Pt−dP∆P =βL−αP, x∈Ω, t>0,

dP
∂P
∂ν =χΓ2

σl, x∈Γ, t>0,

P (0,x) =P0(x)+P ∗(x), x∈Ω,

(3.5)

and {
lt=λL−(γ+σχΓ2

)l, x∈Γ, t>0,

l(0,x) = l0(x), x∈Γ,
(3.6)

where we emphasise that P ∗ is the unique function in L2(Ω), which satisfies∫
Ω

P ∗ϕdx=

∫
Γ2

p0ϕdS, ∀ϕ∈H1(Ω). (3.7)
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Note that the system (3.4)–(3.6) corresponds to the reaction dynamics represented by
the right diagram in Figure 3.1. Its reaction kinetics is still weakly-reversible.

Remark 3.1 (Common Stationary States of Full System and QSSA).
We point out that the system (3.1)–(3.3) and the QSSA system (3.4)–(3.6) with condition
(3.7) share the same stationary state (L∞,P∞,l∞). This is a consequence of the fact
that the systems (3.1)–(3.3) and (3.4)–(3.6) satisfying the same stationary state system
(see (3.8) below) and that condition (3.7) ensure identical initial total mass.

Indeed, it follows from (3.3) that ξp∞=σl∞ and λL∞= (γ+σχΓ2
)l∞. Inserting

these two relations into (3.1)–(3.2) yields the stationary state system

−dL∆L∞=−βL∞+αP∞, x∈Ω,

−dP∆P∞=βL∞−αP∞, x∈Ω,

dL
∂L∞
∂ν =− σλ

γ+σL∞, x∈Γ2,

dL
∂L∞
∂ν = 0, x∈Γ\Γ2,

dP
∂P∞
∂ν = σλ

γ+σL∞, x∈Γ2,

dP
∂P∞
∂ν = 0, x∈Γ\Γ2,

(3.8)

which is also the stationary state system of the QSSA system (3.4)–(3.6). In fact, by
solving (3.8) the stationary concentration l∞ and p∞ are afterwards calculated from L∞
and P∞ for both systems (3.1)–(3.3) and (3.4)–(3.6).

Moreover, the stationary state system (3.8) can be solved by observing that{
−∆(dLL∞+dPP∞) = 0, x∈Ω,
∂
∂ν

(
dLL∞+dPP∞

)
= 0, x∈Γ.

(3.9)

Thus, the sum dLL∞+dPP∞=C equals a constant C for all x∈Ω and the stationary
state concentrations L∞ or P∞, respectively are obtained by solving an inhomogeneous
linear elliptic boundary value problem with mixed Neumann/Robin boundary data. For
instance, the equilibrium concentration L∞ satisfies

−dL∆L∞+
(
β+α dLdP

)
L∞=α C

dP
, x∈Ω,

dL
∂L∞
∂ν =− σλ

γ+σL∞, x∈Γ2,

dL
∂L∞
∂ν = 0, x∈Γ\Γ2,

(3.10)

By standard computations, the stationary state L∞ is unique for each constant C.
Moreover, the constant C is itself determined by the conserved initial total mass. As
a consequence, since the system (3.1)–(3.3) and its QSSA system(3.4)–(3.6) with the
condition (3.7) share by construction the same initial total mass, the corresponding
stationary states are identical. See Figure 4.6 for numerical illustration.

In the following, we will show that solutions to (3.1)–(3.3) converge towards so-
lutions of the QSSA system (3.4)–(3.6) as ξ→+∞. We remark here that all generic
constants C and CT are independent of the reaction rate ξ.

The following Lemma provides some crucial a priori estimates, which will allow to
pass to the limit ξ→+∞.

Lemma 3.2 (Uniform in ξ Boundedness of Solutions to the Original System).
For any T >0, the solution (L,P,l,p) to system (3.1)–(3.3) satisfies the following esti-
mates:

‖L‖L2(ΩT ) +‖P‖L2(ΩT ) +‖l‖L2(ΓT )≤CT , (3.11)
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and

‖L‖L2(0,T ;H1(Ω))≤CT , (3.12)

the constants CT do not depend on the reaction rate ξ.
Proof. We will use the duality method in [11] with suitable modifications to adapt

to the case of volume-surface coupling. By setting Z=L+P and W =dLL+dPP , we
get from the non-negativity of L and P that

0<min{dL,dP }≤
W

Z
≤max{dL,dP }<+∞.

It follows from (3.1)–(3.2) that{
Zt−∆W = 0, x∈Ω, t>0,
∂W
∂ν =−λL+γl+χΓ2

ξp, x∈Γ, t>0.
(3.13)

We integrate the first equation in (3.13) over (0,t) and take then the inner product with
W (t) in L2(Ω) to get∫

Ω

W (t)[Z(t)−Z(0)]dx+

∫
Ω

∇W (t) ·∇
∫ t

0

W (s)dsdx

=

∫
Γ

W (t)

∫ t

0

(−λL+γl+χΓ2
ξp)dsdS. (3.14)

From (3.3) we have −λL+γl+χΓ2
ξp=−(l+χΓ2

p)t, thus it follows from (3.14) that∫
Ω

W (t)[Z(t)−Z(0)]dx+

∫
Ω

∇W (t) ·∇
∫ t

0

W (s)dsdx

=−
∫

Γ

W (t)[l(t)− l(0)]dS−
∫

Γ2

W (t)[p(t)−p(0)]dS. (3.15)

In the following, we shall denote by φ(t,x) :=
∫ t

0
W (s,x)ds, which implies ∂tφ(t) =

W (t). Therefore, we calculate∫
Ω

∇W (t) ·∇
∫ t

0

W (s)dsdx=

∫
Ω

∇∂tφ(t) ·∇φ(t)dx=
1

2

∫
Ω

∂

∂t
|∇φ(t)|2dx.

As a consequence, integration of (3.15) in t over (0,T ) yields∫
ΩT

WZdsdx+

∫
ΓT

WldsdS+

∫
Γ2,T

WpdsdS+
1

2

∫
Ω

∣∣∇φ(T )
∣∣2dx

=

∫
ΩT

WZ(0)dsdx+

∫
ΓT

Wl(0)dsdS+

∫
Γ2,T

Wp(0)dsdS, (3.16)

where we have used that
∫ T

0

∫
Ω
∂
∂t |∇φ(t)|2dxdt=

∫
Ω

∣∣∇φ(T )
∣∣2dx.

Next, by Young’s inequality, we have

‖φ(T )‖2Ω =

∫
Ω

∣∣∣∣∫ T

0

W (s,x)ds

∣∣∣∣2dx≤T ∫
Ω

∫ T

0

|W (s,x)|2dsdx=T‖W‖2L2(ΩT ). (3.17)
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Considering the right hand side of (3.16), we estimate in the following by Cauchy’s,
Young’s, a Trace inequalities and (3.17) that∫

ΩT

WZ(0)dsdx≤
√
T‖W‖L2(ΩT )‖Z(0)‖Ω, (3.18)

and ∫
ΓT

Wl(0)dsdS= (φ(T ),l(0))Γ≤‖l(0)‖Γ‖φ(T )‖Γ

≤‖l(0)‖Γ(C‖∇φ(T )‖Ω +‖φ(T )‖Ω)

≤ 1

8
‖∇φ(T )‖2Ω +C‖l(0)‖2Γ +

√
T‖l(0)‖Γ‖W‖L2(ΩT ),

(3.19)

and similarly,∫
Γ2,T

Wp(0)dsdS≤ 1

8
‖∇φ(T )‖2Ω +C‖p(0)‖2Γ2

+
√
T‖p(0)‖Γ2

‖W‖L2(ΩT ). (3.20)

Hence, by the non-negativity of L,P,l,p, we obtain from (3.16)–(3.20)∫
ΩT

WZdsdx≤C
√
T‖W‖L2(ΩT ) +C. (3.21)

It follows then from W ≤max{dL,dP }Z and (3.21) that

‖W‖L2(ΩT )≤CT . (3.22)

Therefore, by the non-negativity of L and P and by keeping in mind that W =dLL+
dPP , we conclude that

‖L‖L2(ΩT ) +‖P‖L2(ΩT )≤CT . (3.23)

Next, by testing (3.1) with L, we estimate

1

2

d

dt
‖L‖2Ω +dL‖∇L‖2Ω =−β‖L‖2Ω +α

∫
Ω

LP dx−λ‖L‖2Γ +γ

∫
Γ

LldS

≤C‖P‖2Ω +C‖l‖2Γ−
λ

2
‖L‖2Γ.

(3.24)

On the other hand, we get from (3.3)

1

2

d

dt
‖l‖2Γ =−γ‖l‖2Γ−σ‖l‖2Γ2

+λ

∫
Γ

LldS≤C‖l‖2Γ +
λ

2
‖L‖2Γ. (3.25)

Summing (3.24) and (3.25) yields

d

dt
(‖L‖2Ω +‖l‖2Γ)+2dL‖∇L‖2Ω≤C‖P‖2Ω +C‖l‖2Γ. (3.26)

Therefore, by ‖L‖L2(ΩT ) +‖P‖L2(ΩT )≤CT , we conclude that

‖∇L‖L2(ΩT )≤CT and ‖l‖L2(ΓT )≤CT eCT ≤CT . (3.27)
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This finishes the proof.

Remark 3.3. The proof applied in Lemma 3.2 fails when trying to include one of the
surface diffusion terms ∆Γl or ∆Γ2

p because in these cases, the formulation (3.16) would

have additional terms
∫

Γ
∇ΓW (t) ·∇

∫ t
0
l(s)dsdS or

∫
Γ2
∇Γ2

W (t) ·∇Γ2

∫ t
0
p(s)dsdS, for

which we do not know a sign or suitable a priori estimates. The problem of the QSSA
for system (1.1)–(1.3) with surface diffusion remains open for future work.

From now on, we always denote the solution to (3.1)–(3.3) by (Lξ,P ξ,lξ,pξ) in order
to emphasise the dependency on the reaction rate ξ.

In the next Lemma, we will show that the concentration pξ of the phosphorylated
Lgl on the active boundary Γ2 tends to zero as ξ→+∞ in L2(Γ2,T ). Since pξ(0) =p0∈
L2(Γ2), we cannot expect that pξ→0 in C([0,T ];L2(Γ2)). Nevertheless, we will be able
to show that pξ→0 in C([t0,T ];L2(Γ2)) for all t0>0.

Lemma 3.4. For al T >0 and T >t0>0, we have

pξ
ξ→+∞−−−−−→0 in L2(Γ2,T )∩C([t0,T ];L2(Γ2)).

Proof. By multiplying the equation (3.3) of pξ, i.e. ∂tp
ξ+ξpξ =σlξ with ξpξ and

integrating over Γ2, we estimate

ξ

2

d

dt
‖p‖2Γ2

+ξ2‖pξ‖2Γ2
= (σlξ,ξpξ)Γ2 ≤

σ2

2
‖lξ‖2Γ2

+
ξ2

2
‖pξ‖2Γ2

.

Therefore,

ξ
d

dt
‖pξ‖2Γ2

+ξ2‖pξ‖2Γ2
≤σ2‖lξ‖2Γ2

≤σ2‖lξ‖2Γ,

and integration over (0,T ) yields

1

ξ
‖pξ(T )‖2Γ2

+

∫ T

0

‖pξ(s)‖2Γ2
ds≤ 1

ξ
‖p0‖2Γ2

+
σ2

ξ2

∫ T

0

‖lξ(s)‖2Γds. (3.28)

This implies that ‖pξ‖2Γ2,T
=O(ξ−1) and pξ→0 in L2(Γ2,T ) as ξ→+∞ since {lξ}ξ>0 is

uniformly bounded in L2(ΓT ) according to Lemma 3.2.
From (3.3), we get

d

dt
‖pξ‖2Γ2

+2ξ‖pξ‖2Γ2
= 2σ(lξ,pξ)Γ2

.

Hence, for any fixed 0<t0≤ t≤T , we have

‖pξ(t)‖2Γ2
≤e−2ξt‖p0‖2Γ2

+2σe−2ξt

∫ t

0

e2ξs(lξ,pξ)Γ2
ds

≤e−2ξt0‖p0‖2Γ2
+2σ‖lξ‖L2(ΓT )‖pξ‖L2(Γ2,T ).

In the limit ξ→+∞ and by using ‖pξ‖Γ2,T
→0 and {lξ}ξ>0 is bounded in L2(ΓT ), we

have thus pξ→0 in C([t0,T ];L2(Γ2)) for all t0>0.

Lemma 3.5. There exists L∈L2(ΩT ) and l∈L2(ΓT ) such that, when ξ→+∞

Lξ
ξ→+∞−−−−−→L in L2(ΩT ) and lξ

ξ→+∞−−−−−→ l in L2(ΓT ). (3.29)
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Proof. By Lemma 3.2, we have that {Lξ}ξ>0 is bounded in L2(0,T ;H1(Ω)). Thus,
by using (3.1), we have {∂tLξ}ξ>0 is bounded in L2(0,T ;H−1(Ω)) and the Aubin-Lions
compactness lemma implies that {Lξ}ξ>0 is precompact in L2(ΩT ). Thus,

Lξ
ξ→+∞−−−−−→L in L2(ΩT )

for some L∈L2(ΩT ) and up to a subsequence. By using that {Lξ}ξ>0 is bounded in
L2(0,T ;H1(Ω)) and by a standard Trace Theorem (see e.g. [23]), we have {Lξ|Γ}ξ>0

is also bounded in L2(0,T ;H1/2(Γ)). Therefore, it follows from lξt =λLξ−(γ+σχΓ2
)lξ

that {lξ}ξ>0 is bounded in L2(0,T ;H1/2(Γ)) and {lξt }ξ>0 is bounded in L2(ΓT ). Using
again the Aubin-Lions compactness lemma, we have

lξ
ξ→+∞−−−−−→ l in L2(ΓT )

for some l∈L2(ΓT ) and up to a subsequence.

By Lemma 3.5, we have so far established the strong convergence of Lξ,lξ and pξ

in L2(ΩT ), L2(ΓT ) and L2(Γ2,T ), respectively.
The convergence of P ξ constitutes a more difficult problem due to the singularity

of the boundary flux dP∂P
ξ/∂ν=χΓ2

ξpξ. As an example to illustrate the, we may
attempt a similar approach like in Lemma 3.2, which succeeded in proving the bound
(3.12): By testing

P ξt −dP∆P ξ =βLξ−αP ξ, dP
∂P ξ

∂ν
=χΓ2

ξpξ,

with P ξ, we get after direct computations that

dP

∫ T

0

‖∇P ξ‖2Ωds≤‖P0‖2Ω +

∫ T

0

(βLξ−αP ξ,P ξ)Ωds+ξ

∫ T

0

(P ξ,pξ)Γ2
ds. (3.30)

Due to the boundedness of Lξ,P ξ in L2(ΩT ), we would need the uniform boundedness

of ξ
∫ T

0
(P ξ,pξ)Γ2

ds in order to prove a uniform control of the left hand side of (3.30).
A uniform bound on Neumann data of (3) seems thus to requires a uniform bound of
ξ‖pξ‖L2(Γ2,T ) or equivalently ‖pξ‖L2(Γ2,T )→0 when ξ→+∞ with the rate 1/ξ. However,

Lemma 3.4 implies only the decay rate of ‖pξ‖Γ2,T
=O(1/

√
ξ).

Nevertheless, we notice that (3.3) implies

ξ‖pξ‖L1(Γ2,T ) =

∫ T

0

∫
Γ2

ξpξ(t)dSdt=

∫ T

0

∫
Γ2

(σlξ−∂tpξ)dSdt

≤‖p0‖L1(Γ2) +Cσ‖lξ‖L2(ΓT )≤CT .
(3.31)

and the uniform L1-bound (3.31) will be used in Lemma 3.7 below to obtain the com-
pactness of {P ξ}ξ>0 in L1(ΩT ) and even in L1(0,T ;W 1,1(Ω)). The proof of Lemma 3.7
is based on Lemma 3.6, which is similar to results given in [2] and [11], yet for homo-
geneous boundary conditions. The proof of Lemma 3.6 is based on a duality argument
and will given in the Appendix of the sake of completeness.

Lemma 3.6. The mapping T : (w0,Θ,g)→ (w,∇w), where w is the solution of
wt−dP∆w= Θ, x∈Ω, t>0,

dP∂w/∂ν=g, x∈Γ, t>0,

w(0, ·) =w0, x∈Ω,

(3.32)
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is compact from L1(Ω)×L1(ΩT )×L1(ΓT ) into L1(ΩT )×(L1(ΩT ))N .

Applying Lemma 3.6 to w=P ξ, Θ =βLξ−αP ξ and g=χΓ2ξp
ξ leads to

Lemma 3.7. The sequence {P ξ}ξ>0 is pre-compact in L1(0,T ;W 1,1(Ω)). In other
words, there exists P ∈L1(0,T ;W 1,1(Ω)) such that up to a subsequence

P ξ
ξ→+∞−−−−−→P strongly in L1(0,T ;W 1,1(Ω)) and weakly in L2(ΩT ).

The following Theorem is the main result of this section.

Theorem 3.8 (Convergence of the QSSA).
For any (L0,P0,l0,p0)∈L2(Ω)×L2(Ω)×L2(Γ)×L2(Γ2) and all T >0, t0>0, we have

Lξ
ξ→+∞−−−−−→L strongly in L2(ΩT ) and weakly in L2(0,T ;H1(Ω)),

P ξ
ξ→+∞−−−−−→P strongly in L1(0,T ;W 1,1(Ω)) and weakly in L2(ΩT ),

lξ
ξ→+∞−−−−−→ l strongly in L2(ΓT ),

and

pξ
ξ→+∞−−−−−→0 strongly in L2(Γ2T )∩C([t0,T ];L2(Γ2)), ∀0<t0<T,

up to a subsequence, where (L,P,l) is the unique weak solution to (3.4)–(3.6).

Remark 3.9. The well-posedness of system (3.4)–(3.6) can be shown in the same way
as for system (1.1)–(1.3) in Section 2.

Proof. All the limits are already proven in the Lemmata 3.4, 3.5 and 3.7. It remains
to show that the limit (L,P,l) in Lemma 3.5 is the unique solution of system (3.4)–(3.6).
Indeed, by testing

Lξt −dL∆Lξ =−βLξ+αP ξ, x∈Ω, t>0,

dL
∂Lξ

∂ν =−λLξ+γlξ, x∈Γ, t>0,

Lξ(0,x) =L0(x), x∈Ω,

with ϕ∈C1([0,T ];H1(Ω)), ϕ(T ) = 0 and by integration over ΩT , we have

−
∫ T

0

(Lξ,ϕt)Ωds+dL

∫ T

0

(∇Lξ,∇ϕ)Ωds

= (L0,ϕ(0))Ω +

∫ T

0

(−λLξ+γlξ,ϕ)Γds+

∫ T

0

(−βLξ+αP ξ,ϕ)Ωds. (3.33)

By Lemma 3.2, {Lξ}ξ>0 is bounded in L2(0,T ;H1(Ω)) and together with (3.29), we get

Lξ⇀L in L2(0,T ;H1(Ω)) (3.34)

up to a subsequence. By using the Trace Theorem and (3.34), we have

Lξ⇀L in L2(ΓT ). (3.35)
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From (3.34)–(3.35), Lξ→L and P ξ⇀P in L2(ΩT ), lξ→ l in L2(ΓT ), we can pass to the
limit in (3.33) as ξ→+∞ and obtain

−
∫ T

0

(L,ϕt)Ωds+dL

∫ T

0

(∇L,∇ϕ)Ωds

= (L0,ϕ(0))Ω +

∫ T

0

(−λL+γl,ϕ)Γds+

∫ T

0

(−βL+αP,ϕ)Ωds (3.36)

or equivalently that L is a weak solution of (3.4).

Next, by taking the inner product of pξt =σlξ−ξpξ with a test function ψ∈
C1(0,T ;L2(Γ2)) satisfying ψ(T ) = 0, we get

−
∫ T

0

(pξ,ψt)Γ2
ds= (p0,ψ(0))Γ2

+

∫ T

0

(σlξ,ψ)Γ2
ds−

∫ T

0

(ξpξ,ψ)Γ2
ds. (3.37)

In order to pass to the limit ξ→+∞ in (3.37), we apply Lemma 3.4 and Lemma 3.5
and obtain

lim
ξ→+∞

∫ T

0

(ξpξ,ψ)Γ2
ds= (p0,ψ(0))Γ2

+

∫ T

0

(σl,ψ)Γ2
ds. (3.38)

In the following, we consider equation for P ξ in the weak form, i.e.

−
∫ T

0

(P ξ,ϕt)Ωds+dL

∫ T

0

(∇P ξ,∇ϕ)Ωds

= (P0,ϕ(0))Ω +

∫ T

0

(ξpξ,ϕ)Γ2
ds+

∫ T

0

(βLξ−αP ξ,ϕ)Ωds (3.39)

for test-functions ϕ∈C1(0,T ;C1(Ω)) with ϕ(T ) = 0. By using (3.38), the limits Lξ→L
and P ξ→P in L1(0,T ;W 1,1(Ω)), we can pass to the limit ξ→+∞ in (3.39), we obtain

−
∫ T

0

(P,ϕt)Ωds+dL

∫ T

0

(∇P,∇ϕ)Ωds

= (P0 +P ∗,ϕ(0))Ω +

∫ T

0

(σl,ϕ)Γ2
ds+

∫ T

0

(βL−αP,ϕ)Ωds, (3.40)

where we have use (3.7). This means that P is a weak solution of (3.5).

Finally, by testing lξt =λLξ−(γ+χΓ2σ)lξ with ψ∈C1([0,T ];L2(Γ)) satisfying
ψ(T ) = 0 we get

−
∫ T

0

(lξ,ψt)Γds= (l0,ψ(0))Γ +

∫ T

0

(λLξ,ψ)Γds+

∫ T

0

[(γlξ,ψ)Γ +(σlξ,ψ)Γ2 ]ds. (3.41)

We use Lξ⇀L and lξ⇀l in L2(ΓT ) to pass the limit ξ→+∞ in (3.41) and obtain

−
∫ T

0

(l,ψt)Γds= (l0,ψ(0))Γ +

∫ T

0

(λL,ψ)Γds+

∫ T

0

[(γl,ψ)Γ +(σl,ψ)Γ2
]ds (3.42)

or equivalently l is a weak solution of (3.6).
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4. Numerical discretisation and qualitative discussions In this section, we
shall present prototypical numerical examples of the model system (1.1)–(1.3) in order
highlight certain qualitative features. As the kinetic parameters for SOP precursor
cells are neither known in-vivo or in-vitro, we shall use what we expect to be generic
system parameters i.e. typical reaction- and diffusion rates, for which the model exhibits
the expected behaviour. Thus, the aim of the following can only be a discussion of
interesting qualitative features and not a quantitative simulation of Lgl localisation in
SOP precursor cell.

The test cases discussed later in this Section serve to illustrate in particular i) the
role of surface diffusion in the model (1.1)–(1.3) in smoothing jumps of concentrations
on the boundary (see Fig. 4.1), ii) the influence of the presence/absence of surface
diffusion to the system’s behaviour and the attained complex balance equilibrium (this
happens in combination with the cell-geometry and the discontinuity of the systems’s
boundary parameters, see Figs. 4.2 and 4.3), and iii) the asymptotic behaviour of the
system as ξ→∞, which confirms the theoretical QSSA in Section 3 (see Figs. 4.4 and
4.6).

As a numerical method, we use implicit Euler as time-discretisation and a piecewise
linear finite elements as space-discretisation. In particular, we approximate the bound-
ary Γ as a polygon, which allows to calculate the discretisation of the Laplace-Beltrami
operator as directional derivatives. Moreover, the used triangulation mesh is strongly
refined near the boundary of the active boundary part ∂Γ2, which are discontinuous
points of the system. The details of the numerical scheme, a plot of the used trian-
gulation mesh and the discretisation of the Laplace-Beltrami operator are given in the
Appendix 6.2. See also [17] for the numerical analysis of such volume-surface reaction-
diffusion systems including discrete entropy structures and uniform in time convergence
rates.

As a prototypical geometry of a cell, we shall consider Ω⊂R2 being the unit ball.
The active boundary part shall be the intersection of the unit circle with the negative
quadrant, i.e. Γ2 ={(1,θ) :π≤θ≤3π/2}.

As generic parameters, we use the following reaction rates

α= 1, β= 2, γ= 2, λ= 4, σ= 3, (4.1)

the following volume diffusion rates

dL= 0.01, dP = 0.02, (4.2)

and the following constant initial concentrations

L0(x,y)≡0.8, P0(x,y)≡0.6, l0(x,y)≡0.3, p0(x,y)≡0.4. (4.3)

The value of ξ will be chosen differently during the discussion of the numerical examples.
Also the surface diffusion rates dl and dp will be specified later.

4.1. The effects of surface diffusion
The first three numerical test examples Figs. 4.1, 4.2 and 4.3 illustrate the role of

surface diffusion by comparing the numerical stationary state solutions of the system
for two cases: i) with surface diffusion rates dl= 0.02, dp= 0.04 and ii) without surface
diffusion, i.e. dl=dp= 0.

Figure 4.1 plots the resulting numerically stationary state concentrations of non-
phosphorylated cortical Lgl l and phosphorylated cortical Lgl p (for the generic param-
eters (4.1), (4.2) and the initial data (4.3)).
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(a) l-Lgl with surface diffusion (b) l-Lgl without surface diffusion

(c) p-Lgl with surface diffusion (d) p-Lgl without surface diffusion

Fig. 4.1: Comparison of the numerical stationary states of l and p on a unit-circular
cell (i.e. the blue circle centred at the origin) with surface diffusion rates dl= 0.02,
dp= 0.04 (Figs. 4.1a and 4.1c) and without surface diffusion dl=dp= 0 (Figs. 4.1b
and 4.1d) for the parameters (4.1), (4.2) and initial data (4.3): The l-Lgl concentration
strongly decreases towards the active boundary part Γ2 located within the negative
quadrant in the front (Figs. 4.1a and 4.1b). In Fig. 4.1a, the decrease of the l-Lgl is
clearly smoothed by the surface diffusion. In Fig. 4.1b the decay profile is steep yet
still smoothed by an indirect surface diffusive effect caused by volume diffusion and
reversible reaction. This is confirmed by Figs. 4.1c and 4.1d plotting the subsequent
concentrations of phosphorylated p-Lgl. Fig 4.1d shows in particular the spikes of p-Lgl
produced near ∂Γ2 due to the indirect surface diffusion effect.

In the case with surface diffusion, Figure 4.1a shows a smoothly decaying profile of
l around the boundary points ∂Γ2, i.e. around the points (−1,0) and (0,−1), where the
lower concentration of l on Γ2 is the result of l being converted into p. The corresponding
numerical steady state concentration of p on Γ2 is plotted in Figure 4.1c. The increase
of p towards the points (−1,0) and (0,−1) corresponds to the increasing values of l over
and beyond these boundary points.

As comparison, the Figures 4.1b and 4.1d show the numerical stationary state con-
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centrations of l and p without surface diffusion. Due to the absence of surface diffusion,
Figure 4.1b depicts a significantly sharper profile of l around the boundary points ∂Γ2.
However, the profile in l is still smooth and so is the corresponding profile of the station-
ary state concentration of p on Γ2, which is shown in 4.1d using a very highly refined
mesh to eliminate potential numerical artefacts. In our understanding, these sharp yet
smooth profiles of l and p are the combined effect of the volume diffusion of L and P
and the reversible reactions between L and l, which transfer a diffusive effect from the
volume Ω onto the boundary Γ. In the context of reaction-diffusion systems with par-
tially degenerate diffusion, such an indirect diffusion effect has been analytically shown
first in [16] and for general linear weakly-reversible systems recently in [21].

Figure 4.2 plots the volume concentrations L and P corresponding to Figure 4.1.
In the case with surface diffusion, Figure 4.2a shows very interestingly and somewhat
surprisingly a ”hump” in the numerical stationary state concentration of L near the
active boundary part Γ2. This ”hump” is not visible in Figure 4.2b in the case without
surface diffusion. The corresponding volume concentrations of P in the Figures 4.2c
(with diffusion) and 4.2d (without diffusion) allow to explain this ”hump” as the effect
of surface diffusion leading to a significant additional transport of l-Lgl (compared to
the case without surface diffusion) along Γ to the active boundary part Γ2, where l-Lgl
becomes phosphorylated into p-Lgl, which is subsequently released from the cortex and
thus results into a much higher concentration of P along Γ2 as depicted in 4.2c. The
”hump” in L is then the consequence of the reversible reaction between L and P and
the volume diffusion of L.

Remark 4.1. We remark that while Figures 4.1 and 4.2 cannot be viewed as a real-
istic simulation of the asymmetric localisation of cell-fate determinants, the qualitative
behaviour of the asymmetric Lgl localisation nevertheless suggests that surface diffusion
might play an important role. In particular, surface diffusion might help to explain an
experimentally observed gap between Γ2 the localisation of cell-fate determinant Numb,
which is observed in neuroblast cell, yet not in SOP cells, see [29].

In Figure 4.3, we investigate further the case without surface diffusion by increasing
the volume diffusion rate dL ten-folds compare to (4.2). More precisely, we set dl=dp=
0, dL= 0.1 and dP = 0.02.

Figure 4.3a shows the effects of the increased volume diffusion dL= 0.1. It leads
to a certain widening and flattening of the profile of l-Lgl over the boundary points of
Γ2. This profile of l is less steeper than the profile of l in Figure 4.1b without surface
diffusion but still steeper than the profile of l in Figure 4.1a with surface diffusion. Thus,
the observed effect is consistent and confirms the above explanation that the profile of
l and p in cases without surface diffusion are a combined effect of volume diffusion dL
and the reversible reaction of L
 l: An increased volume diffusion dL leads thus to an
increased diffusive effect at the surface Γ.

The corresponding stationary state profile of p-Lgl plotted in Figure 4.3b shows that
also the profiles of p-Lgl near the boundary points of Γ2 are widened, yet still steeper
that the profiles of p in Figure 4.1c with surface diffusion.

The increase of volume diffusion rate dL does not only affect to profile of p and l
around Γ2 as discussed above but also changes the absolute value of stationary states
of p and l on Γ2. More precisely, by comparing Figure 4.3a and Figure 4.1b (or Figure
4.3b and Figure 4.1d) we see that the absolute value of p and l on Γ2 in the case dL= 0.1
are higher than that in the case dL= 0.01.
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(a) L-Lgl with surface diffusion (b) L-Lgl without surface diffusion

(c) P -Lgl with surface diffusion (d) P -Lgl without surface diffusion

Fig. 4.2: Concentrations of the numerical stationary state of L and P on a unit-circular
cell with surface diffusion rates dl= 0.02,dp= 0.4 (Figs. 4.2a and 4.2c) and without
surface diffusion dl=dp= 0 (Figs. 4.2b and 4.2d) for the parameters (4.1), (4.2) and
initial data (4.3). Figs. 4.2a and 4.2c show how surface diffusion allows to a lateral
flow of l-Lgl towards the active boundary Γ2 (localised at the negative quadrant on the
left side of the plot), where it becomes phosphorylated and released into the cytoplasm
creating high P -Lgl concentrations near Γ2, see Fig. 4.2c. Subsequently, the reaction
P

α−→L leads to a strong ”hump” of L-Lgl away from the boundary Γ2 within Ω. Fig.
4.2b and 4.2d confirm that without surface diffusion, no such ”hump” can occur. This
examples also underlies that complex balance systems like model (1.1)–(1.3) behave
significantly more intricate than detailed balance systems.

4.2. Asymptotic decay of p for large ξ

In SOP cells, the reaction p
ξ−→P of cortical Lgl p to cytoplasmic Lgl P is suggested

to be significantly faster than the other reactions. That means that the expulsion rates
ξ is expected to be much larger than the generic reaction rates in (4.1). We are thus
interested to study the qualitative behaviour for increasing reaction rates ξ while keeping
the reaction rates (4.1) fixed.

Intuitively, one expects that when ξ becomes larger and larger, the concentration
of p-Lgl will decay to zero since the p-Lgl is released more and more rapidly to P -Lgl.
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(a) l-Lgl without surface diffusion with big
volume diffusion rate dL = 0.1

(b) p-Lgl without surface diffusion with big
volume diffusion rate dL = 0.1

Fig. 4.3: Concentrations of the numerical stationary state of l-Lgl and p-Lgl on a unit-
circular cell without surface diffusion yet with ten-fold volume-diffusion rate dL= 0.1
while dP = 0.02, dl=dp= 0 and initial data (4.3) remain unchanged. Confirming the
explanation of Fig. 4.1 that volume diffusion and reversible reactions induce an indirect
surface diffusion effect on l and p, Figs. 4.3a and 4.3b plot the increased indirect surface
diffusion effect on l and even p by increasing tenfold only the volume diffusion rate dL.

In Figure 4.4, we compare p(t,x) on Γ2 at an early time t= 0.04 for four different
values of ξ being 10,20,50 and 100. The numerical results show how a larger reaction
rate ξ leads to a decay of p↘0 on Γ2. This happens already at the very small time
t= 0.04 and even more so for larger times (data not shown). Observing this fact suggests
that the system (1.1)–(1.3) for large ξ may be well approximated by a reduced quasi-
steady-state approximation (QSSA) without p, which is formally obtained by letting
ξ→+∞. This QSSA was rigorously performed in Section 3.

4.3. Initial-boundary layers in P for large ξ
The following Figures 4.5 and 4.6 continue to numerically investigate the system

behaviour for small and large ξ, i.e. for slow and fast release of cortical p. Note that,
in this part, we consider the case of no surface diffusion dl=dp= 0.

Figure 4.5 compares the cytoplasmic concentration of phosphorylated P -Lgl for
two values ξ= 1000 and ξ= 1 at the smallish time t= 0.3 and for the specified, constant

initial data (4.3). In particular, Figure 4.5a illustrates that the fast reaction p
ξ−→P for

ξ= 1000 leads to much larger values of P near the boundary Γ2 as compare to ξ= 1. We
thus observe the formation of an initial-boundary layer near Γ2 in Figure 4.5a compared
to Figure 4.5b, which plots P being formed by the slow reaction with ξ= 1.

Finally, Figure 4.6 plots the numerical steady state concentrations of P for ξ= 1000
and ξ= 1 at the time t= 100. We observe that the stationary states appear to be
identical and that the boundary layer in Figure 4.5 is indeed an initial-boundary layer
for large ξ and no longer present in the stationary states, which features much lower
values of P near the boundary Γ2. In fact, we have demonstrated in Remark 3.1 in
Section 3, that the stationary states of system (1.1)–(1.3) without boundary diffusion
terms do not depend on the rate ξ and are unique for fixed total initial mass in the mass
conservation law (1.4). Thus, Figure 4.6 plots indeed that same stationary state.
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(a) ξ= 10 (b) ξ= 20

(c) ξ= 50 (d) ξ= 100

Fig. 4.4: Comparison of p for ξ= 10,20,50,100 at time t= 0.04 and for the generic
parameters (4.1), (4.2) and initial data (4.3) on a unit-circular cell. The plots clearly
confirms that p decreases when ξ increases.

(a) ξ= 1000 (b) ξ= 1

Fig. 4.5: Initial-boundary layer in P for ξ= 1000 and ξ= 1 at time t= 0.3 and for the
generic parameters (4.1), (4.2), dl=dp= 0 and initial data (4.3) on a unit-circular cell.
Fig. 4.5a for large ξ shows a strongly increased boundary layer near Γ2 compared to
Fig. 4.5b.
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(a) ξ= 1000 (b) ξ= 1

Fig. 4.6: Identical numerical stationary state concentrations of P for ξ= 1000 and ξ= 1
at the time t= 100 and for the generic parameters (4.1), (4.2), dl=dp= 0 and initial data
(4.3) on a unit-circular cell. The plot confirms that the magnitude of ξ only influences
the transient behaviour yet not the stationary state, see also Remark 3.1.

5. Conclusions
In this paper, we studied a VSRD system, which appears as a model for the asym-

metric localisation of Lgl in Drosphila SOP precursor cell upon the activation of the
kinase aPKC during mitosis. The challenges of the model system (1.1)–(1.3) lie in the
volume-surface coupling as well as in the weakly-reversible reaction/sorption dynamics
between the four considered conformations of the key protein Lgl.

The major aim of the paper is to provided the basic mathematical theory concerning
such VSRD models: well-posedness, numerical discretisation and rigorous quasi-steady-
state approximation with respect to a biologically large parameter. We expect that
many of the results and methods of this paper can be carried over to similar VSRD
models.

In performing the QSSA, mathematical difficulty arises from the volume-surface
coupling, in particular from the singularity occurring in the Neumann boundary condi-
tion of P . In the case without surface diffusion terms, we were able to prove in Section
3 the necessary a-priori estimates and rigorously perform the QSSA to a reduced model
system. For the full VSRD system (1.1)–(1.3), the weakly-reversible structure of (1.1)–
(1.3) leads to technical difficulties in finding suitable a-priori estimates and thus prevents
so far a rigorous proof of the QSSA.

The VSRD model system (1.1)–(1.3) describes the asymmetric localisation of Lgl
during mitosis, which subsequently leads to the asymmetric localisation of the cell-
fate determinate Numb during the asymmetric stem cell division of Drosophila SOP
precursor cells. Despite the lack of experimentally measured parameters, the numerical
simulation of (1.1)–(1.3) allows nevertheless to study the qualitative behaviour of the
model.

Two such qualitative questions present themselves from the biological background:
First, the role of surface diffusion and secondly, the fact the p-Lgl release rate ξ is large.

The first point is related to the experimental observation of a cortical gap between
the Par complex, i.e. the active boundary part Γ2 and the resulting localisation of the
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cell-fate determinants in neuroblasts cells, but not in SOP cells, see [29]. It has been
suggested by the experimentalists, that surface diffusion may play a role in creating this
spectral gap.

The numerical simulation performed in Fig. 4.1a shows clearly that surface diffusion
will spread out the l-Lgl profile. This can suggest an explanation for the cortical gap
in neuroblast cells, by assuming, for instance, that neuroblast cells need a higher l-
Lgl concentration to localise Numb than SOP cells, where no spectral gap is observed.
Moreover, larger surface diffusion rates would lead to further flattened l-Lgl profiles
and, thus, an even larger cortical gap.

However, our simulations also present two counter-indications: Firstly, even without
surface diffusion, the model will always feature an indirect surface diffusion effect as
a consequence of volume diffusion and reversible sorption of Lgl between cytoplasm
and cortex, yet the magnitude of the indirect surface diffusion effect will always be
significantly lower, see Section 4.1 and Fig. 4.1. Nevertheless, the indirect surface
diffusion effect will increase if just one of the volume diffusion rates is increased, see
Fig. 4.3 with tenfold increased dL.

Secondly, Fig. 4.2 shows that surface diffusion together with the weakly-reversible
structure of the model system (1.1)–(1.3) can lead to an unexpected maximum of L-Lgl
in the cytoplasm, which seems biologically unlikely.

As a summary, one could conjecture that while surface diffusion may play an impor-
tant role in the asymmetric localisation of Lgl and in the subsequent asymmetric stem
cell division, the magnitude of the surface diffusion can not be seen independently from
the parameters of the weakly-reversible Lgl kinetics and the volume diffusion rates.

Concerning the fast release of p-Lgl, Figs. 4.4 confirms the natural intuition that
larger ξ will lead to a faster release of cortical p-Lgl and the formation of an initial-
boundary layer of P -Lgl, see Fig. 4.5. However, for the steady state of the system
(1.1)–(1.3) and also for the reduced QSSA system (3.4)–(3.6), Fig. 4.6 shows that the
steady state of these two weakly-reversible systems is independent of ξ in the case with
zero surface diffusion, see Remark 3.1 (and also essentially independent of ξ in cases
with sufficiently small surface diffusion, data not shown).

A biological interpretation of this observation has to recall that non-phosphorylated
cortical Lgl, i.e. l-Lgl is active in the localisation of Pon and Numb. The concentration
of l-Lgl, however, is not a direct results of the fast release of p-Lgl, but the consequence
of the dynamics of the entire weakly-reversible system (1.1)–(1.3).

For very large release rates ξ, it thus follows that the other reaction/sorption rates of
(1.1)–(1.3) will be rate limiting in converging to a steady state and the overall process of
asymmetric Lgl localisation will no further be speeded up. Nevertheless, for sufficiently
large ξ, the QSSA obtained in Section 3 will certainly provide a good approximation,
which will even predict the identical stationary state compared to (1.1)–(1.3), see Re-
mark 3.1.

6. Appendix

6.1. The proof of Lemma 3.6, cf. [11, 2].

Proof. The prove of the Lemma is based on a duality argument. We shall denote
by

T∗ : (Φi)0≤i≤N ∈C∞0 (Ω)×(C∞0 (ΩT ))N→ (z(0),z,z|∂Ω)
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the adjoint operator T∗ of T, where z is the solution of{
−zt−dP∆z= Φ0−

∑N
i=1∂xiΦi,

dP∂z/∂ν= 0, z(T ) = 0.
(6.1)

By integration by parts: for Φ = (Φi)1≤i≤N

〈T∗(Φ0,Φ),(w0,Θ,g)〉= 〈(z(0),z,z|Γ),(w0,Θ,g)〉

=

∫
Ω

z(0)w0 +

∫
ΩT

z(wt−dP∆w)+

∫
ΓT

zg

=

∫
ΩT

−w(zt+dP∆z) =

∫
ΩT

−w(−Φ0 +∇·Φ)

=

∫
ΩT

(Φ0w+Φ∇w) = 〈(Φ0,Φ),(w0,∇w)〉

= 〈(Φ0,Φ),T(w0,Θ,g)〉.

The adjointness can be checked by integration by parts: For Φ = (Φi)1≤i≤N

〈T∗(Φ0,Φ),(w0,Θ,g)〉= 〈(z(0),z,z|Γ),(w0,Θ,g)〉=
∫

Ω

z(0)w0 +

∫
ΩT

zΘ+

∫
ΓT

zg

=

∫
Ω

z(0)w0 +

∫
ΩT

z(wt−dP∆w)+

∫
ΓT

zg

=−
∫

ΩT

wzt+dP

∫
ΩT

∇w∇z

by using (3.32) and after integration by parts. Further, with ∂z/∂ν= 0, we continue

〈T∗(Φ0,Φ),(w0,Θ,g)〉=
∫

ΩT

−w(zt+dP∆z) =

∫
ΩT

−w(−Φ0 +∇·Φ)

=

∫
ΩT

(Φ0w+Φ∇w) = 〈(Φ0,Φ),(w0,∇w)〉

= 〈(Φ0,Φ),T(w0,Θ,g)〉.

It is well-known (see e.g. [28]) that for p>N/2+1, q>N+2 and X=Lp(ΩT )×
(Lq(ΩT ))N , the solution z to (6.1) satisfies for a small enough α>0

‖z‖Cα(ΩT )≤κ‖(Φ0,Φ)‖X ,

where κ does not depend on Φ0,Φ. Thus, due to the dense embedding C∞0 ×
(C∞0 (ΩT ))N ↪→Lp(Ω)×(Lq(ΩT ))N , we can uniquely extend T∗ to a continuous oper-
ator from X into Cα(Ω)×Cα(ΩT ) and consequently to a compact operator from X
into L∞(Ω)×L∞(ΩT )×L∞(ΓT ). It implies that T can be defined as a compact opera-
tor from L1(Ω)×L1(ΩT )×L1(ΓT ) into X ′=Lr(ΩT )×(Ls(ΩT ))N for all r< (N+2)/N
and s< (N+2)/(N+1). By taking r=s= 1, we can complete the proof.

6.2. Numerical discretisation

The following first order finite element scheme for system (1.1)–(1.3) has been used
for the numerical simulations in Section 4
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Time-discretisation. We apply a first order implicit Euler scheme as time dis-
cretisation, which is well known to be stable for such linear problems (see e.g. [27]).
More precisely, for a given time step h, we shall denote by Ln(x) :=L(nh,x) and
Ln+1(x) :=L((n+1)h,x), respectively and analog for P,l and p. Thus, we have for
n≥0 the following iteration of semi-discretised systems :

−hdL∆Ln+1 +(1+hβ)Ln+1−hαPn+1 =Ln, x∈Ω,

−hdP∆Pn+1 +(1+hα)Pn+1−hβLn+1 =Pn, x∈Ω,

−hdl∆Γln+1 +(1+h(γ+σχΓ2
))ln+1−hλLn+1 = ln, x∈Γ,

−hdp∆Γ2
pn+1 +(1+hξ)pn+1−hσln+1 =pn, x∈Γ2,

(6.2)

with boundary condition
dL∂Ln+1/∂ν=−λLn+1 +γln+1, x∈Γ,

dP∂Pn+1/∂ν= ξχΓ2
pn+1, x∈Γ,

dp∂pn+1/∂νΓ2
= 0, x∈∂Γ2.

(6.3)

Space-discretisation. We use a standard finite element method for space dis-
cretisation of the cell volume. More precisely, the domain Ω is approximated by a
triangulation mesh Tη where η is the maximum diameter of the triangles. We will use
as basis functions the space of continuous, piecewise linear functions on triangles. Al-
though finite element methods are well known for linear reaction-diffusion problems on
bounded domains, we ought to remark the following three points specific to this work by
addressing surface diffusion as well as the active and nonactive parts of the boundary:

• To deal with the equations on the boundary, Γ will be approximated by a
polygon ∂Tη. Such a discretisation was already successfully applied for a linear
elliptic system featuring mixed volume-surface diffusion in [18], where also an
error analysis was carried out.

• The triangulation is made such that the boundary ∂Γ2, which are just two
points (−1,0) and (0,−1) in the considered case Ω⊂R2, coincides with the
vertices of one or more triangles. Moreover, due to the discontinuity of χΓ2

we
shall significantly refine the mesh in the proximity of these two points as can
be seen in Figure 6.1. We remark that, for the sake of clarity, the mesh given
in Figure 6.1, which is obtained after one mesh refinement, has approximately
4000 elements. Later in this paper, to produce high resolution pictures, we
will use a mesh created by five mesh refinements, which contains about 65000
elements.

• The Laplace-Beltrami operator ∆Γ and ∆Γ2
on the boundary, which represent

the surface diffusion, Γ can be approximated by the Laplace-Beltrami opera-
tor on ∂Tη. By choosing a polygon as approximation of the boundary Γ, the
operator ∆Γ can itself be approximated by an operator ∆∂Tη , see e.g. [18].
Because ∂Tη is a union of disjoint segments, the operator ∆∂Tη can be split
to act on each segment separately. Moreover, since we use a weak/variational
problem formulation, we only have to compute the tangential gradient of affine
basis functions on the approximating segments and remark that in this case the
tangential gradient coincides with the directional derivative.
Note that in the case of a circle or a sphere, we could alternatively use spherical
coordinates to discretise the Laplace-Beltrami operator (see e.g. [31]). However,
the above discretisation has the advantage to work for any sufficiently smooth
domain Ω, which can be well approximated by linear segments.
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Fig. 6.1: Triangulation mesh and refinement in the proximity of ∂Γ2, i.e. the points
(−1,0) and (0,−1), which are discontinuity points of the system.
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