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Introduction

Motivation and Problem

Consider a divisor (=hypersurface) D in a complex manifold S of di-
mension n. Then D is said to have normal crossings at a point p if
locally at p there exist complex coordinates (x1, . . . , xn) such that D
is defined by the equation x1 · · ·xm = 0 for some 0 ≤ m ≤ n. In gene-
ral there is no algorithm to find these coordinates. Hence the question
arises: is there an effective algebraic characterization of a divisor with
normal crossings?

Normal crossing divisors appear in many contexts in algebraic and
analytic geometry, for example in the embedded resolution of singu-
larities [53], in compactification problems [26, 38] or in cohomology
computations [29]. One of the most striking results is the Theorem
of Hironaka [53], namely, that any algebraic variety over a field of cha-
racteristic zero can be transformed by a sequence of blowups into a
divisor with normal crossings. However, given an (algebraic or analy-
tic) variety, it is not clear how to determine effectively if this variety
has normal crossings: only in case the decomposition into irreducible
components is known, the normal crossings property can be checked
rather easily (see e.g. [9]).

The main objective of this thesis is to give an effective algebraic charac-
terization of normal crossing divisors in complex manifolds. By “effecti-
ve” is meant that one should be able to decide from data derived from
a local defining equation of the divisor whether it has normal crossings
at a point. The guiding idea for our investigations is that the singular
locus should carry all information about a divisor having normal cros-
sings. This point of view is inspired by the Theorem of Mather–Yau [61],
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which says that an isolated hypersurface singularity in (Cn, 0) is uni-
quely determined by its Tjurina algebra, i.e., the quotient of the power
series ring in n variables by the ideal generated by a (reduced) local
defining equation and its partial derivatives. On the other hand the
tangent behaviour along the divisor, via so-called logarithmic vector
fields, will give us means to control the normal crossings property. Here
the rich theory of logarithmic vector fields (differential forms) and free
divisors, initiated by K. Saito in the 1980’s [81], will be the other main
ingredient for an algebraic criterion characterizing normal crossing di-
visors.

Overview

The main result of this thesis is that a divisor D in a complex manifold
S of dimension n has normal crossings at a point p if (and only if) it is
free at p, the Jacobian ideal of D at p is a radical ideal and its norma-
lization �D is Gorenstein. Another way to phrase this is that D is either
smooth at p or its Tjurina algebra is reduced and Cohen–Macaulay of
Krull-dimension n − 2 and the normalization �OD is a Gorenstein ring
or, another equivalent formulation, either D is smooth at p or the Ja-
cobian ideal of D at p is radical , perfect and of depth 2 in the local
ring OS,p

∼= C{x1, . . . , xn} and the normalization �OD is a Gorenstein
ring. The additional condition on the normalization is technical and we
do not know if it is necessary.

Our approach to prove the above statement originates from K. Saito’s
theory of free divisors, a class of divisors, which includes normal cros-
sing divisors. Since a normal crossing divisor is free, one is led to impose
additional conditions on free divisors in order to single out the ones with
normal crossings. It turns out that the radicality of the Jacobian ideal
is the right property. Since there is an interpretation of free divisors
by their Jacobian ideals (due to Terao, Aleksandrov and Simis), one so
obtains a purely algebraic characterization of normal crossing divisors.
Moreover, two other characterizations of normal crossing divisors in
terms of logarithmic differential forms (resp. vector fields) and the lo-
garithmic residue are shown. The second one makes use of the dual
logarithmic residue, introduced by Granger and Schulze [43]. As an ap-
plication of the second one, a question about the logarithmic residue
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posed by Saito in [81,92] is answered (which was first answered in [43]).
Along the way two generalizations of the concept of normal crossings
are considered: splayed divisors and mikado divisors. We introduce the
former as unions of “transversally” intersecting (possibly singular) hy-
persurfaces. Here two hypersurfaces intersect “transversally” if their
defining equations can be chosen in separated variables. Mikado divi-
sors on the other hand, are constituted by smooth hypersurfaces all
whose intersections have to be smooth. This notion was introduced by
H. Hauser in [49] and appears in connection with resolution of singula-
rities. We prove that one can read off the Jacobian ideal of a plane curve
whether the curve is mikado. We also prove that the Jacobian ideal of a
divisor determines whether it is splayed. Moreover, it is shown that the
Hilbert–Samuel polynomials of splayed divisors satisfy a certain addi-
tivity relation: the Hilbert–Samuel polynomial of a splayed divisor is
the sum of the Hilbert–Samuel polynomial of its splayed components
minus the Hilbert–Samuel polynomial of their intersection.
The contents of the thesis are:

In Chapter 1 we recall the notions of logarithmic differential forms and
vector fields, free divisors and the logarithmic residue. Here the import-
ant class of Euler-homogeneous free divisors is considered. In particular,
we show a characterization of an Euler–homogeneous divisor in terms
of a basis of the module of logarithmic differential forms Ω

1
S
(log D)

(Prop. 1.29). Moreover, we exhibit problems when working with divi-
sors defined by non-reduced holomorphic equations. Our results in this
chapter are: A characterization of a normal crossing divisor in terms
of logarithmic differential forms (resp. vector fields), more precisely, a
divisor D has normal crossings at a point p if and only if it is free at p
and the module of logarithmic one-forms Ω

1
S,p

(log D) has a basis of clo-
sed forms (resp. the module of logarithmic vector fields DerS,p(log D)

has a basis of commuting vector fields), see Thm. 1.52 and Prop. 1.54.
Then, following Granger and Schulze, we describe a normal crossing
divisor in terms of the logarithmic residue in Thm. 1.63, namely, D has
normal crossings at a point p if and only if D is free at p, the residue
of logarithmic one-forms is equal to the ring of weakly holomorphic
functions on D and the normalization �D is Gorenstein. Finally, as an
application of Thm. 1.63, the question of K. Saito is considered whether
the equality of the logarithmic residue and the ring of weakly holomor-
phic functions of a divisor implies that the divisor has normal crossings
in codimension one. This question was first affirmatively answered by



vi

Granger and Schulze [43]. It also has a topological counterpart, which
was proven by Saito and Lê–Saito in [81] and [92]. We review the back-
ground and history of the problem, and also give a positive answer to
Saito’s question in Thm. 1.82.

In the second chapter, our attention is drawn to singularities and Jaco-
bian ideals of divisors. Here commutative algebra is used to characteri-
ze normal crossing divisors. The chapter is devoted to prove our main
theorem: a divisor has normal crossings at point if and only if it is free
at the point and its Jacobian ideal is radical and its normalization �D
is Gorenstein, see Thm. 2.1.
We recall Aleksandrov’s characterization of free divisors in terms of
their Jacobian ideals (Theorem 2.6): a divisor D in a complex manifold
S of dimension n is free at a point p if and only if either D is smooth
at p or OSing D,p (the Tjurina-Algebra of D) is Cohen–Macaulay of
Krull-dimension n− 2. Together with Thm. 2.1 this yields a purely al-
gebraic characterization of normal crossing divisors. As an illustration
of the main theorem we first deal with the problem for some special
cases: for curves in smooth surfaces it can be directly shown that the
Jacobian ideal is radical already implies the normal crossings property
(Prop. 2.15). This result is used to establish that for a divisor D in a
manifold S of dimension n ≥ 2 the Tjurina-Algebra OSing D,p is redu-
ced of Krull-dimension n−2 and Gorenstein if and only if (Sing D, p) is
smooth; hence D is locally the union of two transversally intersecting
hyperplanes (Prop. 2.18). Moreover, the assertion of Thm. 2.1 is shown
for hyperplane arrangements and generalizations thereof (Prop. 2.32).
Note that for the proofs of these special cases the Gorenstein assump-
tion on the normalization of the divisors is not needed.
To prove Thm. 2.1 in general, the problem is reduced to the analytically
irreducible case: if a divisor (D, p) = ∪m

i=1(Di, p) has a radical Jacobian
ideal, then all its components Di also have a radical Jacobian ideal, see
Prop. 2.48. In order to show this we introduce splayed divisors, which
are a generalization of normal crossing divisors allowing singular com-
ponents. They can be characterized by the “Leibniz property” of their
Jacobian ideals, namely, for a splayed divisor D = D1 ∪D2 defined lo-
cally by the equation gh = 0 one has the decomposition of the Jacobian
ideal Jgh = gJh + hJg, see Thm. 2.43. Finally, the irreducible case of
Theorem 2.1 is shown with a theorem by R. Piene about ideals in a
desingularization [76]1, similar to the results on the logarithmic residue

1Here thanks to David Mond, who pointed out the use of this theorem.
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in chapter 1.

In the last chapter further-reaching questions are considered: first it
is asked which type of radical ideals occur as Jacobian ideals of divi-
sors. For manifolds of dimensions 2 and 3 divisors with radical ideal
can be nearly completely described (Prop. 3.2). For higher dimensional
ambient spaces it is shown that the Jacobian ideal of a divisor D is ra-
dical and defines a complete intersection if and only if D is isomorphic
to the cylinder over a lower-dimensional A1-singularity (Prop. 3.10).
In the sequel, we study splayed divisors in more detail, in particu-
lar, yet another characterization of splayed divisors in terms of their
Jacobian ideals is established (Prop. 3.37) and it is shown that their
Hilbert–Samuel polynomials satisfy the following additivity property: if
D = D1∪D2 is splayed then χD,p(t)+χD1∩D2,p(t) = χD1,p(t)+χD2,p(t),
where χD denotes the Hilbert–Samuel polynomial of the divisor D (see
Prop. 3.33). Ultimately, another possible generalization of normal cros-
sing divisors, so-called mikado divisors, is considered. Using Teissier’s
generalized Milnor numbers [93] we are able to give a criterion for plane
curves being mikado in terms of their Jacobian ideals (Thm. 3.49).

We have included an appendix (Appendix A) in which the most im-
portant notions and theorems quoted in the text can be found. This
appendix is divided into a commutative algebra and a local analytic
geometry section.
Eventually, this thesis is about geometry: there is a second appendix
(Appendix B), where pictures of some recurring examples of divisors in
two and three-dimensional manifolds are displayed.

About the notation (cf. Appendix A): unless otherwise stated, (S, D)

denotes a complex manifold S of dimension n together with a divisor
D in S. The complex coordinates at a point p ∈ S are denoted by
(x1, . . . , xn) and the ring of holomorphic functions at p is denoted by
OS,p

∼= C{x1, . . . , xn}. Mostly D is considered to be locally at p defi-
ned by a reduced holomorphic function h ∈ OS,p. The Jacobian ideal
of h is the ideal generated by the partial derivatives of h and deno-
ted by Jh = (∂x1h, . . . , ∂xnh). We always consider the singular locus
(Sing D, p) as given by the (possibly non-reduced) Jacobian ideal, with
ring OSing D,p = OS,p/((h) + Jh) (the Tjurina algebra).
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Chapter 1

Normal crossing and free
divisors

In this chapter normal crossing divisors are studied from the “geomet-
ric” point of view, namely with logarithmic differential forms and vector
fields along the divisors. We call this approach geometric because loga-
rithmic vector fields correspond precisely to tangent vectors at smooth
points of the divisor. After introducing the basic notions of K. Saito’s
theory of logarithmic differential forms and logarithmic derivations, we
derive two criteria for a divisor to have normal crossings: the first one is
in terms of a basis of the module of logarithmic differential forms resp.
vector fields and the second one uses the logarithmic residue. As an ap-
plication of the characterization by the logarithmic residue, we answer
in section 1.4 a question posed by K. Saito in his 1980 paper [81].

1.1 Theory of logarithmic differential forms

and logarithmic vector fields

Logarithmic differential forms along normal crossing divisors were first
considered by P. Deligne [28]. He computed the cohomology of the
complement of a normal crossing divisor with the help of logarithmic
differential forms. In 1980, K. Saito [81] generalized the notions of
Deligne to arbitrary (reduced) divisors in a complex manifold. He called
divisors whose sheaf of logarithmic differential forms is locally free, free

divisors. He was the first able to prove that the discriminant of a
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versal deformation of an isolated singularity is always a free divisor.
Since then free divisors have been an active area of research, e.g. in the
theory of hyperplane arrangements, in connection with the logarithmic
comparison theorem and also in deformation theory [13, 22, 94]. There
are still many questions open, for example, one lacks a classification of
free divisors.
For our study we will mainly need the basic notions of the theory; the
exposition follows loosely the seminal paper by K. Saito [81].

1.1.1 Definitions and most important theorems

In this section the notions logarithmic differential forms, logarithmic
vector fields and free divisors are introduced. The most important
results are proven (duality between logarithmic differential forms and
vector fields, Saito’s criterion) and also non-reduced divisors and Euler-
homogeneous free divisors are considered.

The notion of logarithmic differential forms was first used by K. Saito
in order to study the Gauß–Manin connection of the singularity A3 (see
[80]). He introduced the analytic sheaves Ω

q

S
(log D) and DerS(log D)

of a reduced divisor D in a smooth complex manifold S. The hy-
persurfaces D for which the sheaves of OS-modules Ω

q

S
(log D) and

DerS(log D) are locally free are called free divisors. Saito gave a cri-
terion, see Thm. 1.19, to decide whether given logarithmic differential
forms (resp. vector fields) form a basis of Ω

1
S
(log D) (resp. DerS(log D)).

Saito’s theory works in full generality only for reduced divisors, so we
shall exhibit problems when dealing with non-reduced divisors, in par-
ticular, we show that the duality between logarithmic vector fields and
differential forms breaks down in this case. We will also look at the
class of Euler-homogeneous divisors. These divisors are of special in-
terest in various applications and many results can be formulated more
easily for them. We conclude this section with some historical remarks
and applications of free divisors.

Definition 1.1. Let U be a domain in Cn and let D ⊆ U be a divisor
of Cn, defined by a reduced equation h = 0, where h is a holomorphic
function on U . A meromorphic q-form ω on U is called a logarithmic

q-form (along D) if hω and hdω are holomorphic on U . Since most
of the time the divisor D is fixed, we will simply speak of logarithmic
q-forms.
Now let S be a complex manifold of dimension n and x = (x1, . . . , xn)
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local complex coordinates around a point p ∈ S. Let hp = hp(x) = 0 be
a local (reduced) equation for D (in the sequel we will often only write
h, if the meaning is clear). A meromorphic q-form ω is logarithmic
(along D) at a point p if ωhp and hpdω are holomorphic in an open
neighbourhood around p. We denote

Ω
q

S,p
(log D) = {ω : ω germ of a logarithmic q-form at p},

We set
Ω

q

S
(log D) =

�

p∈S

Ω
q

S,p
(log D),

that is, Ω
q

S
(log D) is the sheaf whose stalks are precisely ΩS,p(log D)

(for this definition of a sheaf see Appendix A). Note that Ω
q

S
(log D)

is an analytic sheaf, i.e., its stalk Ω
q

S,p
(log D) at a point p is a OS,p-

module.

Lemma 1.2. We denote by (S, D) the pair of a complex manifold S of

complex dimension n and a fixed divisor D in S, by p a point in S with

complex coordinates (x1, . . . , xn) and by hp = h the reduced equation of

D at p. Let ω be a meromorphic differential form at p. The following

conditions are equivalent:

(i) ω is a logarithmic q-form.

(ii) hω and dh ∧ ω are holomorphic at p.
(iii) There exists a holomorphic function germ g ∈ OS,p, a holomorphic

(q − 1)-form ξ in Ω
q−1
S,p

and a holomorphic q-form η ∈ Ω
q

S,p
such that

dimOD,p/(g)OD,p ≤ n− 2, and

gω =
dh

h
∧ ξ + η.

(iv) There exists an (n− 2)-dimensional analytic set A ⊆ D such that

for p ∈ D\A the germ ωp is an element of Ω
q−1
U,p

∧
dh

h
+ Ω

q

U,p
.

Proof. Here are only shown the implications which are needed later (for
a complete proof see [81]). In particular, we will mostly be concerned
with logarithmic 1-forms and therefore show (ii) ⇒ (iii) only for 1-
forms.
The equivalence of (i) and (ii) follows from the formula d(hω) =

dh ∧ ω + hdω.
(ii) ⇒ (iii): Since ωh is contained in Ω

1
S,p

, one can present ω as
1
h

�
n

i=1 ai(x)dxi, where all ai are holomorphic function germs. Since
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ω ∧ dh is holomorphic by (ii), the 2-form ωh∧ dh is divisible by h. We
compute this expression: ωh ∧ dh =

�
n

i=1 aidxi ∧
�

n

j=1(∂xj h)dxj =�
i<j

(ai(∂xj h) − aj(∂xih))dxi ∧ dxj =:
�

i<j
bijhdxi ∧ dxj (we may

set bij := −bji for i ≥ j). The bij are in OS,p. Therefore computing
(∂xj h)ω for some j ∈ {1, . . . , n} yields

(∂xj h)ω =

�
n

i=1 ai(∂xj h)dxi

h
= aj

dh

h
+

n�

i=1

bjidxi.

Since possibly after a coordinate change one can always find a j such
that dim({h = ∂xj h = 0}) ≤ n − 2 (see Lemma A.19), one can take
g := ∂xj h for such a j, ξ := aj and η :=

�
n

i=1 bjidxi.

Remark 1.3. The proof above shows that the holomorphic function g
from (iii) of Lemma 1.2 can always be chosen as a suitable partial
derivative of h, but possibly only after a change of coordinates. An
example therefore is the normal crossing divisor h = x1x2 in C{x1, x2}.
The divisors defined by the partial derivatives ∂x1h = x2 and ∂x2h = x1

have both a common component with D. However, after a coordinate
change x1 = y1 − y2, x2 = y1 + y2, one sees that e.g. ∂y1h = ∂y1(y

2
1 −

y2
2) = 2y1 has the desired property.

Lemma 1.4. (i) Ω
q

S
(log D) is a coherent sheaf of OS-modules for q =

0, . . . , n.

(ii)
�

n

i=0 Ω
q

S
(log D) is an exterior algebra over OS and closed under

exterior differentiation.

(iii) Ω
0
S,p

(log D) = Ω
0
S,p

= OS,p and Ω
n

S,p
(log D) =

Ωn
S,p

h
. If ω1, . . . ,ωn

are in Ω
1
S,p

(log D), then

ω1 ∧ · · · ∧ ωn = f

�
n

i=1 dxi

h
,

for some f ∈ OS,p.

Proof. (i) Since Ω
q

S
(log D) is a finitely generated subsheaf of the coher-

ent free sheaf 1
h
Ω

q

S
for any q = 0, . . . , n, it follows by the Meta-Theorem

for coherent sheaves, Thm. A.15, that Ω
q

S
(log D) is also coherent.

(ii) This can be easily checked by using the description (iv) of Lemma
1.2 for logarithmic differential forms.
(iii) The two equalities follow from the definitions of Ω

0
S,p

resp. Ω
n

S,p
(log D).

Since by (ii)
�

n

i=0 Ω
q

S
(log D) is an exterior OS,p-algebra, ω1∧ · · ·∧ωn ∈

Ω
n

S,p
(log D) =

1
h
Ω

n

S,p
, which implies the claim.
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We can also study logarithmic vector fields (= logarithmic derivations)
along a divisor in a complex manifold. These vector fields δ appear
naturally as tangent vectors δ(p), p ∈ D to the divisor D in its smooth
points. Later it is shown that the module of logarithmic vector fields at
a point is dual to the module of logarithmic differential 1-forms (Lemma
1.9).
Logarithmic vector fields can also be studied as Lie algebras, since
the module of logarithmic vector fields is equipped with the usual Lie
bracket of vector fields and is trivially stable under this Lie bracket.
From considering the Lie algebra of logarithmic vector fields one can
derive many properties of the divisor corresponding to this Lie algebra,
as studied by Hauser and Müller, see [50]: in this article logarithmic
vector fields are considered as “tangent vector fields” along varieties
of any codimension. The Lie algebra structure of logarithmic vector
fields is also considered by Granger and Schulze [42]. Furthermore,
there is an interest in the generalization of the modules of logarithmic
vector fields to so-called tangential idealizers in an algebraic context,
see [65,89]. Here we will study logarithmic derivations in Saito’s spirit:

Definition 1.5. Let (S, D) be as in Lemma 1.2. A logarithmic vector

field (or logarithmic derivation) is a holomorphic vector field on S, that
is, an element of DerS satisfying one of the two equivalent conditions:
(i) For any smooth point p of D, the vector δ(p) of p is tangent to D,
(ii) For any point p, where (D, p) is given by h = 0, the germ δ(h) is
contained in the ideal (h) of OS,p. The module of germs of logarithmic
derivations (of D) D at p is denoted by

DerS,p(log D) = {δ : δ ∈ DerS,p such that δh ∈ (h)},

and the sheaf of OS-modules, whose stalk at a point p, is DerS,p(log D)

is
DerS(log D) =

�

p∈S

DerS,p(log D).

Definition 1.6. Let S be an n-dimensional complex manifold and let
x = (x1, . . . , xn) be the complex coordinates around a point p ∈ S.
Let ξ =

�
n

i=1 ξ
i
∂xi , η =

�
n

i=1 η
i
∂xi be in DerS,p. Then the Lie bracket

[ξ, η] is defined as [ξ, η] = ξ ◦ η − η ◦ ξ. In the local coordinates this
looks as follows:

[ξ, η]
k

=

n�

i=1

(ξ
i
∂xi(η

k
)− η

i
∂xi(ξ

k
)), for k = 1, . . . , n.
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Lemma 1.7. Let (S, D), p and h be defined as in Lemma 1.2. Some

useful properties of DerS(log D):

(i) DerS(log D) is a coherent OS-submodule of DerS, the sheaf of holo-

morphic vector fields on S.

(ii) DerS(log D) is closed under the bracket [·, ·].
(iii) For any vector fields δ1, . . . , δn ∈ DerS,p(log D) with δi =

�
n

j=1 aij∂xj

the determinant of their coefficients det((aij)i,j=1,...,n) is contained in

the ideal (h) ⊆ OS,p.

Proof. (i): Elements δ of DerS,p(log D) are in one-to-one correspon-
dence to syzygies (a1, . . . , an, b) of the coherent ideal (∂x1h, . . . , ∂xnh, h)

via

δ −→ (δ(x1), . . . , δ(xn),−
δ(h)

h
)

n�

i=1

ai∂xi ←− (a1, . . . , an, b).

Thus the sheaf DerS(log D) is locally isomorphic to the module of syzy-
gies of the coherent ideal (∂x1h, . . . , ∂xnh, h) and hence itself coherent.
(ii): By definition we have for any δ, η ∈ DerS,p(log D) that δ(h) = fh
and η(h) = gh for some f, g ∈ OS,p. Hence

[δ, η](h) = δ(η(h))− η(δ(h)) = δ(gh)− η(fh)

= (δ(g) + g2
− η(f)− f2

)h ∈ (h).

(iii): The determinant of the δi is equal to δ1∧· · ·∧δn = f∂x1∧· · ·∧∂xn .
Since at any smooth point p ∈ D the vectors δi(p) are tangent to
D, they have to be linearly dependent. This means nothing else but
det((aij(p))) = 0 for all p ∈ D. Hence det((aij(x)i,j=1,...,n) ∈ (h)OS,p

and thus f ∈ (h).

Definition 1.8. Let p = (x1, . . . , xn) be a point in an n-dimensional
complex manifold S. The pairing of vector fields and differential q-
forms is denoted by

DerS,p×Ω
q

S,p
→ Ω

q−1
S,p

, (δ,ω) �→ δ · ω.

In coordinates: for δ =
�

n

i=1 δ
i
∂xi and ω =

�
J

ωJdxj1 ∧ · · · ∧ dxjq ,
where J = {j1, . . . , jq} with 1 ≤ j1 < · · · < jq, we have δ · ω =�

n

i=1(
�

J:i∈J
δ

i
ωJdxj1∧· · ·∧

�dxi∧· · ·∧dxjq ). Especially for the product
of derivations with 1-forms this means δ ·ω =

�
n

i=1(
�

n

j=1 δ
j
∂xj (ωidxi))

=
�

n

i,j=1 δ
j
ωiδij =

�
n

i=1 δ
i
ωi ∈ OS,p.
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The pairing can be defined for logarithmic vector fields and differ-
ential forms. A priori, the product of some δ ∈ DerS,p(log D) and
ω ∈ Ω

1
S,p

(log D) may only be meromorphic. The following lemma of
Saito [81, Lemma 1.6] shows that δ · ω is actually holomorphic.

Lemma 1.9. Let D be a reduced divisor and p a point in S. The

pairing

DerS,p(log D)× Ω
q

S,p
(log D) → Ω

q−1
S,p

(log D); (δ,ω) �→ δ · ω

is well defined. In particular, by the pairing, DerS,p(log D) and Ω
1
S,p

(log D)

are dual OS,p-modules.

Proof. Suppose that h = 0 is the local equation of D at p. First we
show that for δ ∈ DerS,p(log D) and ω ∈ Ω

q

S,p
(log D) the product δ · ω

is contained in Ω
q−1
S,p

(log D): by Lemma 1.2 we may represent ω as
ξ

g
∧

dh

h
+

η

g
for some holomorphic (q − 1)-form ξ and q-form η and a

holomorphic g, which does not vanish on any irreducible component of
D. By definition we have g(δ · ω) = δ · (gω) and hence

δ · (gω) = δ · ξ ∧
dh

h
+ (−1)

q−1
ξ ∧ δ(

dh

h
) + δ · η.

Here δ(
dh

h
) =

δh

h
, δ · ξ and δ · η are holomorphic. Thus δ · ω has the

required representation

g(δ · ω) = ξ
�
∧

dh

h
+ η

�,

with ξ
�

= δ · ξ and η
�

= δ · η + (−1)
q−1 δh

h
ξ. The non-singularity of

the pairing DerS,p(log D) × Ω
1
S,p

(log D) is shown as follows: for the
differential forms one has

Ω
1
S,p
⊆ Ω

1
S,p

(log D) ⊆
1

h
Ω

1
S,p

,

by definition of Ω
1
S,p

(log D). Taking duals ∗ results in

DerS,p ⊇ (Ω
1
S,p

(log D))
∗
⊇ h DerS,p .

Thus an element δ ∈ (Ω
1
S,p

(log D))
∗ can be seen as an element in DerS,p.

The differential form dh

h
is logarithmic. By duality δ ·

dh

h
must be

contained in OS,p. However, δ ·
dh

h
=

δh

h
and thus δh ∈ (h)OS,p. This
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proves that δ is also contained in DerS,p(log D). For the other inclusion,
consider

h DerS,p ⊆ DerS,p(log D) ⊆ DerS,p .

Dualizing yields

1

h
Ω

1
S,p
⊇ (DerS,p(log D))

∗
⊇ Ω

1
S,p

.

Hence an element ω ∈ (DerS,p(log D))
∗ can be written as 1

h

�
n

i=1 aidxi.
In order to show that dh ∧ ω is holomorphic we first observe that the
holomorphic vector fields δij = (∂xih)∂xj − (∂xj h)∂xi are elements of
DerS,p(log D) for all 1 ≤ i, j ≤ n. Therefore, by duality, δij · ω =
1
h
(aj(∂ih)− ai(∂jh)) must be holomorphic. A computation of

dh ∧ ω =
1

h




�

i<j

(aj(∂xih)− ai(∂xj h))dxi ∧ dxj





shows that dh ∧ ω is holomorphic and thus ω ∈ Ω
1
S,p

(log D).

Corollary. Ω
1
S,p

(log D) and DerS,p(log D) are reflexive OS,p-modules.

If the dimension dim S equals 2, then DerS,p(log D) and Ω
1
S,p

(log D)

are locally free modules.

Proof. Since OS,p is a regular local ring of Krull-dimension 2, we can
apply Theorem A.3 and are finished.

Let us see some examples of divisors and modules of logarithmic differ-
ential forms resp. derivations. In particular, Ω

1
S,p

(log D) is in general
not a free OS,p-module if dim S ≥ 3.
Example 1.10. (The normal crossing divisor) This is the most basic
example, which was originally considered by Deligne [28] in order to
study logarithmic differential forms. Let D be a normal crossing di-
visor in a manifold S of dimension n and suppose that locally at a
point p = (x1, . . . , xn) the divisor is given as D = {x1 · · ·xk = 0}

where 0 ≤ k ≤ n. Then clearly Ω
1
S,p

(log D) is free and has the basis
dx1
x1

, . . . , dxk
xk

, dxk+1, . . . , dxn. The dual basis of DerS,p(log D) is given
by x1∂x1 , . . . , xk∂xk , ∂xk+1 , . . . , ∂xn . In particular, if D = {x1 = 0} is
smooth, then Ω

1
S,p

(log D) is free and any ω ∈ Ω
1
S,p

(log D) has a repre-
sentation ω = a1

dx1
x1

+
�

n

i=2 aidxi, with ai ∈ OS,p, of Lemma 1.2.
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Example 1.11. (The cusp) The corollary above shows that any divisor
in S is free if dim S = 2. The cusp singularity (D, p) in (S, p) is given
at p = (x, y) by h = x3 − y2. A basis of DerS,p(log D) is formed by
δ1 = 2x∂x + 3y∂y and δ2 = 2y∂x + 3x2

∂y. A basis of Ω
1
S,p

(log D) is
obtained by forming the dual basis to (δ1, δ2).
Example 1.12. (Isolated surface singularity) Consider the normal sur-
face singularity E8 in (C3, 0), given by h = x2

+ y3
+ z5. Here it is

not so easy to determine a system of generators of DerS,p(log D). How-
ever, in Thm. 1.42 it will be shown that Ω

1
S,p

(log D) is generated by
dh

h
=

1
h
(2xdx + 3y2dy + 5z4dz), dx, dy, and dz.

Example 1.13. (The Whitney Umbrella) The Whitney Umbrella D is
the surface in C3 given by the equation x2 − y2z = 0. It has the
z-axis as singular locus. Later it will be proven that for all points
p of C3\{0} the module of logarithmic derivations at p is free, see
Example 2.9. However, a computation (of the syzygies of the Jacobian
ideal of x2 − y2z) shows that DerC3,0(log D) is minimally generated
by the four vector fields δ1 = 2x∂x + y∂y + 2z∂z, δ2 = −y∂y + 2z∂z,
δ3 = −y2

∂x + 2x∂z, δ4 = x∂y − yz∂x and hence not free.

Definition 1.14. A hypersurface D in S is called a free divisor if
Ω

1
S
(log D) is a locally free OS-module. We say that D is free at p (or

(D, p) is free) if Ω
1
S,p

(log D) or the dual module DerS,p(log D)) is a free
OS,p-module.

One can construct free divisors in any dimension as cylinders over plane
curves. However, it is not so easy to find more interesting examples of
free divisors in dimension greater than 2. Free divisors in dimension
≥ 3 have not yet been classified and only some classes of examples are
known but there is no general theory, see e.g. [40,67,86].
Example 1.15. (Hyperplane arrangements) Consider the divisor H that
is given globally by xyz(x + y) in C3, i.e., H is a union of four hyper-
planes. With the help of Saito’s criterion (Thm. 1.19) it can be shown
that H is a free divisor, a so-called free hyperplane arrangement. In
Chapter 2 we will see more of hyperplane arrangements. Freeness of
hyperplane arrangements has been studied by Terao [94].
Example 1.16. (The 4-lines) Consider the divisor D in (C3, 0) given by
h = xy(x + y)(x + yz). This example is originally from Whitney [100]
and serves as the prototypic example of an analytic variety that is not
analytically trivial along a smooth subvariety (here: along the z-axis).
It is also a source of examples and counterexamples in the theory of free
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divisors and logarithmic differential operators, see e.g. [18,19,71]. “The
4-lines” divisor is a mild generalization of a hyperplane arrangement
since it consists generically at points of the singular locus of four smooth
surfaces, which intersect pairwise transversally. A computation of the
syzygies of the Jacobian ideal shows that the three logarithmic vector
fields δ1 = xy∂x +y2

∂y−4(x+yz)∂z, δ2 = x(x+3y)∂x−y(3x+y)∂y +

4x(z − 1)∂z and δ3 = x∂x + y∂y form a basis of DerC3,0(log D). So D
is a free divisor.

Example 1.17. (Discriminants) Another source of nontrivial examples
of free divisors are discriminants of deformations. A remarkable result
in singularity theory is that the discriminant of a versal deformation
of any isolated hypersurface singularity is a free divisor. This was first
proven by Saito [82], for different proofs see [4, 60]. This result has
been generalized in many directions, see e.g. [13, 25, 60, 68] and more
references therein. The first interesting example is the discriminant of
the versal deformation of an A3-singularity defined by w4

= 0. A versal
deformation of this singularity is given by X = {w4

+xw2
+yw+z = 0},

cf. [27,60], which has discriminant

h = 256z3
− 128x2z2

+ 16x4z + 144xy2z − 4x3y2
− 27y4.

The polynomial h defines a free divisor in C3. A basis of DerC3,0(log D)

is given by δ1 = 6y∂x + (8z − 2x2
)∂y − xy∂z, δ2 = (4x2 − 48z)∂x +

12xy∂y + (9y2 − 16xz)∂z and δ3 = 2x∂x + 3y∂y + 4z∂z. A versal
deformation of the A4-singularity w5

= 0 is given by X = {w5
+xw3

+

yw2
+ zw +u = 0}. Its discriminant is defined by a quasi-homogeneous

polynomial in four variables and gives rise to a free divisor in C4.

Remark 1.18. Although a divisor may not be free at all of its points,
the set of free points is open and dense in S and also in D. This follows
from the general fact that for a coherent sheaf F on a complex space
X the set {x ∈ X : Fx is not a free OX,x-module} is a proper analytic
subset in X (cf. [27, Thm. 6.2.11.]). Note that the set of non-free points
of D is contained in Sing D, the singular locus of D.

Theorem 1.19 (Saito’s criterion). Let (S, D), p and h be defined as in

Lemma 1.2. The OS,p-module DerS,p(log D) is free if and only if there

exist n vector fields δi =
�

n

j=1 aij(x)∂xj in DerS,p(log D), i = 1, . . . , n,

such that det(aij(x)) is equal to h up to an invertible factor. Moreover,

then the vector fields δ1, . . . , δn form a basis for DerS,p(log D).

Ω
1
S,p

(log D) is a free OS,p-module if and only if one has
�

n
Ω

1
S,p

(log D) =
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Ω
n

S,p
(log D). This means that there exist n elements ωi ∈ Ω

1
S,p

(log D)

such that

ω1 ∧ . . . ∧ ωn = u
dx1 ∧ . . . ∧ dxn

h
,

where u is a unit in OS,p, i.e., u ∈ O∗
S,p

. Then the ω1, . . . ,ωn form an

OS,p-basis for Ω
1
S,p

(log D) and one can write

Ω
q

S,p
(log D) =

�

i1<···<iq

OS,p ωi1 ∧ · · · ∧ ωiq ,

for all q = 1, . . . , n.

Proof. Differential forms: First suppose that Ω
1
S,p

(log D) is a free OS,p-
module. By Lemma 1.4 (i), the sheaf Ω

1
S
(log D) is coherent, thus there

exists a neighbourhood U of p ∈ S such that Ω
1
S
(log D)|U is OS-free.

For any point q ∈ U , q �∈ D, it is clear that Ω
1
S,q

(log D) = Ω
1
S,q

. From
this it follows that Ω

1
S
(log D)|U has a basis ω1, . . . ,ωn consisting of n

elements. Again by Lemma 1.4 (iii), one knows that

ω1 ∧ · · · ∧ ωn = f

�
n

i=1 dxi

h
,

where f is a holomorphic function. For any point q ∈ U\D, ω1∧· · ·∧ωn

has to be a unit multiple of the n-form
�

n

i=1 dxi. For a smooth point q ∈
D∩U with coordinates (y1, . . . , yn) we may suppose that D looks locally
like {y1 = 0}. Then by the equivalent characterizations of logarithmic
differential forms (Lemma 1.2) any ω ∈ Ω

1
S,q

(log D) is of the form
ω = ξ

dy1
y1

+η, where ξ is a holomorphic function and η is a holomorphic
differential 1-form. From this it follows that dy1

y1
, dy2, . . . , dyn form a

free basis of Ω
1
S,q

(log D). By the implicit function theorem ω1 ∧ · · · ∧

ωn =
1
y1

�
n

i=1 dyi = u 1
h

�
n

i=1 dxi holds for some unit u ∈ O∗
S,p

. Thus
ω1 ∧ · · · ∧ ωn is a unit multiple of 1

h

�
n

i=1 dxi. Hence the holomorphic
function f can only vanish on a set of codimension greater than of equal
to 2 in U , which implies that f(x) does not vanish at all on U .
Conversely, suppose that there exist n logarithmic differential one-forms
ω1, . . . ωn, such that

ω1 ∧ · · · ∧ ωn =
dx1 ∧ · · · ∧ dxn

h
.

Take any ω ∈ Ω
q

S,p
(log D), q = 1, . . . , n and form

ω ∧ ωi1 ∧ · · · ∧ ωin−q = aI

�
n

i=1 dxi

h
,
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where the aI are in OS,p and I is the multi-index (i1, . . . , in−q) with
1 ≤ i1, . . . , in−q ≤ n. We set

ω
�
= ω −

�
sgn(I)aIωj1 ∧ · · · ∧ ωjq ,

where sgn(I) denotes the sign of the permutation
� 1···n
i1···in−qj1···jq

�
. It

can easily be seen that ω
� ∧ ωi1 ∧ · · · ∧ ωin−q = 0 for 1 ≤ i1 < . . . <

in−q ≤ n. Hence ω
� is OS,p-linearly dependent on ωi1 , . . . ,ωin−q for

points in S\D and hence in the span of these ωij ’s. But this means
that ω = ω

�
+

�
sgn(I)aIωj1 ∧ · · · ∧ ωjq is an OS,p-combination of the

ωj1 ∧ · · · ∧ ωjq . In particular, any ω ∈ Ω
1
S,p

(log D) is a linear combina-
tion of the ωi’s.
For the logarithmic derivations we apply the duality proven above and
a trick used in [74]: First suppose that DerS,p(log D) is free and has a
basis δ1, . . . , δn with δi =

�
n

j=1 aij∂xj . By the duality between loga-
rithmic derivations and logarithmic differential 1-forms, Ω

1
S,p

(log D) is
also free, which means that there exists a basis ω1, . . . ,ωn ∈ Ω

1
S,p

(log D)

with �ωi, δj� = δij . If we write ωi =
�

n

j=1 bijdxi then by the first part
of the theorem we have det(bij) =

1
h
. Since the matrix A = (aij) is the

adjoint matrix to B = (bij), it follows that det(A) = det(B−1
) = h,

which is what had to be shown.
For the other implication suppose that we have δ1, . . . , δn ∈ DerS,p(log D)

with δi =
�

n

j=1 aij∂xj , such that det(aij) = h. We show that any
δ =

�
n

i=1 ci∂xi ∈ DerS,p(log D) can be written as an OS,p-linear combi-
nation of the δi’s: First it follows by Cramer’s rule that the derivations
h∂xj are OS,p-linear combinations of the δi’s for all j = 1, . . . , n, hence
so is hδ =

�
n

i=1 fiδi. By Lemma 1.7, δ1∧ · · ·∧δi−1∧δ∧δi+1∧ · · ·∧δn =

gih∂x1 ∧ · · · ∧ ∂xn for some gi ∈ OS,p and thus

h(δ1 ∧ · · · ∧ δi−1 ∧ δ ∧ δi+1 ∧ · · · ∧ δn) = δ1 ∧ · · · ∧ δi−1 ∧ hδ ∧ δi+1 ∧ · · · ∧ δn,

h2gi∂x1 ∧ · · · ∧ ∂xn = fiδ1 ∧ · · · ∧ δn,

which implies that h2gi = fih. This means that all fi/h = gi are
holomorphic and hence δ =

�
n

i=1 giδi is an OS,p-linear combination of
the δi, which is what had to be shown.

Problems with non-reduced divisors

In this section we briefly comment on why we always assume that
the divisors D, we are dealing with are defined by reduced holomor-
phic equations. In short, the reason is that if D is given by a non-
reduced equation, then the duality between the modules Ω

1
S,p

(log D)
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and DerS,p(log D) does not hold.
If D is given by a non-reduced equation hα

= hα1
1 · · ·hαm

m
with αi ≥

1 and
�

αi > m at a point p, then the module DerS,p(log D) is
DerS,p(log Dred), where Dred denotes the divisor with local equation
h = h1 · · ·hm, see Prop. 1.21. However, we will see in an exam-
ple that the module Ω

1
S,p

(log D) is not equal to its reduced version
Ω

1
S,p

(log Dred).

Lemma 1.20. Let (S, D) be a manifold with dim S = n and its divisor.

Suppose that (D, p) =
�

m

i=1(Di, p) is the irreducible decomposition of D
at a point p ∈ S and that D is given locally at p by a reduced equation

h = h1 · · ·hm, where hi corresponds to the irreducible component Di

for i = 1, . . . ,m. Then

DerS,p(log D) =

m�

i=1

DerS,p(log Di).

Proof. Suppose that δ ∈ DerS,p(log D). Then by definition of logarith-
mic vector fields we have

δ(h) =

m�

i=1

h1 · · ·
�hi · · ·hmδ(hi) = gh

for a g ∈ OS,p. Dividing this equation by hj it follows that

h1 · · ·
�hj · · ·hm

δ(hj)

hj

is holomorphic. Since hj is irreducible and does not divide any of the
hi for i �= j, one concludes that δ(hj) ∈ (hj). This argument applies to
any j = 1, . . . ,m, so that δ is contained in

�
m

i=1 DerS,p(log Di).
Conversely, suppose that δ(hi) = gihi, gi ∈ OS,p for all i = 1, . . . ,m.
Then

δ(h1 · · ·hm) = h1 · · ·hm(

m�

i=1

gi),

which implies that δ(h) ∈ (h).

Note that for the proof of Lemma 1.20 one does not need the irre-
ducibility of the hi, only that they are coprime. Hence the statement
holds in general for (D, p) =

�
m

i=1(Di, p), where the (Di, p) are defined
by mutually coprime hi.
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Proposition 1.21. Let S be a complex manifold of dimension n to-

gether with a divisor D ⊆ S. Suppose that at a point p ∈ S the di-

visor (D, p) =
�

m

i=1(Di, p) is given by a non-reduced equation hα
:=

hα1
1 · · ·hαm

m
, where the hi are the equations defining the irreducible com-

ponents at p and αi ∈ N>0 are their multiplicities. Then

DerS,p(log D) = DerS,p(log Dred),

where Dred denotes the reduced divisor defined by the equation h =

h1 · · ·hm.

Proof. Suppose that δ ∈ DerS,p(log Dred). By Lemma 1.20 we have
δ(hi) = gihi, gi ∈ OS,p. Applying δ to hα yields

δ(hα
) =

m�

i=1

αih
α1
1 · · ·hαi−1

i
· · ·hαm

m
δ(hi) = hα

(

m�

i=1

αigi).

Conversely, let δ be an element of DerS,p(log D). Then by definition
we have δ(hα

) = ghα. Expanding δ yields

δ(hα
) =

m�

i=1

αih
α1
1 · · ·hαi−1

i
· · ·hαm

m
δ(hi).

Dividing through h
αj

j
shows that αjh

α1
1 · · ·�hj · · ·hαm

m

δ(hj)
hj

is holomor-
phic. Since all hi are irreducible and distinct from hj , it follows that
δ(hj) ∈ (hj) for any j = 1, . . . ,m. By Lemma 1.20 it holds that
DerS,p(log Dred) =

�
m

i=1 DerS,p(log(Di)red), so this proves our asser-
tion.

For a non-reduced D it is easy to see that Ω
1
S,p

(log D) � Ω
1
S,p

(log Dred):
if ω ∈ Ω

1
S,p

(log Dred) then hα
ω = hα−1

(hω) and hαdω = hα−1
(hdω)

are clearly holomorphic. The meromorphic differential form ω =
dh

hα is
in Ω

1
S,p

(log D) since ωhα is holomorphic and dh ∧ ω =
1

hα dh ∧ dh = 0

is also holomorphic. But ωh is not holomorphic and thus ω is not in
Ω

1
S,p

(log Dred)! Thus for a non-reduced divisor D the logarithmic dif-
ferentials and the logarithmic derivations are not dual to each other,
that is, Ω

1
(log D) is not reflexive.

There have been a few approaches to overcome this obstruction. In [105]
Ziegler defines generalized logarithmic vector fields resp. differential
form modules of hyperplane arrangements with multiplicities, so-called
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multiarrangements. In the theory of hyperplane arrangements this
leads to interesting insights about the combinatorics and topology of
multi-arrangements as well as simple arrangements (i.e., arrangements
defined by a reduced polynomial). We refer to [85] for more references
on multi-arrangements.
However, the geometry of a divisor does not change by introducing mul-
tiplicities, in particular, the normal crossings property only depends on
the reduced equation of the divisor. For this reason only divisors given
by reduced equations are considered in this thesis.

Euler-homogeneous divisors

This section is about so-called Euler-homogeneous divisors. These di-
visors are of special interest, since they are a generalization of quasi-
homogeneous divisors (for a divisor with only isolated singularities the
two notions coincide). Often results about free divisors are much sim-
pler to prove for free Euler-homogeneous divisors and can then be gen-
eralized. Here we list some properties of Euler-homogeneous divisors,
which will be used in Chapter 2. In particular, we show a charac-
terization of free Euler-homogeneous divisors in terms of logarithmic
differential forms (Prop. 1.29).

Definition 1.22. Let (S, D) be an n-dimensional complex manifold to-
gether with a divisor D ⊆ S. The divisor D is called Euler-homogeneous

at a point p if for some (reduced) local defining equation h of D there
exists a vector field η ∈ DerS,p(log D) such that ηh = uh with u ∈ O∗

S,p

(we also say that (D, p) is a Euler-homogeneous singularity). Such a
vector field η ∈ DerS,p(log D) is called an Euler vector field. A divisor
D is called Euler-homogeneous if for any point p in D the singularity
(D, p) is Euler-homogeneous.

Definition 1.23. A divisor D is said to be quasi-homogeneous at p ∈ S,
where S is locally isomorphic to Cn, if there exist complex coordinates
(x1, · · · , xn) locally at p such that D is defined by a polynomial P ∈

C[x1, . . . , xn] and P is quasi-homogeneous with weights (w1, . . . , wn),
0 < wi ≤

1
2 . This means that P is a linear combination of monomials

xm1
1 · · ·xmn

n
with

�
n

i=1 wimi = 1.

By a theorem of Saito [78], an isolated hypersurface singularity (D, p),
defined by h for an h ∈ OS,p is quasi-homogeneous at p if and only if h
is contained in the Jacobian ideal of h, that is, in the ideal generated
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by the partial derivatives ∂xih (in Chapter 2 this ideal will be studied
in more detail). But then there exist some gi ∈ OS,p such that h =�

n

i=1 gi∂xih. Thus the vector field η :=
�

n

i=1 gi∂xi is an Euler-vector
field and D is Euler-homogeneous at p. This shows that if (D, p) is
an isolated hypersurface singularity, then (D, p) is quasi-homogeneous
if and only if it is Euler-homogeneous. However, nonisolated Euler-
homogeneous singularities need not be quasi-homogeneous:
Example 1.24. (The 4-lines) The divisor D in C3 given at 0 by h =

xy(x + y)(xz + y) is not quasi-homogeneous but it has an Euler vector
field, see e.g. [23].
Remark 1.25. One can show that if (D, p) defined by h ∈ OS,p is Euler-
homogeneous then there exists a formal change of coordinates such that
h is transformed into a quasi-homogeneous polynomial, see [39].
In the next lemmata we look at logarithmic vector fields along Euler-
homogeneous divisors: if (D, p) is Euler-homogeneous we have a certain
splitting of the basis of DerS,p(log D).

Lemma 1.26. Let (D, p) be an Euler-homogeneous divisor with defin-

ing equation h and let η be an Euler vector field. Write M = {δ ∈

DerS,p(log D) : δ(h) = 0}. Then we have the direct sum decomposition

Der(log D)S,p
∼= OS,pη ⊕M

If D is moreover free at p, then M is a free submodule of DerS,p(log D).

Proof. Let h = 0 be the defining equation of D at p. Since (D, p)

is Euler-homogeneous we have ηh = uh with u ∈ O∗
S,p

. Let δ ∈

DerS,p(log D). Then by definition of logarithmic derivations we have
δh = gh, g ∈ OS,p. It follows that δ(h) = gu−1

η(h), hence δ− gu−1
η ∈

M. Thus we can write any δ as a sum δ = gu−1
η + (δ − gu−1

η). If
D is free, then M is a free submodule of DerS,p(log D) since it is a di-
rect summand of a free module over a local ring, see the section about
projective modules in Appendix A.

Lemma 1.27. Let (D, p) be a free Euler-homogeneous divisor in (S, p),

given by h(x1, . . . , xn) ∈ OS,p and let M be defined as above. The

submodule M of DerS,p(log D) is canonically isomorphic to the module

of 1-cycles of the Koszul complex K(∂x1h, . . . , ∂xnh). The modules of

syzygies of order ≥ 2 are trivial.

Proof. The coefficients of any vector field δ ∈M give rise to a relation
between the ∂xih. Conversely any relation (or syzygy of first order)
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between the partial derivatives of h gives an element in M. Since M
is free, the higher syzygies are trivial.

Lemma 1.28. Let (D, p) be an Euler-homogeneous singularity, suppose

that D is free at p and let δ1, . . . , δn−1 be a basis of the submodule M ⊆

DerS,p(log D). Then every partial derivative ∂x1h, . . . , ∂xnh is given (up

to a unit u ∈ O∗
S,p

) by one of the principal minors of the (n − 1) × n-

matrix formed by the coefficients of the vector fields δ1, . . . , δn−1.

Proof. From Lemma 1.26 it follows that the Euler vector field η and the
vector fields δ1, . . . , δn−1 are a basis of the OS,p-module DerS,p(log D).
Consider the n×n- matrix M whose rows are formed by the coefficients
of this basis, that is, the first row corresponds to the coefficients of η and
the last row to the coefficients of δn−1. By Saito’s criterion, detM = kh
for some unit k and from the definition of η follows ηh = k�h, for
some k� ∈ O∗

S,p
. Hence M∂xh = (k�h, 0, . . . , 0). Here ∂xh denotes the

column vector (∂x1h, . . . , ∂xnh)
T . Thus, by Cramer’s rule, the partial

derivatives ∂xih correspond to the (n−1)×(n−1) minors of the matrix
(Mi,j)i=2,...n,j=1,...n.

Now we give a characterization of free Euler-homogeneous divisors in
terms of logarithmic differential forms.

Proposition 1.29. Let D in S be a free divisor that is locally at a point

p of S defined by a reduced h ∈ OS,p. Then D is Euler-homogeneous at

p if and only if there exists a basis ω1, . . . ,ωn of Ω
1
S,p

(log D) such that

dh

h
can be chosen as ω1.

Proof. Let D be an Euler-homogeneous divisor and let η ∈ DerS,p(log D)

be such that η(h) = h. Then we can find a basis of DerS,p(log D)

consisting of η and some δ2, . . . , δn with δi(h) = 0 (cf. Lemma 1.26).
Denote by A the n × n matrix with rows the coefficients η1, . . . , ηn of
η and δi1, . . . , δin of the δi. By Saito’s criterion, det(A) = uh for some
unit u ∈ OS,p. Consider the system of equations

A(∂x1h, . . . , ∂xnh)
T

= (h, 0, . . . , 0)
T .

By Cramer’s rule it follows that

∂xih =
(−1)

i+1
det(Ai)

u
, (1.1)

where Ai is the matrix formed by replacing the i-th column vector
of A by (1, 0, . . . , 0)

T . Using the duality between logarithmic vector
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fields and logarithmic differential 1-forms we get: since η, δ2, . . . , δn

are a basis of DerS,p(log D), there exists a unique basis ω1, . . . ,ωn of
Ω

1
S,p

(log D) such that ωi · η = δi1 and ωi · δj = 0 for i �= j, that
is, ω1, . . . ,ωn are the dual basis of η and the δi’s. Hence we get the
following system of equations for the coefficients ω11, . . . ,ω1n of ω1:

A(ω11, . . . ,ω1n)
T

= (1, 0, . . . , 0)
T .

Using again Cramer’s rule it follows that ω1i =
1

uh
(−1)

i+1
det(Ai),

which is by (1.1) equal to ∂xih

h
. Hence ω1 =

dh

h
, which is what had to

be shown.
Conversely, suppose that Ω

1
S,p

(log D) has a basis dh

h
, ω2, . . . ,ωn. Then

there exists a vector field δ ∈ DerS,p(log D) with the property δ ·
dh

h
= 1.

But this is equivalent to δ(h)
h

= 1, which means that δ(h) = h and that
δ is an Euler-vector field for D.

Question 1.30. What can we say if in the above Proposition we drop

the freeness assumption on D? Does then “D is Euler-homogeneous”

mean that
dh

h
can be chosen as a member of a minimal system of gen-

erators of Ω
1
S,p

(log D)?

One has to be careful with the notion of Euler homogenity. The next
example exhibits a method how to obtain an Euler-homogeneous divisor
from an arbitrary divisor.
Example 1.31. (This example is inspired by [31]) Let (D, 0) ⊆ (Cn+1, 0)

and let (x1, . . . , xn, y) be the complex coordinates at the origin. Sup-
pose that D = D� × C with D� defined by f(x) and that f(x) de-
fines a non-quasihomogeneous isolated singularity in (Cn, 0). Then
ezf(x) is a defining equation for D. Hence D is Euler-homogeneous
and η = ∂z is an Euler vector field. However, the divisor D� is not
Euler-homogeneous.
The above example shows that Euler-homogenity of a divisor that has
a smooth factor does not imply that all its irreducible components
are Euler-homogeneous. Hence we shall assume that the divisor D is
strongly Euler-homogeneous at p, which means that D has an Euler-
vector field that vanishes at p. The notion of strong Euler–homogenity
plays a role in connection with the logarithmic comparison theorem,
see [17,41].
For a strongly Euler-homogeneous singularity (D, p) =

�
m

i=1(Di, p),
where the Di denote the irreducible components of D, there exists an
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Euler-vector field η for D and by the Leibniz rule it follows that η has
also to be an Euler-vector field for at least one of the Di. This means, at
least one irreducible component Di is also strongly Euler-homogeneous.
In general not all components have this property:
Example 1.32. Consider the divisor D ⊆ C3 that is locally at 0 defined
by xf(y, z) = 0, where f is a reduced irreducible non-quasihomogeneous
polynomial. Then D is strongly Euler-homogeneous with Euler vec-
tor field η = x∂x. The irreducible component (D1, 0) = {x = 0} is
also strongly Euler-homogeneous but the other irreducible component
(D2, 0) = {f(y, z) = 0} certainly not.
The opposite implication is also not true:
Example 1.33. Let D in C2 at p = (x, y) be the union of the parabola
D1 = {x − y2

= 0} and the cusp D2 = {x3 − y2}. Then D is lo-
cally at p given by h = (x − y2

)(x3 − y2
). Since in dimension 2 the

singularities of divisors (= curves) are always isolated, Saito’s result
on quasi-homogeneous singularities, see [78], implies that a curve C
defined by a polynomial f is quasi-homogeneous if and only if it is
Euler-homogeneous if and only if f is contained in its Jacobian ideal.
Clearly D1 and D2 are quasi-homogeneous (with weights (2, 1) and
(2, 3)). But D is not quasi-homogeneous, since h �∈ (∂xh, ∂yh).
One can give more interesting examples of Euler-homogeneous divisors
that appear in connection with the logarithmic meromorphic compar-
ison theorem, see e.g. [71] for an overview. Therefore we need a bit of
notation.
Definition 1.34. Let R be a commutative ring and I ⊆ R an ideal.
One says that I is of linear type if the canonical (surjective) map of
graded algebras Sym

R
(I) → R(I) is an isomorphism. Here Sym

R
(I)

denotes the symmetric algebra of the R-module I andR(I) =
�∞

i=0 Idtd

⊆ R[t] is the Rees algebra of I.
Denote by (S, D) a complex manifold of dim S = n together with a di-
visor D ⊆ S. Denote h the defining equation of D at a point p. We say
that D is of Jacobian linear type at p ∈ D if the stalk (h, ∂x1h, . . . , ∂xnh)

of its Jacobian ideal plus the defining equation is of linear type. One
says that D is of Jacobian linear type if it is of Jacobian linear type at
all p ∈ D.
Suppose that ((h)+Jh) is generated by some f1, . . . , fk. Then being of
Jacobian linear type means that the kernel of the morphism of graded
algebras ϕ : O[X1, . . . ,Xk] → R((h)+Jh) sending Xi to fit is generated
by homogeneous elements of degree 1 (see [19]).
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Proposition 1.35. If D is of Jacobian linear type at p then (D, p) is

an Euler-homogeneous singularity.

Proof. See Rmk. 1.6.6. of [20].

Remarks and some applications

In [28] Deligne introduced the logarithmic de Rham complex, also see
e.g. [29], [46] and [97]. The applications of the logarithmic complex
mainly lie in cohomology theory. The logarithmic comparison theorem
(LCT) states that one can compute the cohomology of the complement
of a divisor just from the logarithmic complex: denote by Ω

•

S
(log D) the

logarithmic de Rham complex, which is naturally contained in Ω
•
(∗D),

the complex of meromorphic forms on X with meromorphic poles (of
arbitrary order) along D. The Grothendieck-comparison theorem states
that for any divisor D ⊆ S the natural morphism

Ω
•

S
(∗D) −→ Rj∗CU ,

where j : U = S\D �→ S is the natural inclusion, is a quasi-isomorphism,
see [63]. Then one asks if the inclusion Ω

•

S
(log D) ⊆ Ω

•

S
(∗D) also yields

a quasi-isomorphism. If this is the case then one says that (LCT) holds
for D. However, (LCT) is proven to hold only for special classes of
free divisors and a general characterization is still open, see [22, 71].
Using D-module theory some results for free divisors can be obtained,
see e.g. [19]. In order to study meromorphic connections and partial
differential equations one can also make use of the theory of logarith-
mic differential forms, see [7, 28, 73]. Many algebraic properties of free
divisors and logarithmic vector fields were studied by A. G. Aleksan-
drov, see e.g. [4,5]. We have already mentioned in some examples that
free divisors appear in the theory of bifurcations and also in the theory
of hyperplane arrangements. Another interesting field of study is the
connection between linear free divisors and quiver representations [15].

It is noteworthy that the original definition of logarithmic differential
form along a normal crossing divisor of Deligne is different from Saito’s.
However, we will see below that the two definitions coincide for normal
crossing divisors (also see [28, II,3]).

Definition 1.36 (Deligne, [28]). Let D be a normal crossing divisor in
a complex manifold S and denote its complement S\D by U . Let j :

U �→ S be the natural inclusion. One defines the logarithmic de Rham
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complex Ω
•

S
(log D) as follows: Ω

•

S
(log D) is the smallest subcomplex of

j∗Ω•

U
containing Ω

•

S
that is stable under the exterior product and such

that for any local section f ∈ j∗OU that is meromorphic along D the
differential form df

f
is a local section of Ω

1
S
(log D).

Proposition 1.37. Let D be a normal crossing divisor in a com-

plex manifold S with dim S = n. A section ω of j∗Ω
p

U
has a loga-

rithmic pole along D if and only if ω and dω have at most a sim-

ple pole along D. Moreover, the sheaf Ω
1
S
(log D) is locally free and

Ω
q

S
(log D) =

�
q
Ω

1
S
(log D).

Proof. At a point p ∈ S with coordinates (x1, . . . , xn) we may suppose
that D is given by the holomorphic function x1 · · ·xk. Then a section of
(j∗OU ) meromorphic along D is locally at p of the form f = g

�
k

i=1 xki
i

with g ∈ O∗
S,p

and ki ∈ Z. Then compute

df

f
=

dg

g
+

k�

i=1

ki

dxi

xi

,

where dg

g
∈ Ω

1
S,p

. It follows that any section of Ω
1
S,p

(log D) can be
written as an OS,p-linear combination of the dxi

xi
, i = 1, . . . , k, and the

dxi, i = k+1, . . . , n. Thus one sees that Ω
1
S,p

(log D) is locally free with
the above basis and it is clear that Ω

q

S
(log D) =

�
q
Ω

1
S
(log D). With

the help of the explicit basis it follows that a section ω ∈ Ω
q

S,p
(log D)

and also dω have at most a simple pole along D. Now it remains to show
that a q-form ω ∈ j∗Ω

q

U,p
, with x1 · · ·xkω and x1 · · ·xkdω holomorphic

is also a section of Ω
q

S,p
(log D). Since Ω

1
S
(log D) is a locally free sheaf

of analytic modules, it is enough to show the assertion for a subset of
S of codimension ≥ 2, that is, it is enough to show the assertion for
germs ω of Ω

q

S,p
(log D), where p is a smooth point of D. Therefore

we may assume that locally at p the divisor is given by x1 = 0. Then
take an ω ∈ j∗Ω

q

U,p
such that also x1ω and x1dω (and equivalently x1ω

and ω ∧ dx1) are holomorphic. The form ω can be written uniquely as
ω = ω1 +ω2∧dx1/x1, where ω1 and ω2 are meromorphic q- and (q−1)-
forms not containing dx1. Since ωx1 is holomorphic, this implies that
ω2 and consequently x1ω1 are holomorphic. From dx1∧ω = dx1∧ω1+0

holomorphic follows that ω1 also has to be holomorphic. Hence ω is a
OS,p-linear combination of elements of the form 1

x1
dx1∧dxi2∧· · ·∧dxiq ,

and dxi1 ∧ · · · ∧ dxiq for ij ∈ {2, . . . , n}, j = 1, . . . , q, which are easily
seen to be generators of

�
q
Ω

1
S,p

(log D).
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1.1.2 Residue of logarithmic forms

Historically, the study of residues of differential forms was initiated by
A. Cauchy in 1825: he considered residues of holomorphic functions in
one variable. Later, in 1887, H. Poincaré introduced the notion of the
residue of a rational 2-form in C2. This was generalized by G. de Rham
and J. Leray to the class of d-closed meromorphic q-forms with poles
of first order along a smooth divisor. The modern algebraic treatment
of residues in duality theory is due to Leray and Grothendieck, see for
example [48]. We will study the logarithmic residue as introduced by
K. Saito.

The residue of logarithmic forms is a tool to study the structure of the
module of logarithmic differential forms along D. It is tightly connected
to the normalization of D. Locally, the residue of Ω

1
S,p

(log D) is con-
tained in the ring of meromorphic functionsMD,p on D. In some way it
measures how far away a logarithmic q-form is from being holomorphic.

In this section we give the definition of the logarithmic residue and list
some of its properties, which will be used in the sequel. For a complete
treatment and all proofs of our assertions see [81, §2].
Let S be an n-dimensional complex manifold and D a divisor in S given
locally at a point p ∈ S by a reduced equation h ∈ OS,p and denote
by π : �D → D the normalization of D. Let OD and MD (resp. O �D
and M �D) be the sheaves of germs of holomorphic and meromorphic
functions on D (resp. �D). Further denote by Ω

q

D
(resp. Ω

q

�D
) the sheaf

of germs of holomorphic q-forms on D (resp. �D). One has OD,p =

OS,p/(h)OS,p and Ω
q

D,p
= Ω

q

S,p
/(hΩ

q

S,p
+dh∧Ω

q−1
S,p

) and also MD⊗OD

Ω
q

D
= π∗(M �D ⊗O�D

Ω
q

�D
). In particular for q = 0 we have π∗(M �D) =

MD since π is birational.

Definition 1.38. Let (S, D), p and h be defined as in Lemma 1.2. Let
ω be any element in Ω

q

S,p
(log D). Then by Lemma 1.2 one can find a

presentation

gω =
dh

h
∧ ξ + η,

with g holomorphic and dimOD,p/(g)OD,p ≤ n − 2, ξ ∈ Ω
q−1
S,p

and
η ∈ Ω

q

S,p
. The residue homomorphism ρ is defined as the OS,p-linear
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homomorphism of sheaves

ρ : Ω
q

S
(log D) −→MD ⊗OD Ω

q−1
D

ω �−→ ρ(ω) =
ξ

g
.

We often call ρ(Ω
1
S,p

(log D)) the logarithmic residue (of D at p).

Lemma 1.39. The residue homomorphism ρ is well defined.

For the proof of this lemma we use the following generalization of the
de Rham lemma, due to K. Saito:

Lemma 1.40 (Generalized de Rham lemma). Let h be a non-constant

element in OS,p. Then there exists an integer k such that for any

ω ∈ Ω
q

S,p
with ω ∧ dh = 0 one has

(∂xih)
k
ω = ζi ∧ dh

for some ζi ∈ Ω
q−1
S,p

and any i = 1, . . . , n.

Proof. See [79].

Proof of Lemma 1.39. Since ρ is a homomorphism, it is sufficient to
show the assertion for ω ≡ 0. Suppose that there are two presentations
of ω:

gω = 0 ∧
dh

h
+ 0 = ξ ∧

dh

h
+ η,

where ξ ∈ Ω
q−1
S,p

and η ∈ Ω
q

S,p
. Thus we have to show that ξ restricted

to D is 0. The above equation implies that ξ ∧
dh

h
= −η. Wedging this

equation with dh we obtain η ∧ dh = 0. By the generalized de Rham
lemma there exists an integer k such that for each i = 1, . . . , n one
has (∂xih)

k
η = ζ ∧ dh, for some ζ ∈ Ω

q−1
S,p

. It follows that (ξ(∂xih)
k

+

hζ) ∧ dh = 0. Another application of the de Rham lemma yields that
(∂xih)

l
ξ ∈ hΩ

q−1
S,p

+ dh ∧ Ω
q−2
S,p

for some natural number l, that is,
(∂xih)

l
ξ is 0 in Ω

q−1
D,p

. However, dh is locally on D\{g = 0} not equal to
zero, because the singular locus is a proper analytic subset of D. Since
∂xih is a nonzerodivisor in OD,p = OS,p/(h) for a suitable i (after a
possible change of coordinates), the equation

ξ(∂xih)
k

= −hξ

restricted to D = {h = 0} yields that ξ = 0 ∈ OD,p.
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Lemma 1.41. (i) Let ω ∈ Ω
q

S,p
(log D). Then the residue ρ(ω) equals

0 if and only if ω is holomorphic.

(ii) The sequence

0 ��Ωq

S,p
��Ωq

S,p
(log D)

ρ ��π∗(M �D,p
⊗ Ω

q−1
�D,p

) (1.2)

is exact, p ∈ D. Since a sequence of sheaves is exact if and only if the

corresponding sequence of stalks is exact, also

0 ��Ωq

S
��Ωq

S
(log D)

ρ ��π∗(M �D ⊗ Ω
q−1
�D

) (1.3)

is exact.

(iii) The following diagram is commutative

Ω
q

S
(log D)

ρ ��

d

��

π∗(M �D ⊗ Ω
q−1
�D

)

d

��
Ω

q+1
S

(log D)
ρ ��π∗(M �D ⊗ Ω

q

�D
).

(1.4)

(iv) ρ(Ω
q

S
(log D)) is an O �D-coherent submodule of M �D ⊗ Ω

q−1
�D

.

(v) The logarithmic residue ρ(Ω
1
S
(log D)) contains π∗O �D.

Proof. (i): The representation gω =
dh

h
∧ ξ + η yields that ρ(ω) = 0 is

equivalent to gω ∈ Ω
q

S,p
. By definition hω is also holomorphic. Since

ω =
η

g
, this implies that hη

g
∈ Ω

q

S,p
. But h and g must not have a

common prime factor because by assumption on g, the dimension of
{g = 0} ∩D at p is ≤ n − 2. Thus g has to divide η. Hence ω =

η

g
is

holomorphic. The other implication is trivial.
(ii): The exactness of the sequence (1.2) follows from (i).
(iii): Direct computation.
(iv): Let D be defined in an open set U ⊆ S by h(x) = 0. By the
construction of the logarithmic residue and Lemma 1.2 we have

∂xih · ρ(Ω
q

S
(log D))|U ⊆ Ω

q−1
D

|D∩U .

Since Ω
q

S
(log D) is a coherent OS-sheaf, ρ : OS → OD is a homomor-

phism and OD is contained in the coherent sheaf O �D, it follows that
ρ(Ω

q

S
(log D))|U is a coherent O �D-sheaf.

(v): Let α be an element of π∗O �D,p
. Since each ∂xih is a universal
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denominator1 (after a possible change of coordinates) for π∗O �D,p
(see

Appendix A), it follows that (∂xih)α is in OD,p and can be represented
by some ai ∈ OS,p. Thus

(∂xih)aj − (∂xj h)ai = bijh

for some bij ∈ OS,p. Now inspired by the proof of Lemma 1.2 we set

ω =
1

h

n�

i=1

aidxi.

It is clear that ω ∈ Ω
1
S,p

(log D) and that (∂xj h)ω = aj
dh

h
+

�
n

i=1 bjidxi.
Thus, for a suitable j, the residue of ω is aj

∂xj (h) |D = α. Hence α is
contained in ρ(Ω

1
S,p

(log D)).

The next theorem of Saito, see [81, (2.9)], is of crucial importance
for our characterizations of normal crossing divisors. Here we give
the original statement and in section 1.2 we show how to modify the
theorem for our purposes.

Theorem 1.42. Let (S, D) be a pair of a complex n-dimensional mani-

fold and a divisor D ⊆ S. Suppose that locally at a point p the divisor D
decomposes into irreducible components (D, p) = (D1, p)∪ . . .∪(Dm, p).

Let h = h1 · · ·hm be the corresponding decomposition of the local equa-

tion of D, each irreducible factor hi corresponding to Di. Then the

following conditions are equivalent:

(i) Ω
1
S,p

(log D) =
�

m

i=1OS,p
dhi
hi

+ Ω
1
S,p

.

(ii) Ω
1
S,p

(log D) is generated by closed forms.

(iii) ρ(Ω
1
S,p

(log D)) =
�

m

i=1ODi,p.

(iv) (a) For each i = 1, . . . ,m the component Di is normal (i.e.,

dim Sing Di ≤ n− 3),

(b) Di intersects Dj transversally for i �= j and i, j = 1, . . . ,m,

(c) dim(Di ∩Dj ∩Dk) ≤ n− 3 for all i, j, k distinct and

i, j, k = 1, . . . ,m.

Note that (iv) implies that Di and Dj have normal crossings outside
an (n− 3)-dimensional subset of D. The following example shows that
for (S, D) and dim S ≥ 3 the module Ω

1
S,p

(log D) may be generated by

1Here we tacitly assume that ∂xih �= 0 for all i. If one ∂xih were equal to 0,
then h would be independent from xi and locally (D, p) ∼= (D�×C, (p�, 0)) for some
(D�, p�) ⊆ (Cn−1, 0). Then one may consider D� instead of D.
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closed forms as in Theorem 1.42, but does not need to be free for all p
and D does not necessarily have normal crossings everywhere.

Example 1.43. Let D be the divisor in C3 defined by h = xz(x+z−y2
).

This divisor is called Tülle and is studied in more detail in [33]. Tülle
consists of three components, which are smooth, intersect pairwise
transversally and whose triple intersection is a point. Thus it fulfills the
assumption (iv) of Theorem 1.42. One can apply Aleksandrov’s theo-
rem (Theorem 2.6) to show that D is not free at the origin, namely, the
local ring OSing D,0 defining the singular locus (Sing D, 0) is not Cohen–
Macaulay. Hence Ω

1
C3,0(log D) can be generated by closed forms but it

is not free. Note that Tülle does not have normal crossings at the origin.

Proof. (i) ⇒ (ii): This is clear since d
�

dhi
hi

�
= 0.

(ii) ⇒ (iii): If ω is a closed logarithmic 1-form, then from the commu-
tativity of diagram (1.4) it follows that ρ(ω) is a constant ci ∈ C on
each branch Di. By the exactness of the sequence (1.2) it follows that
ω =

�
m

i=1 ci
dhi
hi

+ η for some η ∈ Ω
1
S,p

. So if Ω
1
S,p

(log D) is generated
by closed forms ωi =

�
m

j=1 cij

dhj

hj
+ ηi with cij ∈ C, i = 1, . . . , k and

k ≥ n, then each ω ∈ Ω
1
S,p

(log D) is of the form

ω =

k�

i=1

aiωi =

k�

i=1

m�

j=1

aicij

dhj

hj

+

k�

i=1

aiηi.

Then ρ(ω) =
�

m

j=1(
�

k

i=1 aicij)1Dj ,p is contained in
�

m

i=1ODi,p. Con-
versely, by Lemma 1.41 (v), ρ(Ω

1
S
(log D)) contains π∗O �D =

�
m

i=1 π∗O �Di
,

which contains
�

m

i=1ODi .
(iii) ⇒ (i) : From the sequence (1.2) we get an exact sequence

0 ��Ω1
S,p

��Ω1
S,p

(log D)
ρ ��

�
m

i=1ODi,p
��0 . (1.5)

Hence Ω
1
S,p

(log D) =
�

m

i=1ODi,p
dhi
hi

+ Ω
1
S,p

.
(iii) ⇒ (iv) : From (v) of Lemma 1.41 one gets

ρ(Ω
1
S,p

(log D)) =

m�

i=1

ODi,p ⊆

m�

i=1

O �Di,p
= �OD,p ⊆ ρ(Ω

1
S,p

(log D)).

From this it follows thatODi,p = O �Di,p
for all i = 1, . . . ,m, that is, each

Di is normal at p. Thus the singular locus of any Di is of codimension
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≥ 3 in S. Next suppose that two Di, Dj intersect tangentially along an
(n−2)-dimensional subset of S. At a general point q of their intersection
both Di and Dj are smooth and so one can choose local coordinates
(x1, . . . , xn) such that Di = {x1 = 0} and Dj = {x1 +xt

2 = 0} for some
t ≥ 2. Then one easily computes that

ω =
x2dx1 − tx1dx2

x1(x1 + xt

2)

is an element of Ω
1
S,q

(log D) and that ρ(ω)|Di = (−1)
ix−t+1

2 . Thus
ρ(ω)|Di is meromorphic with a pole along Di ∩ Dj . From the coher-
ence of ρ(Ω

1
S
(log D)) and condition (iii) it follows that ρ(Ω

1
S
(log D)) =�

m

i=1ODi in a neighbourhood of p. Since we can choose q arbitrar-
ily close to p, this yields a contradiction, and Di and Dj have to be
transversal. Finally suppose the opposite of (c), namely that there are
three components Di, Dj , Dk, whose triple intersection has dimension
(n− 2). At a general point q of Di ∩Dj ∩Dk all three components are
smooth and any two of them intersect transversally. This implies that
we can find local coordinates (x1, . . . , xn) at q such that Di = {x1 = 0},
Dj = {x2 = 0} and Dk = {x1 − x2 = 0}. The form

ω =
x2dx1 − x1dx2

x1x2(x1 − x2)

is an element of Ω
1
S,q

(log D) and ρ(ω)|D1 = x−1
2 , ρ(ω)|D2 =

1
2x−1

2 ,
ρ(ω)|D3 = x−1

1 which is meromorphic with a pole along Di ∩Dj ∩Dk.
Again q can be chosen arbitrarily close to p, so we get a contradiction.
This shows that dim(Di ∩Dj ∩Dk) ≤ n− 3 for i �= j �= k.
(iv) ⇒ (iii) : Suppose that (D, p) =

�
m

i=1(Di, p) is the decomposition
of D into irreducible components that are normal (condition (iv) (a)).
At a smooth point p of D one can easily compute the residue: we can
assume that locally at p the equation of h is {x1 = 0}. From the proof
of Lemma 1.2 it follows that any ω ∈ Ω

1
S,p

(log D) can be written as
(∂xih)ω = ξ

dh

h
+ η with ξ ∈ OS,p and η ∈ Ω

1
S,p

and some suitable
derivative ∂xih. In the case of h = x1 one can take ∂x1h = 1 and thus
any ω is of the form

ω = ξ
dh

h
+ η.

Hence ρ(ω) = ξ|D is contained inOD,p. Suppose now that p is contained
in some intersection (D1 ∩ D2)\(Sing D1 ∪ Sing D2 ∪

�
m

i=3 Di). By
condition (iv)(b) the two components D1 and D2 intersect transversally
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in p. Thus we may assume that D1 is given locally at p by the equation
h1 = x1 − x2 and D2 by h2 = x1 + x2. In particular, ∂x1(h1h2) = 2x1

and ∂x2(h1h2) = −2x2. Then for a form ω ∈ Ω
1
S,p

(log D) there are two
possible representations, namely

2x1ω = ξ
d(h1h2)

h1h2
+ η, or − 2x2ω = ξ

�
d(h1h2)

h1h2
+ η

�,

such that h neither divides ξ nor ξ
�.The residue of ω is 1

2x1
ξ =

1
−2x2

ξ
�.

Since ξ, ξ� are holomorphic, it follows from this equation that ξ|D is
a multiple of x1 and that ξ

�|D is a multiple of x2, which implies that
ρ(ω) is holomorphic. This argument and the assumption (iv) show
that outside the set Sing D ∩ (

�
m

i=1 Sing Di) ∩ (
�

i,j,k
(Di ∩Dj ∩Dk)),

which is of dimension less than or equal to (n − 3), the residue ρ(ω)

is holomorphic and contained in OD,p. We apply Hartogs’ theorem
(Thm. A.21) to extend ρ(ω) holomorphically to OD,p.

The following case of Thm. 1.42 is particularly interesting, since it
determines an explicit minimal system of generators of Ω

1
S,p

(log D):

Corollary. Let (S, D) be as in the theorem and suppose that D is

irreducible with local equation h = 0. Then the following conditions are

equivalent:

(i) D is normal at p.
(ii) ρ(Ω

1
S,p

(log D)) = OD,p

(iii) Ω
1
S,p

(log D) is generated by
dh

h
, dx1, . . . , dxn. In particular, if D

is not smooth at p, then this is a minimal system of generators of

Ω
1
S,p

(log D).

Proof. This is just Thm. 1.42 for m = 1. For second part of (iii) let us
suppose that D is normal but not smooth at p and that Ω

1
S,p

(log D) has
a minimal system of generators consisting of n elements. This implies
that Ω

1
S,p

(log D) is free. But by Prop. 2.5 a free divisor is either smooth
or non-normal. Contradiction.

1.2 A characterization of normal crossings

by logarithmic forms and vector fields

In this section we give a characterization of a normal crossing divisor
in terms of generators of its module of logarithmic differential forms
resp. vector fields (Thm. 1.52). Namely, a divisor D ⊆ S has normal
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crossings at a point p if and only if Ω
1
S,p

(log D) is a free OS,p-module
and has a basis of closed forms or if and only if DerS,p(log D) is a free
OS,p-module and has a basis of commuting vector fields (this means
that there exist logarithmic derivations δ1, . . . , δn such that the δi form
a basis of DerS,p(log D) and [δi, δj ] = 0 for all i, j = 1, . . . , n). We
remark that we only show the existence of bases with these properties
of Ω

1
S,p

(log D) and DerS,p(log D) in case D has normal crossings at p.
We do not have a procedure to construct such bases.
The section is organized as follows: first we consider the two-dimensional
case in Proposition 1.44. Then we state a few lemmata in order to prove
the assertion for logarithmic differential forms. We prove the equiva-
lence of the characterizations in terms of logarithmic differential forms
and vector fields in Prop. 1.54.

In (2.11) of [81] Saito uses Theorem 1.42 to study the case of dim S = 2.
Here we give a more elementary proof.

Proposition 1.44. Let (S, D) be as usual a manifold together with a

divisor D ⊆ S and suppose that dim S = 2. Let (D, p) =
�

m

i=1(Di, p)

be the decomposition of D into irreducible components at a point p with

the corresponding (reduced) equation D = {h = h1 · · ·hm = 0}, where

h ∈ OS,p. Then the following are equivalent:

(i) Ω
1
S,p

(log D) has a basis of closed forms.

(ii) Either m = 2 and the components D1 and D2 of D are smooth

and meet transversally at p (i.e., D has normal crossings at p) or D is

smooth at p.

In order to prove the proposition we need a lemma to connect bases of
the dual modules DerS,p(log D) and Ω

1
S,p

(log D).

Lemma 1.45. Let (S, D) be defined as in Prop. 1.44 and let (x, y)

be local coordinates at p. Let δ1 = a∂x + b∂y and δ2 = c∂x + d∂y,

with a, b, c, d ∈ OS,p, be a basis of DerS,p(log D) and suppose that

det

�
a b
c d

�
= h. Then the corresponding dual basis ω1 = δ

∗
1 , ω2 = δ

∗
2

of Ω
1
S,p

(log D) is closed if and only if

�
a b
c d

� �
∂xh
∂yh

�
= h

�
∂xa + ∂yb
∂xc + ∂yd

�
. (1.6)

Proof. The proof is done by direct calculation: from Lemma 1.9 and its
corollary follows that in dimension 2 any reduced divisor D is free and
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that the modules of logarithmic derivations and logarithmic differential
forms are dual to each other. Linear algebra says that the dual basis
to (δ1, δ2) of Ω

1
S,p

(log D) is

�
ω1

ω2

�
=

1

h

�
d −b
−c a

�T �
dx
dy

�
.

Plugging in the conditions for closedness of the ωi, equation (1.6) fol-
lows.

Proof of Prop. 1.44. First suppose that (ii) holds. Then locally at p,
the divisor D has at most 2 irreducible components, that is, (D, p) =

(D1, p) ∪ (D2, p) or (D, p) is smooth and irreducible. We have already
seen in example 1.10 that D has a basis consisting of closed forms.
Conversely, suppose (i) holds. Then the module Ω

1
S,p

(log D) is free
and there exists a basis of closed forms ω1, ω2. Note that dh/h ∈

Ω
1
S,p

(log D) is closed. We can express it in terms of the basis, that is,
dh/h = aω1 + bω2 with a, b ∈ OS,p. To show that either a or b ∈ OS,p

is invertible we use the logarithmic residue. By linearity of the residue
homomorphism, the following identity holds:

ρ(dh/h) = 1 = a|D · ρ(ω1) + b|D · ρ(ω2). (1.7)

Like in the proof of Thm. 1.42, one obtains that ρ(ωi)|Dj = cij ∈ C is
constant on each component Dj . From (1.7) it follows that a(p) �= 0 or
b(p) �= 0. Hence we can assume b(p) �= 0 so that b is locally invertible.
Then dh/h and ω1 are a basis of Ω

1
S,p

(log D). By duality of logarithmic
forms and derivations there exists a derivation δ ∈ DerS,p(log D) such
that δ · (dh/h) = 1 and hence δh = h. Since D is a reduced curve,
the singularity at p is isolated. By a Theorem of Saito [78], h is quasi-
homogeneous. This means that in suitable coordinates there exists an
Euler vector field η = αx∂x + βy∂y in DerS,p(log D) with α,β ∈ C.
Then (∂yh)∂x − (∂xh)∂y and η form a basis of DerS,p(log D). The
corresponding basis of Ω

1
S,p

(log D) is closed if and only if equation (1.6)
is satisfied, in particular ηh = (α+β)h. Again by a result of Saito (Satz
4.1 and Lemma 2.3. of [78]) one can find a holomorphic coordinate
transformation such that α,β are positive rational numbers ≤ 1/2 and
such that ηh = h. Hence we must have α = β = 1/2. From this and the
well-known Euler relation for homogeneous polynomials follows that h
is homogeneous of degree 2. Since h is assumed to be reduced, the only
possibility is h = xy, that is, D has normal crossings at p.
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Remark 1.46. In section 1.4 we comment on a question of Saito about
the connection between the logarithmic residue and the topology of
a divisor. We will see that the proposition above settles the two-
dimensional case.

The following lemmata are used to prove Theorem 1.52, which gener-
alizes Proposition 1.44 to the higher dimensional case.

Lemma 1.47. Denote by (S, D) a complex manifold of dimension n
together with a divisor D ⊆ S, and let (D, p) =

�
m

i=1(Di, p) be the

decomposition of D into irreducible components at a point p in S. Sup-

pose that h = h1 · · ·hm is the local equation of D at p, where each

hi corresponds to Di. Then D has normal crossings at p if and only

if the dhi/hi are part of a basis, whose elements are closed, of the

form ω1 = dh1/h1, . . . ,ωm = dhm/hm, ωm+1 = dfm+1, . . . ,ωn = dfn of

Ω
1
S,p

(log D), that is,

dh1

h1
∧ · · · ∧

dhm

hm

∧ dfm+1 ∧ · · · ∧ dfn =
c

h
· dx1 ∧ · · · ∧ xn,

where the fi are some suitable elements in OS,p and c ∈ O∗
S,p

.

Proof. If D has normal crossings at p then one can find coordinates
x = (x1, . . . , xn) such that h = x1 · · ·xm is the defining equation of D
at p. Then clearly

dx1

x1
, . . . ,

dxm

xm

, dxm+1, . . . , dxn

form a basis of Ω
1
S,p

(log D).

Conversely, suppose that dh1
h1
∧ . . . ∧ dhm

hm
∧ dfm+1 ∧ · · · ∧ dfn = c/h ·

dx1 ∧ . . .∧xn. This means that the Jacobian matrix of the h1, . . . , hm,
fm+1, . . . , fn has determinant c ∈ O∗

S,p
. By the implicit function theo-

rem the hi and the fi are complex coordinates at p. Then, by definition
D has normal crossings at p.

Lemma 1.48. Let D ⊆ S be a divisor in a complex manifold S with

dim S = n. Suppose that D is free at a point p ∈ S and Ω
1
S,p

(log D) has

a basis ω1, . . . ,ωn such that ω1, . . . ,ωk, k < n are in Ω
1
S,p

. Then one

can find a local isomorphism (D, p) ∼= (D�, p�)× (Ck, 0), where (D�, p�)
is in (Cn−k, p�).
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Proof. Since Ω
1
S,p

(log D) is free with basis ω1, . . . ,ωn, there is a unique
basis δ1, . . . , δn of DerS,p(log D) satisfying ωi · δj = δij . For any ωi, i =

1, . . . , k, one thus has ωi·δi = 1. For all coefficients of ωi =
�

n

j=1 wijdxj

and δi =
�

n

j=1 dij∂xj are holomorphic, this yields the equation

1 =

n�

j=1

wijdij .

Since OS,p is a local ring, at least one wijdij , w.l.o.g., for j = 1, is
invertible in OS,p, which implies di1 ∈ O

∗

S,p
. Applying δi to h, the local

defining equation of D gives di1∂x1h ∈ (h, ∂x2h, . . . , ∂xnh). With the
triviality lemma A.44 one can find a biholomorphic map ϕi such that
h ◦ϕi = vh(0, x2, . . . , xn), where v ∈ O∗

S,p
, also defining D. Hence D is

locally isomorphic to some D� × C. Applying this construction for the
remaining ωi, one arrives at (D, p) ∼= (D�, p�)× (Ck, 0).

Lemma 1.49. Let (D, p) =
�

m

i=1(Di, p) be given by the reduced equa-

tion h = h1 · · ·hm and let ω ∈ Ω
1
S,p

(log D) be a closed form. Then:

(i) The residue of ω along each branch Di is constant, that is, ρ(ω)|Di =

ci with ci ∈ C for i = 1, . . . ,m.

(ii) ω can be represented as ω =
�

m

i=1 cidhi/hi + ξ, where ci ∈ C and

ξ ∈ Ω
1
S,p

is closed.

(iii) If the residue of ω along at least one branch Di is non-zero, then

ω can be represented as

ω =

m�

i=1

ci

dh�
i

h�
i

, ci ∈ C,

with h�
i

= uihi and ui ∈ O∗
S,p

. Note that h�
i

also define s Di and that

h� = h�1 · · ·h
�
m

also defines D near p.

Proof. (i): Let ω be a closed logarithmic form for D =
�

m

i=1 Di. Since
diagram (1.4) is commutative, one has d(ρ(ω)) = ρ(dω) = ρ(0) = 0.
Hence ρ(ω) is locally a constant ci ∈ C on each branch Di of D.
(ii): By (i) and the exactness of the sequence (1.2) ω can be represented
as ω =

�
m

i=1 cidhi/hi + ξ with ξ ∈ Ω
1
S,p

. Since dω = 0, differentiating
ω yields that dξ = 0, that is, ξ is closed.
(iii): Suppose that ω =

�
m

i=1 ci
dhi
hi

+ ξ, with ci ∈ C, is a closed log-
arithmic form. Since we consider germs of differential forms, one can
assume (Poincaré’s lemma) that ξ is exact and hence that ξ = df for
some f ∈ OS,p. Now assume that the residue ρ(ω)|D1 is non-zero.
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Define h�1 := h1 exp(f/c1). Then h�1h2 · · ·hm also defines D because
multiplying with a unit does not change the zero-set locally at p. The
following holds:

c1
dh�1
h�1

= c1
dh1

h1
+ df = c1

dh1

h1
+ ξ.

Hence we have ω = c1dh�1/h�1 +
�

m

i=2 cidhi/hi.

Lemma 1.50. Let (D, p) =
�

m

i=1(Di, p) be free at p and let Ω
1
S,p

(log D)

have a basis ω1, . . . ,ωn consisting of closed forms. Then m ≤ n and

maximally n−m elements ωi of this basis are holomorphic forms.

Proof. From Lemma 1.49 it follows that each closed basis element ωi

can be represented as ωi =
�

m

j=1 cijdhj/hj + dfi with dfi ∈ Ω
1
S,p

and
cij ∈ C for j = 1, . . . ,m. First suppose that m > n. Then by Saito’s
criterion one knows that

�
n

i=1 ωi =
c

h1···hm
·dx1∧. . .∧dxn with c ∈ O∗

S,p
.

This means that the n-form
�

n

i=1 ωi has a simple pole at h1 · · ·hm. But
forming the wedge product of the ωi we obtain (by a simple compu-
tation)

�
n

i=1 ωi =
g

h1···hm
· dx1 ∧ . . . ∧ dxn with g ∈ (h1, . . . , hm) ⊆ m.

Thus g is not invertible, which is a contradiction to Saito’s criterion.
For the second assertion suppose that ωi = dfi, fi ∈ OS,p for i =

m, . . . , n are holomorphic, that is, the basis contains n−m + 1 closed
holomorphic elements. An application of Lemma 1.48 yields an isomor-
phism (D, p) ∼= (D�, 0) × (Cn−m+1, 0) with (D�, 0) ⊆ (Cm−1, 0). This
means that D� would be a free divisor with m irreducible components
and with a basis of closed forms in an m − 1 dimensional manifold.
Contradiction to the first assertion of this lemma.

Proposition 1.51. Let (D, p) =
�

m

i=1(Di, p) be free at p and let

Ω
1
S,p

(log D) have a basis consisting of closed forms ω1, . . . ,ωn. Then

m ≤ n and ωi can be chosen as ωi = dh�
i
/h�

i
where h�

i
= fihi with

fi ∈ O
∗

S,p
for i = 1, . . . ,m and ωi = dfi with fi ∈ OS,p holomorphic for

i = m + 1, . . . , n. In particular, one can find defining equations h�
i

of

D such that the dh�
i
/h�

i
form part of a basis of Ω

1
S,p

(log D).

Proof. From Lemma 1.50 it follows that m ≤ n and from Lemma 1.49
it follows that (ω1, . . . ,ωn) can be represented as

(ω1, . . . ,ωn)
T

=

�
C 0

0 In−m

� �
dh

h

0

�
+

�
ξ

df

�
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with C an m × m-matrix with entries in C, dh

h
= (

dh1
h1

, . . . , dhm
hm

)
T ,

ξ = (ξ1, . . . , ξm)
T with ξi ∈ Ω

1
S,p

and df = (dfm+1, . . . , dfn)
T with fi ∈

OS,p. With the Gauss–Algorithm one can find a matrix
�

M 0

0 In−m

�
∈

GLn(C), with M an m×m sub-matrix, such that MC is in row echelon
form, that is, the last m− k rows of MC are zero for k = rank(C) and
the first k rows form the k × k identity matrix. Then

(ω̃1, . . . ω̃n)
T

=

�
M 0

0 In−m

�
(ω1, . . . ,ωn)

T
=

�
MC dh

h
+ Mξ

df

�

is also a closed basis ω̃ of Ω
1
S,p

(log D). If rank(C) = k < m, then the
forms ω̃m−k, . . . , ω̃n would be holomorphic. But this is a contradiction
to Lemma 1.50, hence it follows that C ∈ GLm(C). Thus one can
assume that (ω1, . . . ,ωm) is of the form (

dh1
h1

+ξ
�
1, . . . ,

dhm
hm

+ξ
�
m

), where
ξ
�
i

= Mξi. As in Lemma 1.49 write ωi = dh�
i
/h�

i
, where for ξ

�
i

=

dfi/fi, fi ∈ O∗
S,p

one has h�
i

= fihi. The change of one hi does not
affect the others since hi is assumed to be irreducible. The functions h�

i

also define the divisor D at p since exp(log fi) is in O∗
S,p

. The assertion
of the proposition follows.

Theorem 1.52. Denote by (S, D) a complex manifold with dim S =

n ≥ 2 together with a divisor D ⊆ S and let p ∈ S be a point. The

following conditions are equivalent:

(i) Ω
1
S,p

(log D) is free and has a basis of closed forms.

(ii) D has normal crossings at p.

Proof. (ii) ⇒ (i) is a simple computation (cf. Example 1.10).
Conversely, suppose that Ω

1
S,p

(log D) has a basis of closed forms. By
Proposition 1.51 we can assume that (D, p) =

�
m

i=1(Di, p) has m ≤ n
irreducible components and that the closed basis of ΩS,p(log D) is of
the form dh1/h1, . . . , dhm/hm, dfm+1, . . . , dfn, where hi is the reduced
function corresponding to the component (Di, p). By Lemma 1.47 the
existence of a closed basis of this form is equivalent to (D, p) having
normal crossings.

The following lemma will be useful in a few occasions in Chapter 2:

Lemma 1.53. Let (S, D) be a manifold together with a divisor D ⊆ S
and p a point in S. If Ω

1
S,p

(log D) is free and generated by closed forms,

it has a basis of closed forms.
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Proof. Let (ω1, . . . ,ωn) be a basis of Ω
1
S,p

(log D). Suppose that the
module Ω

1
S,p

(log D) may also be generated by closed logarithmic forms
(ξ1, . . . , ξm). It is clear that m ≥ n. Then, using Nakayama’s lemma, it
follows that (ω1, . . . ,ωn) is a basis of the O/mO = C-vector space
Ω

1
S,p

(log D)/mΩ
1
S,p

(log D) and (ξ̄1, . . . , ξ̄m) also generate this vector
space. Then there exists a matrix Ā ∈ Mn,m(C) of rank n such that

Ā(ξ̄1, . . . , ξ̄m)
T

= (ω̄1, . . . , ω̄n)
T .

By standard linear algebra wlog. ξ̄1, . . . , ξ̄n form a basis of the C-vector
space Ω

1
S,p

(log D)/mΩ
1
S,p

(log D). Again applying of Nakayama’s lemma
yields that ξ1, . . . , ξn are a basis of Ω

1
S,p

(log D).

1.2.1 Logarithmic derivations vs. differential forms

Here we state an equivalent formulation of Theorem 1.52 in terms of
logarithmic vector fields. Furthermore we will also pose some questions
about the relationship between Ω

1
S,p

(log D) and DerS,p(log D).

As usual denote by (S, D) a complex manifold of complex dimension n
together with a divisor D ⊆ S. Let (x1, . . . , xn) be complex coordinates
of S at a point p.It was already shown that DerS,p(log D) is closed under
the Lie bracket [·, ·].

Proposition 1.54. Suppose that δ
1, . . . , δn

form a basis of DerS,p(log D).

Then [δ
i, δj

] = 0 for all i, j ∈ {1, . . . , n} if and only if the basis

ω1, . . . ,ωn of Ω
1
S,p

(log D) satisfying ωi ·δ
j

= δij consists of closed forms.

Proof. We have

dω(ξ
1, ξ2

) = ξ
1
(ω(ξ

2
))− ξ

2
(ω(ξ

1
))− ω([ξ

1, ξ2
]), (1.8)

where ω is a differential 1-form and ξ
1, ξ2 are vector fields (see e.g. [21,

Def. 4.4.]). First, suppose that [δ
i, δj

] = 0 for all pairs (i, j). Plugging
δ

i, δj into a basis element ωk yields dωk(δ
i, δj

) = δ
i
(δjk) − δ

j
(δik) −

ω(0) = 0. Hence any basis element ωk, is closed.
Conversely, if each ωk is closed, it follows from (1.8) that ωk([δ

i, δj
]) =

0. Since DerS,p(log D) is closed under [·, ·] and the δ’s form a basis of
DerS,p(log D), the equation [δ

i, δj
] =

�
k=1 gkδ

k holds for some gk ∈

OS,p. Using the OS,p-linearity of ωk we obtain

0 = ωk([δ
i, δj

]) =

n�

l=1

glωk(δ
l
) = gk.
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Since this equality holds for any i, j, k it follows that [δ
i, δj

] = 0 for all
pairs (i, j).

Remark 1.55. The Lie bracket is stable under coordinate changes: A
basis of commuting logarithmic derivations of DerS,p(log D) commutes
after a coordinate transformation.

Question 1.56. 1. Construct special bases: we ask for a construc-

tive algorithm for a closed basis of Ω
1
S,p

(log D) (resp. a basis of

commuting fields of DerS,p(log D)), which in the first place deter-

mines if there exists such a basis.

2. Construct a minimal system of generators of ΩS,p(log D), in par-

ticular in the case where (D, p) is not free.

1.3 Normal crossings and the logarithmic

residue

In this section we give a characterization of normal crossing divisors
by their logarithmic residue ρ(Ω

1
S,p

(log D)). This characterization also
leads to an answer to a question of K. Saito concerning the logarithmic
residue, which will be considered in section 1.4. These results are due
to Granger and Schulze [43].
It was already shown that the logarithmic residue of Ω

1
S,p

(log D) al-
ways contains the ring of weakly holomorphic functions on D. So it
is quite natural to ask when the two rings are the same. We will
see that for free divisors the answer is surprisingly simple (under the
mild additional condition that the normalization of D is Gorenstein):
ρ(Ω

1
S,p

(log D)) = π∗O �D,p
if and only if (D, p) has normal crossings.

Note that this fact yields a second characterization of normal crossing
divisors. In general the equality is equivalent to saying that (D, p) has
normal crossings in codimension 1 (see Thm. 1.82).
This section is organized as follows: first we consider examples of di-
visors (D, p) with weakly holomorphic logarithmic residue which lead
the way to the formulation of theorem 1.63. Then some properties of
divisors with weakly holomorphic residues are studied. Finally we in-
troduce the dual logarithmic residue in order to prove the theorem.

Suppose that D is a free divisor whose logarithmic residue ρ(Ω
1
S
(log D))

is equal to π∗O �D. Recall that π∗O �D is equal to the normalization �OD
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and also to the ring of weakly holomorphic functions (see Appendix A).
Since we consider free divisors, it is possible to compute ρ(Ω

1
S
(log D))

and π∗O �D explicitly with a computer algebra system: from a basis of
Ω

1
S,p

(log D) the residue ρ(Ω
1
S,p

(log D)) can be computed, and it is also
possible to compute the normalization of D. However, computing nor-
malizations is of high complexity, so we are confined to low dimensional
examples.
Example 1.57. Let D ⊆ S with dim S = n be smooth at a point p.
Then locally at p we can find coordinates (x1, . . . , xn) such that D =

{x1 = 0}. Since Ω
1
S,p

(log D) is generated by dx1
x1

, dx2, . . . , dxn, the
residue of a logarithmic form ω = a1

dx1
x1

+
�

n

i=2 aidxi is just a1|D and
hence ρ(Ω

1
S,p

(log D) = OD,p, also cf. Thm. 1.42.
Example 1.58. Consider the cusp D in C2, given by h = x3 − y2 with
coordinate ring OD,0 = C{x, y}/(x3 − y2

). In Appendix A we will
see that �OD = C{t} with t =

y

x
. A basis of Ω

1
C2,0(log D) is ω1 =

dh

h

and ω2 =
1
h
(3ydx + 2xdy). Thus the residue of a logarithmic form

ω = aω1 + bω2, where a, b ∈ OC2,0, is ρ(ω) = a|D + b|Dρ(ω2). But
ρ(ω2) =

x

y
= t−1 is clearly not in C{t}. Thus it follows that Ω

1
(log D) �

π∗O �D.
Example 1.59. Let (D, p) ⊆ (C3, 0) be an E8-singularity of local equa-
tion x2

+ y3
+ z5

= 0. Then D is normal and by the corollary of
Thm. 1.42 the logarithmic residue ρ(Ω

1
S,p

(log D)) is OD,p. Note that
D is not free at the origin, since it is normal.
Example 1.60. (The 4-lines) In this example, the divisor D is free
but does not have normal crossings outside an (n − 3)-dimensional
subset of D. Let D be the divisor in C3 given at p = (x, y, z) by
h = (x+y)y(x+2y)(x+y +yz). Note that D is just the 4-lines divisor
from Example 1.16 in different coordinates, because in order to compute
the residue of a logarithmic form, at least one partial derivative ∂xih
must not have a common factor with h. The divisor D is free, thus one
can compute a basis of Ω

1
C3,p

(log D), namely

ω1 =
dh
h

ω2 =
1

4h
(y(zx + 9yz + 7x + 7y)dx− x(zx + 9yz + 7x + 7y)dy − (x + y))y(2y + x)dz)

ω3 =
1

4h
(y(x + y + yz)dx− x(x + y + yz)dy)

This basis is the dual to the basis of DerC3,p(log D) given in Example
1.16. The direct image of the normalization of D π∗O �D,p

∼= �OD,p is
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isomorphic to

C{x, y, z}/(x+y)⊕C{x, y, z}/(y)⊕C{x, y, z}/(x+2y)⊕C{x, y, z}/(x+y+yz).

Since dim({h = ∂yh = 0}) = 1, we have ρ(ωi) =
ai2
∂yh

, where ωi =

1
h
(ai1dx + ai2dy + ai3dz) for i = 1, 2, 3. For example the computa-

tion of ρ(ω3)|D1 = −
1
4x

(here we use the relation x = −y in OD1 =

C{x, y, z}/(x + y)) shows that the residue of ω3 is not holomorphic in
π∗O �D1,p

. Hence the inclusion π∗O �D,p
� ρ(Ω

1
S,p

(log D)) is strict.
Example 1.61. This is an example of a free reducible divisor D, but
whose irreducible components are not all free. Here D does not have
normal crossings outside an (n− 3)-dimensional subset and we will see
that π∗O �D is strictly contained in the logarithmic residue.
Let (D, 0) = (D1, 0) ∪ (D2, 0) be the divisor in (C3, 0), defined by
h = h1h2 = z(x2 − y2z), that is, D1 is the {z = 0}-plane and D2 is the
Whitney Umbrella. In Example 1.13 we have already seen that D2 is
not free at the origin, whereas the {z = 0}-plane is smooth and hence
D1 is free everywhere. For D we can compute a basis of Ω

1
C3,0(log D)

(by computing a basis of DerC3,0(log D) with Singular [98] and taking
the dual basis of this basis):

ω1 =
1

h
(2xzdx− 2yz2dy + (x2

− 2y2z)dz)

ω2 =
1

h
(−2xzdx + 2yz2dy + y2zdz)

ω3 =
1

h
(2yzdx− 2xzdy − xydz).

In order to verify ρ(Ω
1
C3,0) � π∗O �D,0, it has to be shown that the residue

of at least one basis element ωi is not holomorphic on the normalization
of D. First we remark that π∗O �D,0

∼= C{x, y} ⊕ C{y, x

y
} and that

∂zh = x2−2y2z is a suitable universal denominator for the computation
of the residues. The residues of ω1 and ω2 are holomorphic on the
normalization (they are 1⊕1 resp. 0⊕1 in π∗O �D,p

). However, ρ(ω3) =

−
xy

x2−2y2z
|D is − y

x
in C{x, y}, which is clearly not holomorphic there

and xy

y2z
=

y

x
in C{y, x

y
} which is also not holomorphic in this ring.

Example 1.62. Consider the Whitney Umbrella D given by h = x2−y2z
from example 1.13. The normalization �D is smooth at the origin and
has coordinate ring π∗O �D,0 = C{x, y, z, t}/(x2 − y2z, yt − x, z − t2) ∼=

C{y, t}. One can show that Ω
1
C3,0(log D) is generated by dh/h, ω =
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(yzdx − xzdy − 1/2xydz)/h and dx, dy, dz. Since ρ(ω) = yz/2x = t/2

it follows that ρ(Ω
1
C3,0(log D)) is holomorphic on the normalization.

Note that D is not free.
These examples lead to the following

Theorem 1.63. Let (S, D) be a manifold of complex dimension n to-

gether with a divisor D ⊆ S. Suppose that D is a free divisor, that

ρ(Ω
1
S
(log D)) = π∗O �D

and that the multi-germ ( �D,π−1
(p)) is Gorenstein for all p ∈ D. Then

D has normal crossings.

Geometrically this theorem means that a free divisor with a “nice”
residue of logarithmic forms (and whose normalization satisfies a mild
technical condition) is a normal crossing divisor. The proof of this
theorem uses of the dual logarithmic residue, a notion introduced by
Granger and Schulze in [43], and a theorem of R. Piene (see Theorem
A.42) about the relationship of the Jacobian ideal and the conductor
ideal in the normalization.
First we consider some general properties of divisors with weakly holo-
morphic residue, in particular we show that if D is a free divisor in
a complex manifold S of dimension n, having n irreducible compo-
nents Di at a point p and satisfying ρ(Ω

1
S,p

(log D)) = π∗O �D,p
, then D

has normal crossings at p (Corollary to Lemma 1.67). Then we intro-
duce the dual logarithmic residue and prove Theorem 1.63 (following
Granger and Schulze [43]).

1.3.1 Divisors with weakly holomorphic residue

Here we show first an analogue of Theorem 1.42 (i) ⇔ (iii). Then some
properties of π∗O �D,p

are considered (Cohen–Macaulayness). Finally we
show how to choose “good” generators for Ω

1
S,p

(log D) if ρ(Ω
1
S,p

(log D)) =

π∗O �D,p
and that D is Euler–homogeneous in this case (Lemma 1.67).

Proposition 1.64. Let (S, D) be a divisor D in a complex manifold S
of dimension n. Then the following are equivalent:

(i) Ω
1
S,p

(log D) =OS,p �ω1, . . . ωk� + Ω
1
S,p

, such that ρ(ω1), . . . , ρ(ωk) ∈

π∗O �D,p
generate π∗O �D,p

as OD,p-module.

(ii) ρ(Ω
1
S,p

(log D)) = π∗O �D,p
.
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Proof. The implication (i) ⇒ (ii) is clear, since ρ is a sheaf homomor-
phism and ρ(Ω

1
S,p

) = 0. Suppose now that ρ(Ω
1
S,p

(log D)) = π∗O �D,p
.

The normalization is a finitely generated OD,p-module, i.e., π∗O �D,p
=

�
k

i=1OD,pαi for some αi ∈ π∗O �D,p
. By the exact sequence

0 ��Ω1
S,p

��Ω1
S,p

(log D)
ρ ��π∗O �D,p

��0 (1.9)

(obtained from the sequence (1.2)) there exist some ωi ∈ Ω
1
S,p

(log D)

such that ρ(ωi) = αi for each i = 1, . . . , k. Now take any ω ∈

Ω
1
S,p

(log D). Then ρ(ω) =
�

k

i=1 aiρ(ωi) for some ai ∈ OD,p. Choose
some representatives of the ai ∈ OS,p and define ω

�
:=

�
k

i=1 aiωi.
Clearly ω

� ∈ Ω
1
S,p

(log D) as well as ω−ω
�. But ρ(ω−ω

�
) = 0, so ω−ω

�

is holomorphic by Lemma 1.41. This shows that any ω ∈ Ω
1
S,p

(log D)

can be written as an OS,p-linear combination of the ωi and some holo-
morphic form.

Lemma 1.65. Let (S, D) be a divisor D in a complex manifold S of

dimension n. Suppose that at a point p the divisor is free and and

ρ(Ω
1
S,p

(log D)) = π∗O �D,p
.

(i) The ring π∗O �D,p
is Cohen–Macaulay.

(ii) If D additionally is not smooth and does not contain a smooth

factor at p, i.e., is not locally isomorphic to some Cartesian prod-

uct (D�, p�) × (Ck, 0) for some 0 < k < n, one may assume that

π∗O �D,p
is minimally generated by n elements αi, where α1 = 1 and

αi ∈ π∗O �D,p
\OD,p.

Proof. (i): Under our assumptions, the exact sequence

0 ��Ω1
S,p

��Ω1
S,p

(log D)
ρ ��π∗O �D,p

��0 (1.10)

yields a free resolution of π∗O �D,p
(as OS,p-module). Since we are work-

ing over a regular local ring, it follows that projdimOS,p
(π∗O �D,p

) ≤ 1.
With the Auslander–Buchsbaum formula follows depth(mS , π∗O �D,p

) ≥

n − 1 (where mS denotes the maximal ideal of OS,p). Since the depth
is stable under local homomorphisms, the depth of π∗O �D,p

in OD,p is
greater than or equal to n − 1, that is, depth(mD, π∗O �D,p

) ≥ n − 1.
First suppose that (D, p) is irreducible, then π∗O �D,p

is a local ring.
Since then OD,p ⊆ π∗O �D,p

is a finite ring extension it follows e.g.
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by [27, 6.5.29] that the depth of π∗O �D,p
as an π∗O �D,p

-module is also
greater than or equal to n − 1. Clearly, dim(π∗O �D,p

) = n − 1 and so
the assertion follows from the height-depth inequality.
If (D, p) =

�
m

i=1(Di, p), where (Di, p) denote the irreducible com-
ponents, then π∗O �D,p

=
�

m

i=1 π∗O �Di,p
is a semi-local ring with m

maximal ideals m �Di
, i = 1, . . . ,m, cf. Thm. A.12. Then π∗O �D,p

is
Cohen–Macaulay if (π∗O �D,p

)m�Di

∼= π∗O �Di,p
is Cohen–Macaulay for

all i = 1, . . . ,m. But this follows from the irreducible case since
depth(mS , π∗O �D,p

) = depth(mS , π∗O �Di,p
) for all i = 1, . . . ,m.

(ii): follows from lemmata 1.64 and 1.48 and an application of the
lemma of Nakayama.

Lemma 1.66. Let D ⊆ S be a divisor in a complex manifold S. If

b is an element in OD,p that is invertible in π∗O �D,p
then b is already

invertible in OD,p.

Proof. From Appendix A we know that �OD,p = π∗O �D,p
, so 1

b
is integral

over OD,p. Hence it satisfies a monic polynomial equation of the form

(
1

b
)
k

+ ck−1(
1

b
)
k−1

+ · · ·+ c0 = 0,

with coefficients ci ∈ OD,p. Multiplying this equation with bk yields

1 = b(−ck−1 − · · ·− c0b
k−1

),

that is, b is invertible in OD.

Lemma 1.67. Let D ⊆ S be a divisor in a complex manifold S of

dimension n. Suppose that ρ(Ω
1
S,p

(log D)) = π∗O �D,p
. Then

dh

h
∈

Ω
1
S,p

(log D) can be chosen as an element of a minimal system of gener-

ators of Ω
1
S,p

(log D). If (D, p) =
�

m

i=1(Di, p), defined by h = h1 · · ·hm

in OS,p then the
dhi
hi

form part of a minimal system of generators of

Ω
1
S,p

(log D).

Proof. Clearly dh

h
is an element of Ω

1
S,p

(log D). Since Ω
1
S
(log D) is

a coherent analytic sheaf, the stalk Ω
1
S,p

(log D) has a finite minimal
system of generators ω1, . . . ,ωk with k ≥ n. One can write

dh

h
=

k�

i=1

aiωi,
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for some ai ∈ OS,p. Taking residues one gets

1π∗O�D,p
=

n�

i=1

ai|Dρ(ωi). (1.11)

First assume that D is irreducible at p. Then π∗O �D,p
is a local ring,

see Appendix A, and at least one ai|D has to be invertible in π∗O �D,p
.

By Lemma 1.66 this ai|D is already invertible in OD,p. Thus ai(0) �= 0

and hence ai is contained in O∗
S,p

. This implies that dh

h
can be chosen

as an element of a minimal system of generators of Ω
1
S,p

(log D) instead
of ωi.
If (D, p) =

�
m

i=1(Di, p) is the decomposition into irreducible compo-
nents, equation (1.11) reads as follows:

1π∗O�D,p =

k�

i=1

ai|Dρ(ωi) =

m�

j=1

�
k�

i=1

ai|Dj ρ(ωi)|Dj

�
.

Since the sum of the π∗O �Dj ,p
is direct,

1π∗O�D1
,p =

k�

i=1

ai|D1ρ(ωi)|D1 .

Like in the irreducible case, it follows that ai|D1 , wlog. for i = 1, has to
be invertible in π∗O �D1,p

. Also, it follows that a representative of a1|D1

in OS,p, namely a1, is invertible in OS,p, so we may exchange ω1 and
dh1
h1

. For dh2
h2

a similar argument is used: we can now write

dh2

h2
= b1

dh1

h1
+

k�

i=2

biωi

for some bi ∈ OS,p. Taking residues yields

1π∗O�D2,p
=

m�

j=1

�
b1|Dj δ1j +

k�

i=2

bi|Dj ρ(ωi)|Dj

�
.

The choice of dh1
h1

as an element of the minimal system of generators of
Ω

1
S,p

(log D) does not affect this equation, since

1π∗O�D2
,p =

k�

i=2

bi|D2ρ(ωi)|D2 .
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Again with Lemma 1.66 we find that wlog. b2 is invertible in OS,p and
we may choose dh2

h2
as an element of the minimal system of generators

of Ω
1
S,p

(log D) instead of ω2. We continue in this way until all dhi
hi

are
part of the minimal system of generators. Clearly, also dh

h
, dh2

h2
, . . . , dhm

hm

are also part of any minimal system of generators. Thus we have shown
our claim.

Remark 1.68. Consider D with the assumptions of Lemma 1.67 and
suppose further that D is free. Then the element dh

h
can be chosen as an

element of a basis of Ω
1
S,p

(log D). This property is by Proposition 1.29
equivalent to saying that D is a free Euler-homogeneous divisor. Hence
we have shown that free divisors D with π∗O �D,p

= ρ(Ω
1
S,p

(log D)) are
Euler-homogeneous at p.
Lemma 1.67 shows in particular that a minimal system of generators of
Ω

1
S,p

(log D) must consist of at least m elements, where m is the number
of irreducible components of D at p. Hence, if D is free and has more
than n irreducible components at p, it follows from the lemma that the
logarithmic residue is not holomorphic on the normalization of D.

Corollary. Let D be a divisor in a complex manifold S of dimension n
and suppose that at a point p, D has n irreducible components (Di, p).

If D has weakly holomorphic residue and is free at p, then D has normal

crossings at p.

Proof. Suppose that the equation of D at p is h = h1 · · ·hn, where
the hi correspond to the Di. By lemma 1.67 the logarithmic forms
ω1 = dh1/h1, . . . ,ωn = dhn/hn form a basis of Ω

1
S,p

(log D). By Saito’s
criterion it follows that

dh1 ∧ · · · ∧ dhn = udx1 ∧ · · · ∧ dxn,

for some unit u ∈ OS,p. By lemma 1.47 the hi are coordinates at p and
hence D has normal crossings at p.

The next lemma about the relationship of the conductor ideal CD (see
appendix A) and the Jacobian ideal of the divisor will be useful in
chapter 2.

Lemma 1.69. Let D be a divisor in a complex manifold S of dimension

n and let D = {h = 0} at a point p, where h ∈ OS,p is reduced. Denote

by �Jh the Jacobian ideal
2

of D at p, that is, the ideal generated by the

2This notation is explained in Chapter 2.
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partial derivatives of h in the ring OD,p = OS,p/(h). Then

(i): �Jh ⊆ CD,p.

(ii): If D is free at p and ρ(Ω
1
S,p

(log D)) = π∗O �D,p
, then a power of

CD,p is contained in �Jh. In particular, if �Jh =

�
�Jh, then �Jh = CD,p.

Proof. (i): Since h is reduced, by Tsikh’s theorem (Thm. A.32) all ∂xih
are universal denominators for π∗O �D,p

. Hence (∂xih)π∗O �D,p
⊆ OD,p.

By definition of the conductor, ∂xih ∈ CD,p.
(ii): If ρ(Ω

1
S,p

(log D)) = π∗O �D,p
, one can find for any α ∈ π∗O �D,p

a
logarithmic 1-form ω such that ρ(ω) = α. Suppose that g �= 0 ∈ CD,p.
Then α has a presentation α = ξ/g = a1/∂x1h = · · · = an/∂xnh
for some ξ, ai ∈ OS,p. Thus one can take ω = 1/h

�
n

i=1 aidxi and a
computation shows that ω also has a presentation ω =

ξ

g

dh

h
+

η

g
for

some η ∈ Ω
1
S,p

.
By Lemma 1.67 one may find a basis ω1 =

dh

h
, ωi =

ξi

g

dh

h
+

ηi

g
for

i = 2, . . . , n. Saito’s criterion yields

dh ∧ (η2 ∧ · · · ∧ ηn) = ugn−1
n�

i=1

dxi,

where u ∈ O∗
S,p

. Hence gn−1 is contained in (∂x1h, . . . , ∂xnh) for any
g ∈ CD,p. If �Jh is radical, it follows that even g ∈ Jh, that is, CD,p ⊆

�Jh.

Remark 1.70. Note that assertion (i) of Lemma 1.69 holds for any
reduced divisor D with no assumptions on the logarithmic residue.

1.3.2 The dual logarithmic residue

The dual logarithmic residue was introduced by Granger and Schulze
in [43]. In some sense, it relates the Jacobian ideal of a divisor with its
conductor into the normalization. Here, it will be introduced in order
to show Thm. 1.63. The proof of this theorem will also make use of a
result by R. Piene about ideals in the normalization.
In the next section, section 1.4, we will indicate how to use Thm. 1.63
to answer a question by K. Saito about the logarithmic residue.

Let (S, D) be a complex manifold S of dimension n together with a
divisor D that is locally at a point p ∈ S given by {h = 0}. Denote by
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π : �D → D the normalization of D. Here we will abbreviate OS,p to
OS etc. From sequence (1.2) one gets an exact sequence

0 ��Ω1
S

��Ω1
S
(log D)

ρ ��ρ(Ω
1
S
(log D)) ��0 . (1.12)

By applying the functor HomOS (−,OS) to (1.12) one obtains

0 �� DerS(log D) �� DerS

σ �� · · ·

· · ·
σ ��ρ(Ω

1
S
(log D))

∨ ��Ext
1
OS

(Ω
1
S
(log D),OS) ��0.

(1.13)
Here −∨ denotes HomOD (−,OD). By Lemma 4.5 of [31] one has

Ext
1
OS

(ρ(Ω
1
S(log D)),OS) = HomOD (ρ(Ω

1
S(log D)),OD) = ρ(Ω

1
S(log D))

∨,

which explains the third term on the right in (1.13). Then we call
ρ(Ω

1
S
(log D))

∨ the dual logarithmic residue and denote it shortly by
R∨

D
.

One can show (see [43]) that ρ(Ω
1
S
(log D)) = �J∨

h
, where �Jh is the ideal

generated by (∂x1h, . . . , ∂xnh) ⊆ OD, that is, the Jacobian ideal of D.
We will need the following

Proposition 1.71. Let D ⊆ S be free. If the logarithmic residue is

weakly holomorphic, i.e., ρ(Ω
1
S,p

(log D)) = π∗O �D,p
, then �Jh ⊆ OD is

equal to the conductor ideal CD (as defined in the appendix). Con-

versely, if �D is Cohen–Macaulay at p and �Jh = CD, then

ρ(Ω
1
S,p

(log D)) = π∗O �D,p
.

Proof. See [43] Cor. 3.5.

Now we are nearly ready for the proof of Thm. 1.63, which will make
use of Thm. A.42 of the appendix. It was pointed out by D. Mond
to use Piene’s theorem in order to prove the assertion. Here we also
remark that we need Thm. A.42 to prove our main result Thm. 2.1 but
there the (dual) logarithmic residue will not appear.

Lemma 1.72. Let D ⊆ S be a divisor in a complex manifold of dimen-

sion n. Suppose that D is free at p, ρ(Ω
1
S,p

(log D)) = π∗O �D,p
and that

(D, p) =
�

m

i=1(Di, p), where each irreducible component Di is normal.

Then all (Di, p) are smooth and (D, p) has normal crossings.
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Proof. Since all irreducible components are normal, it follows that
ρ(Ω

1
S,p

(log D)) =
�

m

i=1ODi,p. By Theorems 1.42 and 1.52 (D, p) is
a normal crossing singularity.

Proof of Thm. 1.63. By our hypothesis, Piene’s Theorem A.42 yields
the equality of ideals

CDIπO �D,p
= �JhO �D,p

.

Here Iπ denotes the ramification ideal of the normalization, that is,
Iπ = F 0

�D(Ω
1
�D/D

). By Prop. 1.71 this implies the equality of the ide-
als CD = CDIπ in π∗O �D,p

. By Nakayama’s lemma, it follows that
Iπ = π∗O �D,p

. Hence Ω
1
�D/D

= 0. By [6, VI, Prop. 1.18, Prop. 1.20] (lo-
calization to an irreducible component Di and base change) it follows
that Ω

1
�Di/Di

= 0 for all i = 1, . . . ,m. Suppose that �Di is smooth at

p̃i = π
−1

(p) on �Di, then O �Di,p̃i

∼= C{z1, . . . , zn−1} for some indepen-
dent variables z1, . . . , zn−1. Hence one has an inclusion of rings

ODi,p = C{f1, . . . , fr} ⊆ C{z1, . . . , zn−1},

where f1, . . . , fr ∈ O �Di,p̃i
and r ≥ n− 1. By definition one can write

0 = Ω
1
�Di/Di

=

n−1�

j=1

O �Di,p̃i
dzj/

r�

k=1

O �Di,p̃i
dfk.

By Nakayama’s lemma one finds n − 1 generators of ODi,p, w.l.o.g.,
f1, . . . fn−1 such that the Jacobian determinant ∂(f1,...,fn−1)

∂(z1,...,zn−1)
�= 0. By

the implicit function theorem, f1, . . . , fn−1 are independent variables
and hence ODi,p

∼= O �Di,p̃i
is smooth. Since π is a finite map and

codim(Sing �Di, �D) ≥ 2 it follows that codim(Sing Di, Di) ≥ 2. By
Thm.A.24 Di is normal for all i = 1, . . . ,m. Thus (D, p) a union of
normal components. By definition (D, p) is free and by Lemma 1.72 it
has normal crossings.

1.4 On a question by K. Saito

Theorem 1.42 suggests that ρ(Ω
1
S
(log D)), the residue of logarithmic 1-

forms, is directly related to the geometry of the divisor D. Kyoji Saito
has considered the relationship between the logarithmic residue and
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the local fundamental group of the complement of the divisor. Based
on the two-dimensional case, see Prop. 1.44, Saito asked the following,
cf. [81, (2.12)]:

Question 1.73 (K. Saito). Let (S, D) be a manifold with dim S = n
together with a divisor D ⊆ S and let p be a point on D. Are the fol-

lowing equivalent?

(i) The local fundamental group π1,q(S\D) for q near p is abelian.

(ii) There exists an (n − 3)-dimensional analytic subset Z of D, such

that D\Z has only normal crossing singularities in a neighbourhood of

p.
(iii) ρ(Ω

1
S,p

(log D)) = π∗O �D,p
.

The implications (i) ⇒ (ii) ⇒ (iii) were proven by Saito in [81]. In
1985 Lê and Saito gave a topological proof of the equivalence of (i) and
(ii). The implication (iii) ⇒ (ii) was only recently proven by Granger
and Schulze [43]. Hence all three conditions are equivalent. There
seems to be no obvious link between the residue and the fundamental
group, and nobody seems to have studied how to prove directly that
(i) is equivalent to (iii).
We make a short excursion to fundamental groups in order to un-
derstand the equivalence (i) ⇔ (ii). Then, following Granger and
Schulze [43, Thm. 4.2], we also prove the implication (iii) ⇒ (ii).

1.4.1 The local fundamental group of the comple-

ment of a hypersurface

In this section we discuss the first equivalence of Saito’s question,
namely a topological characterization of divisors with normal cross-
ings in codimension 1. Now consider small balls B2n

�
centered in p ∈ S

and defined by
B2n

�
= {x ∈ S : �x− p� ≤ �}.

For � > 0 sufficiently small these balls make up a fundamental system
of good neighbourhoods of p ∈ S, see [92]. Then the local fundamental
group of the complement of (D, p) ⊆ (S, p) is defined as the fundamen-
tal group π1,q(B2n

�
\D), for � > 0 sufficiently small and q ∈ B2n

�
\D.

Theorem 1.74 (Lê–Saito). Let D be a divisor in a complex manifold

S of dimension n. Then D has normal crossings in codimension 1 at

a point p if and only if the local fundamental group π1,q(S\D) for q in

a neighbourhood of p is abelian.
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In [92] Lê and Saito first showed Thm. 1.74 for irreducible D and then
for the general case. They reduce the problem to dim S = 2 and use
topological methods. We will shortly discuss the (easy) implication
(i) ⇒ (ii). Before we start, we give a few examples of divisors and the
fundamental groups of their complements.

Example 1.75. (The line minus a point) Let S = C1 with coordinate
x and the divisor D be given by {x = 0}. We compute the local fun-
damental group π1,q(B2

�
\{0}) via the universal cover of S\{0}. There-

fore denote by X the universal cover of S\{0}. One can prove that
π1,q(B2

�
\{0}) is isomorphic to AutB2

�\{0}
(X), that is, the group of deck

transformations of X. Here X = S via the map

S
exp �� S\{0}

and the deck transformations of X are given by z �→ z +2πik, for some
k ∈ Z. It follows that π1,q(B2

�
\{0}) = Z. This can also be interpreted

by saying that the local fundamental group is generated by a small loop
around x = 0.

Example 1.76. (The normal crossing divisor) Suppose that S = Cn and
that at a point p with complex coordinates (x1, . . . , xn) the divisor is
D = {x1 · · ·xd = 0}, d ≤ n. The complement B2n

�
\D = {0 < |xi| <

�, i = 1, . . . , d} can be contracted on the d-Torus, which is given by�
d

i=1{|xi| = �}. Hence π1,q(B2n\D) ∼= Zd for q ∈ B2n

�
. The genera-

tors of this fundamental group correspond to small loops around the
components Di = {xi = 0}.

Example 1.77. (The Cusp) Let S = C2 and D = {4x3
1 = 27x2

2}. The
local fundamental group of the complement of D is not not abelian,
which can be seen as follows (here the example is only sketched, see [36,
§22] for details): the curve D is the branch locus of the map f : C2 →

C2, (u, v) �→ (u, v3
+uv). Consider K = D∩S3, which is a knot in real

three-space. One finds that the restriction of f : C2\f−1
(D) −→ S\D,

namely
π : f−1

(S3
\K) −→ S3

\K

is a three-sheeted covering that is not regular. Taking as base point
x = (1, 0) one gets that π1(S3\K) is not abelian, since any connected
covering of a manifold with abelian fundamental group is regular.

In 1929, Zariski considered in [102] the question of finding a covering
of P2 branched along a given projective plane curve C. This problem
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can be phrased in terms of fundamental groups. In his paper Zariski
states the following

Theorem 1.78. Let C be an algebraic curve in the projective plane

P2
(k), where k is any algebraically closed field. If C has only nodes as

singularities, then the étale fundamental group π1(P2
(k)\C) is abelian.

Zariski showed this theorem using a result by Enriques–Severi, namely
that any curve with only nodal singularities can be degenerated to
lines in general position. However, Severi’s proof of this result (see
Vorlesungen über algebraische Geometrie, 1921, Anhang F) was found
to be erroneous, so Zariski’s proof of Thm. 1.78 was not complete at
that time (Severi’s result was established by Harris [47] only in 1986).
It took some years until 1980 when Fulton [35] was able to give the
first correct proof of Zariski’s theorem: he used methods introduced by
Abhyankar [1, 2], who showed some special cases of Theorem 1.78, as
well as a strong version of the Bertini connectedness theorem, see the
paper by Fulton and Hansen [37]. Also in 1980, Deligne [30] gave an
account of Fulton’s work in Séminaire Bourbaki, where he strengthened
Fulton’s result in the complex case:

Theorem 1.79. Let C be a plane projective curve in P2
(C), which

only has node singularities. Then the (topological) fundamental group

π1(P2
(C)\C) is abelian.

Note here that if one replaces C by an algebraically closed field of
characteristic 0 then the same assertion is true with the algebraic (=
étale) fundamental group instead of the topological fundamental group.
Now we are ready to prove the “only if” part of Thm. 1.74, namely:
Let (S, D) be a divisor and its manifold. If the local fundamental
group π1,q(S\D) for q in a suitable neighbourhood of p is abelian,
then there exists an (n− 3)-dimensional analytic set Z in S such that
the complement of Z in D has only normal crossing singularities in a
neighbourhood of p.

Proof of ⇐ of Thm. 1.74. Suppose there exists an (n− 2)-dimensional
subset Z of D such that D\Z does not have normal crossings. Then Z
must be the union of irreducible branches of Sing D. We may suppose
that Z is irreducible. We consider D as a family of plane curve germs
along Z. At a general point of Z, D is equisingular (see Zariski’s equi-
singularity theory [103]), and hence topologically trivial along Z. Thus
the local fundamental group π1,q(S\D) is isomorphic to the fundamen-
tal group of the complement of a plane curve. But the generic member
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of a family of germs of plane curves along Z does not at most have node
singularities because by assumption, D does not have normal crossings
along Z. Hence π1,q(S\D) is not abelian, which follows from Theo-
rem 1.79 and the computations of Zariski in [102], in which he shows
that curves that have more complicated singularities than nodes, have
a non-abelian fundamental group.

1.4.2 Answer to Saito’s question

Now we consider the equivalence of (ii) and (iii) of Saito’s question. As
already shown in [81, Lemma 2.13], the implication (ii) ⇒ (iii) always
holds:

Lemma 1.80. Let (S, D) be as usual, dim S = n and suppose that D
has normal crossings outside a set Y with codim(Y, S) ≥ 3. Denote by

π : �D → D the normalization of D. Then we have

ρ(Ω
1
S,p

(log D)) = π∗O �D,p
,

that is, the residue of Ω
1
(log D) are the weakly holomorphic functions

on D.

Proof. Since D\Y has normal crossings, any point p in this set sat-
isfies the condition (iv) of Theorem 1.42. But this implies that ρ(ω)

is holomorphic on D\Y for any ω ∈ Ω
1
S,p

(log D). Hence ρ(ω) is also
holomorphic on �D\Y . The codimension of Y in D is greater than or
equal to 2, so the codimension of its normalization π

−1
(Y ) in �D is also

greater than or equal to 2 and we have �D\π−1
(Y ) = �D\Y . But �D is

a normal variety, so we may apply the Extension theorem of Hartogs,
Thm. A.21, to conclude that ρ(ω) is holomorphic on whole �D.

The other implication follows from Theorem 1.63 and the following
proposition about freeness in codimension one. This proposition makes
use of Aleksandrov’s algebraic characterization of free divisors, which
will be discussed in Chapter 2. For notation and definition of the
Jacobian ideal sheaf J and OSing D see Section 2.2.

Proposition 1.81. Let (S, D) be a complex n-dimensional manifold

together with a divisor D ⊆ S. Then the set Z := {p ∈ S : D is not

free at p} is an analytic subset of S of dimension at most n − 3. In

particular, D is free in codimension 1.
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Proof. Recall that OSing D is defined as OD/ �J , where �J is the Jacobian
ideal restricted to D. By Aleksandrov’s theorem (Thm. 2.6) Z is equal
to the set

{p∈D : OSing D,p not Cohen–Macaulay of dimension n−2 orOSing D,p �=0}.

It is easy to see that OSing D is a coherent analytic OS sheaf (OD is
coherent by Cartan’s coherence theorem and the Jacobian ideal sheaf
J is coherent, since it is finitely generated at any stalk and the syzygies
between partial derivatives are also finitely generated. By the Meta-
theorem of coherent sheaves A.15, OD/ �J = OSing D is also a coherent
OS-sheaf). Then consider the singular set (as defined in Appendix A)

Sm(OSing D) = {p ∈ S : depth
p
OSing D ≤ m}.

Since Z = Sn−3(OSing D), it follows from Scheja’s theorem (Thm. A.16)
that Z is an analytic subset of dimension at most n− 3.

Theorem 1.82. Let (S, D) be a complex manifold together with a di-

visor D ⊆ S. If the logarithmic residue ρ(Ω
1
S
(log D)) = π∗O �D, then D

has normal crossings in codimension 1.

Proof. By Prop. 1.81 D is free outside an analytic subset Z ⊆ S of
codimension at least 2 in D. Since ρ(Ω

1
S,p

(log D)) = π∗O �D,p
for all

p ∈ S and �D is by definition smooth in codimension 1 it follows from
Thm. 1.63 that D has normal crossings outside an analytic set of codi-
mension 2 in D.

Theorem 1.82 proves the missing implication (iii) ⇒ (ii) of Saito’s
question. Hence the answer to Saito’s question is positive.





Chapter 2

Algebraic characterization
of normal crossing divisors

Here a characterization of a normal crossing divisor is given in terms
of the Jacobian ideal defining the singular locus of the divisor. Our
result is the following: a divisor D in a complex manifold S of com-
plex dimension n has normal crossings at a point p ∈ S if and only if
the local ring OSing D,p = OS,p/(h, Jh), where Jh denotes the Jacobian
ideal of D = {h = 0}, is Cohen–Macaulay of dimension n − 2, Jh is
a radical ideal and moreover, the normalization �D of D is Gorenstein
(Thm. 2.1). This criterion makes it possible to determine whether a
divisor has normal crossings at a point without knowing its decompo-
sition into irreducible components.
This chapter is devoted to prove the above characterization of normal
crossing divisors: first the theorem about the singularities of normal
crossing divisors is stated and motivated by some examples. Then we
consider the algebraic characterization of free divisors (due to A. G. Alek-
sandrov, A. Simis and H. Terao2): a divisor D is free at a point p if
and only if it is either smooth at p or OSing D,p is Cohen–Macaulay of
dimension n− 2. The rest of the chapter is used to prove Theorem 2.1:
we first pass by some special cases, for which no condition on the nor-
malization of D is required. Then we introduce the notion of splayed

2 In this text this result will always be referred to as Aleksandrov’s Theorem
because the author has learned it from [3,4]. As pointed out by A. Simis, the same
result was also independently proven by H. Terao in [94] (algebraic case) and in
general in [95] and later (in the algebraic case) by A. Simis in [89].
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divisor, which is needed to reduce the problem to an irreducible divisor.
Finally the assertion of the theorem is shown similarly to the results
from Chapter 1 on the logarithmic residue. Most of the algebra used
in this chapter is explained in Appendix A.

2.1 The main theorem

Let D be a divisor in a complex manifold S with dim S = n and suppose
that D is given at a point p = (x1, . . . , xn) by the reduced equation
h(x) = 0, h ∈ OS,p. Recall that the Jacobian ideal of h is the ideal
generated by the partial derivatives of h. It is denoted by Jh,p =

(∂x1h, . . . , ∂xnh)OS,p. We will often simply write Jh instead of Jh,p.
There is a canonical epimorphism sending OS,p to OD,p = OS,p/(h).
We denote by �Jh the Jacobian ideal in OD,p (most of the time �Jh is also
simply denoted by Jh). The associated analytic coherent ideal sheaves
are denoted by J ⊆ OS and �J in OD. The singular locus of D is
denoted by Sing D and is defined by the ideal sheaf �J ⊆ OD. The
local ring of Sing D at a point p is denoted by

OSing D,p = OS,p/((h) + Jh) = OD,p/�Jh.

Sometimes OSing D,p = C{x1, . . . , xn}/(h, ∂x1h, . . . , ∂xnh) is also called
the Tjurina algebra, see e.g. [27]. Note that we always consider Sing D
with the (possibly non-reduced) structure given by the Jacobian ideal
of D. Hence in general (Sing D, p) is a complex space germ and not
necessarily reduced. We often say that Sing D Cohen–Macaulay, which
means that OSing D,p is Cohen–Macaulay for all points p ∈ Sing D. The
definition of Cohen–Macaulay modules and further properties of them
can be found in Appendix A. If D is an Euler–homogeneous divisor,
then the OS,p-modules OS,p/Jh and OD,p/�Jh are equal.

In chapter 1 it was shown that a normal crossing divisor is free. There-
fore our idea is to impose additional conditions in order to single out
the normal crossing divisors. By Aleksandrov’s theorem in the next
section (see Thm. 2.6) free divisors can be completely described by
their Jacobian ideal. So the right additional requirement turns out to
be radicality of the Jacobian ideal. Hence a purely algebraic criterion
is obtained, which allows to determine whether a divisor has normal
crossings at a point p, even without knowing its decomposition into
irreducible components.
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Theorem 2.1. Let D = {h = 0} be a divisor in a complex manifold

S, dim S = n. Denote by π : �D → D the normalization of D. Then

the following are equivalent:

(1) D has normal crossings at any point p in D.

(2) D is free at any point p, Jh,p is radical and ( �D,π−1
(p)) is Goren-

stein.

Remark 2.2. Using Aleksandrov’s algebraic characterization of free di-
visors (Thm. 2.6), condition (2) of the above theorem can also be
phrased as:
(2’) At any point p ∈ D the Tjurina algebra OSing D,p is reduced and
either 0 or Cohen–Macaulay of dimension n−2 and π∗O �D,p

is a Goren-
stein ring.
Another equivalent formulation is:
(2”) At any point p ∈ D, where D = {h = 0}, the Jacobian ideal Jh is
either equal to OS,p or it is radical, perfect and with depth(I,OS,p) = 2

and π∗O �D,p
is Gorenstein.

Remark 2.3. The condition �D Gorenstein is technical and only needed
to apply Piene’s theorem in our proof of Thm. 2.1. In some special cases
(see section 2.3) it can be omitted. We do not know if this condition is
necessary in general (cf. Remark 2.50).
Before commenting on the proof of Thm. 2.1, let us consider some
examples:
Example 2.4. (1) Let D be the cone in C3, given by the equation z2

=

xy. It does not have normal crossings at the origin but the Jacobian
ideal Jh,0 = (z, x, y) is clearly radical and OC3,0/(x, y, z) ∼= C is Cohen–
Macaulay. However, the depth of OC3,0/Jh,0 is 0 and thus too small.
(2) The divisor in C3 given by the equation h = xy(x− z2

) is free (by
Aleksandrov’s theorem) but does not have normal crossings. Note that
its singular locus is a Cohen–Macaulay curve. The Jacobian ideal is

Jh = (y, x− z2
) ∩ (x, y) ∩ (z2

− 2x, xz, x2
),

which is not radical.
(3) Let S = C3 and D be the “4-lines” defined by h = xy(x+y)(x+yz).
This divisor D is free, and a basis of DerS,p(log D) is given by δ

1
=

x∂x + y∂y, δ2
= (zy + x)∂z and δ

3
= −x2

∂x + y2
∂y − (x + yz)∂z. Its

Jacobian ideal is the intersection of the three primary ideals (x+y, z−1),
(x, z) and (y4, 2xy2z + y3z + 3x2y + 2xy2, 4x2yz− 3y3z + 2x3− 5x2y−
6xy2

), which is not radical (the radical
√

Jh is (x + y, z − 1) ∩ (x, z) ∩
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(x, y)) and D does not have normal crossings at the origin.
(4) The divisor D in C3 defined by h = −x4y2 − xy3

+ x4z + xyz +

x3y3z + y4z−x3yz2− y2z2−xy2z2
+xz3

+x4z3
+xyz3

+ y3z3− yz4−

x3yz4 − y2z4
+ xz5 − yz6 has normal crossings at 0: its Jacobian ideal

is of height 2, radical and C[x, y, z]/Jh is Cohen–Macaulay. A basis of
Ω

1
S,p

(log D) is

ω1 =
3x2dx + dy + 2zdz

x3 + z2 + y
, ω2 =

dx− zdy − ydz

x− yz

and
ω3 =

2ydy + (−1− 3z2
)dz

y2 − z − z3
.

Since D is the union of three smooth surfaces, the normalization �D is
smooth and hence Gorenstein.

2.1.1 Structure of the proof of Thm. 2.1

The implication (1) ⇒ (2) is a straightforward computation. The other
direction occupies the rest of the chapter. Since the freeness of a divisor
is a necessary condition in (1), we show in section 2.2 the algebraic char-
acterization of free divisors due to A. G. Aleksandrov. This is followed
by showing (2) ⇒ (1) of Thm. 2.1 for some special cases, namely for
divisors in manifolds S of dimension 2 (Prop. 2.15), for Sing D smooth
(Lemma 2.17), for Sing D Gorenstein (Prop. 2.18) and for hyperplane
arrangements and generalizations thereof (Prop. 2.32). For these cases,
the assumption �D Gorenstein is not needed.

However, the ideas to show the special cases do not lead to a proof in
general. Therefore, our strategy to prove the general case is the follow-
ing:
(i) If (D, p) =

�
m

i=1(Di, p) is free and a union of irreducible components
and has radical Jacobian ideal, then we show that each Di is also free
and has radical Jacobian ideal.
(ii) If D is free, irreducible, has radical Jacobian ideal at p and the
normalization �D is Gorenstein, then D is already smooth at p.
(iii) A free divisor D, which is a union of smooth irreducible hyper-
surfaces and has a radical Jacobian ideal, is already a normal crossing
divisor.
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In order to obtain (i) we introduce a generalization of normal crossing
divisors, so-called splayed divisors. A splayed divisor D is a union of
transversally meeting hypersurfaces that are possibly singular. First
it is shown that (i) holds for splayed divisors (Lemma 2.38). Then
we prove that a divisor (D, p) =

�
m

i=1(Di, p) with radical Jacobian
ideal is splayed (Prop. 2.48). Therefore a characterization of splayed
divisors via their Jacobian ideals is shown (the Leibniz property - see
Thm. 2.43). All this is explained in sections 2.4.1 and 2.4.2.
Claim (ii) then follows from Piene’s Theorem (Thm. A.42), similarly
like the results on the logarithmic residue of chapter 1. Note that here
we do not need the dual residue because if Jh is radical, one can show
that it is equal to the conductor CD. Finally, claim (iii) follows from
different previous results, namely, either from the hyperplane arrange-
ment case (Prop. 2.32) or from the second corollary of proposition 2.48.

2.2 Algebraic characterization of free divi-

sors

We have defined free divisors via the modules of logarithmic vector
fields or logarithmic differential forms. However, there also exists a
characterization of free divisors by their singularities, which is due to A.
G. Aleksandrov [4] (cf. footnote 2). Namely, a divisor D in a complex
manifold is free if and only if it is smooth or its singular locus defined
by the Jacobian ideal is Cohen–Macaulay of codimension 1 in D. The
first result in this direction was obtained by H. Terao [94], who charac-
terized a free hyperplane arrangement in an algebraic manifold by the
corresponding property. This has also been discovered independently
by Simis [89]. In 1986, Aleksandrov proved the Cohen–Macaulayness of
the singular locus for Euler–homogeneous free divisors, see [3]. Eventu-
ally, in his 1990 paper [4] he was able to extend his result to arbitrary
free divisors in complex manifolds.
The characterization of free divisors by their Jacobian ideals can be
used to obtain a simple proof that the discriminant of a miniversal de-
formation of a complete intersection with an isolated singularity is a
free divisor, see [4,60,81]. Consequently, this algebraic characterization
is useful whenever free divisors appear in the theory of discriminants
and bifurcations, see [13, 25, 68]. Moreover, Aleksandrov’s freeness cri-
terion is effective: one can check Cohen–Macaulayness with a computer
algebra system like Singular [98].
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In this section a proof of Aleksandrov’s theorem is given. As a corol-
lary we regain that all reduced divisors in a complex manifold S with
dim S = 2 are free.

Proposition 2.5. Let D be a free divisor in S. Then either D is

smooth at a point p ∈ D or codimp(Sing D,S) = 2, which is equivalent

to codimp(Sing D,D) = 1. Thus it follows that D is not normal at its

singular points. Moreover, OSing D,p is a Cohen–Macaulay ring.

Proof. Let h = 0 be the equation for D at a point p ∈ Sing D. Then
there is an exact sequence

Syz(∂x1h, . . . , ∂xnh, h) �� On+1
S,p

ϕ �� OS,p
�� OS,p/(h, Jh) �� 0

of OS,p-modules. Here ϕ denotes the map sending (a1, . . . , an+1) ∈

O
n+1
S,p

to
�

n

i=1 ai∂xih + an+1h and Syz(∂x1h, . . . , ∂xnh, h) denotes the
first syzygy module of ((h) + Jh). As explained in the proof of Lemma
1.7, DerS,p(log D) is canonically isomorphic to Syz(∂x1h, . . . , ∂xnh, h).
Since DerS,p(log D) is by assumption a free OS,p-module of rank n, it
follows that

0 �� Syz(∂x1h, . . . , ∂xnh, h) �� On+1
S,p

ϕ �� OS,p
�� OS,p/(h, Jh) �� 0

is a free resolution of OS,p/((h) + Jh) = OSing D,p. This means that

projdimOS,p
OSing D,p = 2,

and by the Auslander–Buchsbaum formula depth(OSing D,p) = n − 2.
Since D is a reduced divisor, its singular locus must be a proper an-
alytic subset of D, that is, codimp(Sing D,D) ≥ 1, or equivalently
codimp(Sing D,S) ≥ 2. The well-known dimension-depth inequality
yields

n− 2 = depth(OSing D,p) ≤ dim(OSing D,p) ≤ n− 2.

Hence OSing D,p is Cohen–Macaulay of (Krull-)dimension n− 2.

Theorem 2.6 (Aleksandrov). Let D ⊆ S be a non-normal divisor,

that is, codimp(Sing D,D) = 1 for any p ∈ Sing D. Then the following

conditions are equivalent:

(i) D is a free divisor,

(ii) Sing D is Cohen–Macaulay, that is, for every p ∈ D the local ring

OSing D,p is Cohen–Macaulay.
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Proof. The statement is local, so we choose a point p ∈ Sing D and
consider D locally at p. Let D at p be defined by a reduced h ∈ OS,p.
The singular locus Sing D is defined by the ideal ((h) + Jh) ⊆ OS,p.
The implication (i) ⇒ (ii) was already shown in Prop. 2.5. It re-
mains to prove that if (Sing D, p) is Cohen–Macaulay then D is free
at p. First suppose that the ∂xih form a minimal basis of Jh and
that D is Euler–homogeneous at p. Hence there exists a vector field
η ∈ DerS,p(log D) such that η(h) = h and thus OSing D,p = O/Jh. The
depth of Jh on OS,p is 2 and hence dimOS,p = 2 + dim(OS,p/Jh) =

2+depth(OS,p/Jh). By the Auslander–Buchsbaum formula (Thm. A.7)
it follows that projdimOS,p(OS,p/Jh) = n− (n− 2) = 2. Therefore the
theorem of Hilbert–Burch, see Appendix A, can be applied. Hence
any generator ∂xih, i = 1, . . . n of Jh is given as the i-th principal mi-
nor of some (n − 1) × n-matrix M in Mn−1,n(OS,p), in other words,
∂xih = det((ei, M)), with ei the i-th standard basis column vector. The
rows of M define logarithmic vector fields, since M∂xh = 0. Taking the

coefficients of the Euler–vector field η as first row an n×n-matrix
�

η

M

�

is obtained. The determinant of this matrix is (cofactor expansion of
the first row)

n�

i=1

ηi∂xih = ηh = h,

thus by Saito’s criterion the n rows of this matrix form a basis of
DerS,p(log D). If the ∂xih do not form a minimal basis of Jh, that is,
some

∂xj h ∈ (h, ∂x1h, . . . , �∂xj h, . . . , ∂xnh),

then one can apply the triviality lemma A.44. This lemma yields
that (D, p) ∼= (D� × C, (p�, 0)) with (D�, p�) ⊆ (Cn−1, 0). Then the
smooth factor of D can be neglected and it is enough to consider
(D�, p�) ⊆ (Cn−1, 0). So we are back to the case already considered.
If D is not Euler–homogeneous at p, we may suppose that the ideal
defining (Sing D, p), namely (h) + Jh, is minimally generated by h and
∂x1h, . . . , ∂xnh. By an argument of Schaps [83, proof of Thm. 1], one
finds that h and its partial derivatives are the maximal minors of some
n × (n + 1) matrix M . Then the assertion follows again from Saito’s
criterion.

Remark 2.7. The statement that any element of the matrix whose prin-
cipal minors are the ∂xih can be chosen in m can also be expressed
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with logarithmic stratifications, see [81, §3]: if some ∂x1h, . . . ∂xkh are
already contained in the ideal generated by h, ∂xk+1h, . . . , ∂xnh, then
this means that the point p is contained in a k-dimensional logarithmic
stratum Dα of D.
Remark 2.8. Aleksandrov also proved the following equivalence in [4]:
D is free at p if and only if Sing D is a locally determinantal variety,
i.e., (Sing D, p) is given by the determinants of the maximal minors of
a matrix with entries in OS,p. In order to prove this equivalence for the
’only if’ part one uses the Hilbert–Burch matrix M of the above proof
and for the other implication one shows that ((h)+Jh) is a perfect ideal.
Then by remark A.10 the ring OS,p/((h) + Jh) is Cohen–Macaulay.
So if D is free with basis δi =

�
n

j=1 aij∂xj with δi(h) = fih, i = 1, . . . , n
of DerS,p(log D), then one can explicitly write down the (n + 1) × n
matrix M : take the matrix (aij) and as last row (f1, . . . , fn).

Corollary. Let D be a divisor in a complex manifold S with dim S = 2.

Then Sing(D) is Cohen–Macaulay. In particular, any divisor in a 2-

dimensional manifold is free.

Proof. Locally at a point p ∈ S, the divisor D is given by a reduced
holomorphic h ∈ OS,p. If D is smooth at p, then OSing D,p = 0 and
by definition Cohen–Macaulay. If D is singular at p, then p must be
an isolated singular point, which follows from h reduced. Hence the
Krull dimension of the ring OSing D,p is equal to 0. Since the depth of
a local ring is always less or equal than its dimension, it follows that
depth(OSing D,p) = 0 and thus dim(OSing D,p) = depth(OSing D,p) =

0, which means that the local ring OSing D,p is Cohen–Macaulay of
codimension 2. By Thm. 2.6 D is free at p.

Example 2.9. (1) (Whitney Umbrella) Let D ⊆ C3 be given at the ori-
gin by h = x2−y2z = 0. The Jacobian ideal Jh,0 is (x, yz, y2

). An easy
computation shows that an irredundant primary decomposition of Jh,0

is (x, y)∩(x, y2, z). Then Jh,0 has an embedded primary component and
hence OSing D,0 = C{x, y, z}/Jh,0 is not Cohen–Macaulay. However, at
any point p = (0, 0, t), t �= 0 in the z-axis different from 0 the divisor D
is defined by hp = x2−y2

(z+t) and (hp)+Jh,p = (x, yz+yt, y2
) = (x, y).

This yields that OSing D,p = C{z} is Cohen–Macaulay of dimension 1.
Thus D is free at all points p ∈ S, p �= 0.
(2) (This example is taken from [86], where it is denoted by FB,1) Let
(D, 0) ⊆ (C3, 0) be the divisor defined by h = z(x2y2 − 4y3 − 4x3z +

18xyz − 27z2
). The Jacobian ideal Jh is of height 2 in C{x, y, z} and
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OSing D,0 is Cohen–Macaulay (use e.g. the Auslander–Buchsbaum for-
mula to show this). Hence D is free at 0. Note that the radical of the
Jacobian ideal is (y, z)∩ (4y− x2, z)∩ (3y− x2, 27z− x3

), the union of
three smooth curves.
(3) The hyperplane arrangement H in C4 given by h = xy(z + w)(x +

w)(x + w + z) is free, since OSing D,p is Cohen–Macaulay. The singular
locus of H consists of 8 planes in C4.

2.3 Special cases

We start this sections with a few general remarks about radical Ja-
cobian ideals. As explained in 2.1.1 here some special cases of the
implication (2) ⇒ (1) of Theorem 2.1 are proven. Note that we do not
need any requirements on the normalization of D for these. First we
consider a curve D in a two-dimensional manifold S. Since then the
singularities of D are isolated, the proof of Thm. 2.1 is straightforward
in this case. The theorem can be proved similarly if dim S = n ≥ 2

and (Sing D, p) is smooth at p. We also show a characterization of
the Gorenstein case, namely, if the Jacobian ideal of D at p is radical
then the ring OSing D,p is Gorenstein of dimension (n − 2) if and only
if (Sing D, p) is smooth. For this result we have two different proofs,
the first one using Rossi’s theorem and the second one using the theory
of primitive ideals of Pellikaan and Siersma, see [75]. Then we turn to
hyperplane arrangements and generalizations thereof.

The following lemma is nearly obvious: if two divisors D and D� are
locally isomorphic at a point p, then their Tjurina algebras are locally
isomorphic, that is, OSing D,p

∼= OSing D�,p.
Remark 2.10. Note here that the other implication does not hold in
general, that is, if the singular loci of two divisors are isomorphic, the
divisors themselves need not be isomorphic. However, in the case of
isolated singularities this assertion is true (this is the content of the
theorem of Mather–Yau [61]). The general case has been studied by
Gaffney and Hauser and we refer to [39] for their results.

Lemma 2.11. Let f and g be in OS,p and suppose that the divisors

D = {g = 0} and D�
= {f = 0} are locally isomorphic. Then their

singular loci are also isomorphic, that is,

OS,p/((f) + Jf ) ∼= OS,p/((g) + Jg).
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Proof. Let ϕ be the isomorphism of (S, p) sending D� to D. Then
ϕ
∗

: OS,p → OS,p is an algebra isomorphism sending f to ϕ
∗
(f) = f ◦ϕ.

We can suppose that f ◦ ϕ = g (otherwise f ◦ ϕ = ug, with u ∈ O∗
S,p

,
but their Jacobian ideals are the same: ((g)+Jg) = ((ug)+Jug)). With
the chain rule follows

∂g

∂xi

=

n�

j=1

(
∂f

∂xj

◦ ϕ)
∂ϕj

∂xi

=

n�

j=1

ϕ
∗
(

∂f

∂xj

)
∂ϕj

∂xi

.

Thus Jg is contained in ϕ
∗
(Jf ). Since ϕ

∗ is an isomorphism we also
get Jf ⊆ (ϕ

∗
)
−1

(Jg). From this and ϕ
∗
(f) = g follows ϕ

∗
(Jf + (f)) ⊆

((g) + Jg) and by symmetry we get ϕ
∗
(Jf + (f)) = ((g) + Jg).

In Proposition 2.13 it is shown that for radical Jacobian ideals the local
ring OSing D,p is already determined by the Jacobian ideal Jh, that is,
h ∈ Jh. In particular, this implies that a divisor with radical Jacobian
ideal is Euler-homogeneous.

Lemma 2.12. Let (S, D) be a pair of an n-dimensional complex man-

ifold S together with a divisor D ⊆ S and let D be defined at the point

p = (x1, . . . , xn) by h(x) ∈ OS,p. Let Jh ⊆ OS,p be the Jacobian ideal

of D. Then h belongs to the integral closure Jh of Jh.

Proof. We show the statement with the complex-analytic criterion for
integral dependence, see [59, (1.3)] or [11]: an element f of OS,p is in
the integral closure of the ideal I = (g1, . . . , gm) if and only if for all
analytic germs γ : (C, 0) → (S, p) one has

(f ◦ γ) ∈ γ
∗I, where γ

∗I = (g1 ◦ γ, . . . , gm ◦ γ) ⊆ C{t}.

In our case we have to show that h(γ(t)) ∈ (∂x1h(γ(t)), . . . , ∂xnh(γ(t))).
Set ord(h(γ(t)) = k(γ). Then ord(∂t(h(γ(t)))) = k(γ) − 1. Using the
chain rule it follows that

ord(∂t(h(γ(t))) = ord(

n�

i=1

∂tγi(t) · ∂xih ◦ γ(t)) = k(γ)− 1.

Thus there exists an i such that ord(∂xih ◦ γ(t)) ≤ k(γ) − 1. This
implies that h(γ(t)) ∈ (∂xih ◦ γ(t)).

Proposition 2.13. Let (S, D) be as in the previous lemma. If Jh is

radical, then h ∈ Jh, which implies OSing D,p = OS,p/Jh.
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Proof. Since Jh is generated by n elements, it follows from the theorem
of Briançon–Skoda that Jn

h
⊆ Jh, see [59]. Since (Jh)

n ⊆ Jn

h
(see for

example [57]), the n-th power of h is contained in Jh and since Jh is
radical it already contains h.

Remark 2.14. The above proposition shows in particular that if Jh is
radical then also Jh = Jh. The blowup of D ⊆ S with center Jh is
the Nash blowup of (D, p), see e.g. [72]. It is an interesting question
whether in the case of a radical Jacobian ideal this blowup is equal to
the normalized Nash blowup (for details and notation see [57, Section
3]): the normalized Nash blowup of D is the Nash blowup followed by
normalization and determined by Projan

�
n∈N J

n, where J denotes
the integral closure of the Jacobian ideal sheaf in OS . In order to obtain
equalities of the two blowups it is necessary and sufficient that J n =

(J )
n for n big enough. However, it is not known whether Jn

h
= (Jh)

n

if Jh =
√

Jh.

Proposition 2.15. Let dim S = 2 and the divisor D be defined at a

point p by a reduced h ∈ OS,p. Then D has normal crossings at p if

and only if D is free at p and Jh is radical of depth 2 on OS,p.

Proof. If Jh has depth 2 on a two-dimensional regular local ring, then
the singularity of D at p is isolated. Since Jh is radical, it has an
irredundant primary decomposition

�
p, with prime ideals p that are

all of height 2 (by the Cohen–Macaulay property of OS,p/Jh). If one
p were not equal to the maximal ideal m, then it would be strictly
contained in m. However, then the height of m would be greater than
or equal to 3, which is a contradiction to height(m) = dimOS,p = 2.
This means thatOSing D,p = OS,p/m ∼= C at p. Now one can use either a
direct computation (see Remark 2.16) or apply the theorem of Mather–
Yau [61] (also see [27]) for isolated singularities: two germs (X, p) and
(Y, q) in S with isolated singularity at p resp. q are isomorphic if
and only if OSing X,p and OSing Y,q are isomorphic as local algebras. In
our case let (D, p) the germ of D at p. The theorem of Mather–Yau
means that (D, p) is isomorphic to the normal crossings divisor (N, p)

(defined locally at p = (x1, x2) by the equation {x1x2 = 0}) if and only
if their singular loci are isomorphic. But OSing N,p = OS,p/(x1, x2)

∼= C
is clearly isomorphic to OSing D,p. The application of the theorem of
Mather–Yau proves the proposition.

Remark 2.16. Also a direct computation can be used to prove the pre-
vious proposition: therefore write h = a1x2

1 + a2x1x2 + a3x2
2 for some
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ai ∈ C{x1, x2}. If Jh = (x1, x2), it follows that one of the ai is invertible
in C{x1, x2}, w.l.o.g. a1 (possibly after a linear change of coordinates).
Hence we may assume that a1 = 1 and h = x2

1+a2x1x2+a3x2
2. Consider

the change of coordinates ϕ(x1, x2) = (x1−
a2x2

2 , x2), which transforms
h into h∗ := ϕ

∗
(h) = x2

1 − ã3x2
2 with ã3 = a3 − 1/4a2

2. By Lemma 2.11
one has Jh = Jh∗ , which implies that ã3 is also invertible and hence
√

ã3 ∈ C{x1, x2}. Therefore h∗ = (x1 +
√

ã3x2)(x1 −
√

ã3x2) defines a
normal crossing divisor.
In Chapter 3 we will obtain yet another proof of the preceding propo-
sition via mikado curves.

Lemma 2.17. Let S be a complex manifold of dimension n together

with a divisor D ⊆ S, which is defined at a point p ∈ S by h ∈ OS,p.

Suppose that D is free at p and that the Jacobian ideal Jh is radical.

Further suppose that p is a non-singular point of Sing D. Then locally

at p the divisor D has normal crossings, more precisely, it is locally

isomorphic to the union of two transversally intersecting hyperplanes.

Proof. Let (x1, . . . , xn) be complex coordinates of S around p. By
Proposition 2.13 the defining ideal of (Sing D, p) is Jh. Since (Sing D, p)

is smooth and of codimension 2 in (S, p), wlog. Jh = (x1, x2) can be
assumed. We use the analytic triviality criterion A.44 to show that
locally at p the divisor D is trivial along the subspace {x3 = 0, . . . , xn =

0}, such that the defining equation h can be chosen depending only on
x1, x2. Therefore it must be shown that for all 3 ≤ i ≤ n one has ∂xih ∈
m(x1, x2) and that (∂x1h, ∂x2h) = (x1, x2): since h is contained in Jh,
it can be written as h = fx1 + gx2 for some f, g ∈ OS,p. Then taking
the partial derivative ∂x1h it follows that f = ∂x1h− x1∂x1f − x2∂x1g
is also contained in Jh = (x1, x2). Taking the partial derivative ∂x2h
yields that g is also contained in Jh. But then h ∈ (x1, x2)

2 and it is
of the form h = ax2

1 + bx1x2 + cx2
2 for some a, b, c ∈ OS,p. Then the

partial derivative ∂xih for 3 ≤ i ≤ n is

∂xih = (∂xia)x2
1 + (∂xib)x1x2 + (∂xic)x

2
2 ∈ m(x1, x2).

With Nakayama’s lemma, applied to the OS,p/m = C-vector space
Jh/mJh, it follows that Jh is minimally generated by ∂x1h, ∂x2h. The
triviality lemma implies that one can find locally at p a biholomorphic
map ϕ such that h◦ϕ(x1, . . . , xn) = h(x1, x2, 0, . . . , 0) defines a divisor
isomorphic to D and the germ (D, p) is locally isomorphic to some
(D� ×Cn−2, (0, 0)), where D�

= {h ◦ ϕ(x1, . . . , xn) = 0}. Hence we can
consider the problem in dimension 2 and p with coordinates (x1, x2).



2.3 Special cases 65

Now Proposition 2.15 tells us that D�
= {h◦ϕ = 0} has normal crossings

at p, that is, one can find coordinates (y1, . . . , yn) at p such that h =

h(y1, y2, . . . , yn) = y1y2.

2.3.1 Gorenstein singularities

A particular class of Cohen–Macaulay rings are the so-called Gorenstein
rings. We prove here Thm. 2.1 for OSing D,p Gorenstein of dimension
(n−2). In general, Gorenstein rings lie between complete intersections
and Cohen–Macaulay rings. However, in our situation, where the Ja-
cobian ideal defining OSing D,p has depth two on OS,p, one sees that
Gorenstein rings are complete intersection rings, that is, the Jacobian
ideal can be minimally generated by two elements. Then we can gen-
eralize the methods from the preceding section to show the following:

Proposition 2.18. Let (S, D) be the pair of an n-dimensional complex

manifold together with a divisor D ⊆ S and D = {h = 0} at a point p.
Suppose that Jh is radical and OSing D,p is a Gorenstein ring of Krull-

dimension n − 2. Then (Sing D, p) is smooth and D has locally at p
normal crossings.

First let us consider a possible counter-example to this proposition:
Example 2.19. (The cusp) The (reduced) cusp in (C3, 0) cannot be the
singular locus of a divisor (D, 0): the cusp is defined by I = (x3

1 −

x2
2, x3). By Serre’s theorem (Thm. 2.21) below O/I is Gorenstein but

clearly not regular. In order that I equals Jh for some h ∈ O one
must have ∂xih = ai1(x3

1 − x2
2) + ai2x3, for i = 1, 2, 3. Now consider

the C-vector space I/mI. Since O is a local ring, Nakayama’s lemma
yields that x3

1 − x2
2, x3 form a basis of this vector space. From the

Poincaré lemma (see Lemma 3.5) it follows that the three functions
f1, f2, f3 are partial derivatives ∂x1h, ∂x2h, ∂x3h if and only if ∂x2f1 =

∂x1f2, ∂x1f3 = ∂x3f1, ∂x3f2 = ∂x2f3. Writing out these conditions for
the three functions ai1(x3

1−x2
2)+ai2x3 it follows that a11(0) = a21(0) =

a12(0) = a22(0) = 0. Hence modulo m the system of equations for the
∂xih looks as follows:




0 0

0 0

a31(0) a32(0)



 (x3
1 − x2

2, x3)
T

= (∂x1h, ∂x2h, ∂x3h)
T .

But this contradicts the fact that the ∂xih generate I. Hence I cannot
be the Jacobian ideal Jh of some reduced h.
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We need some terminology concerning Gorenstein rings. Good refer-
ences for the use and properties of Gorenstein rings are [8, 32,56].

Definition 2.20. Let R be a zero-dimensional local ring. Then R
is said to be Gorenstein if R is injective as an R-module. A local
ring (R,m) of depthR = d is Gorenstein if for some maximal regular
sequence x1, . . . , xd ∈ m the ring R/(x1, . . . , xd) is Gorenstein.

Theorem 2.21 (Serre). Let R be a regular local ring and I ⊆ R an

ideal with depth(I, R) = 2. Then R/I is Gorenstein if and only if I is

generated by a regular sequence of length 2.

Proof. See [32, Cor. 21.20].

Lemma 2.22. Let (S, D) be as before, with dim S = n and D = {h =

0} at a point p = (x1, . . . , xn). Suppose that the Jacobian ideal Jh =

(∂x1h, . . . , ∂xnh) is radical and OSing D,p is Gorenstein of dimension

(n− 2). Then Jh can be generated by two derivatives ∂xih, ∂xj h.

Proof. Since OS,p/Jh is Gorenstein, Thm. 2.21 yields that Jh is gener-
ated by a regular sequence f, g in m. Then there exists an (n×2)-matrix
A ∈ Mn,2(OS,p) such that

A(f, g)
T

= (∂x1h, . . . , ∂xnh)
T .

Consider the OS,p/m-module Jh/mJh. The above equation reads as

A(f, g)
T

= (∂x1h, . . . , ∂xnh)
T

with A ∈ Mn,2(C), since OS,p/m = C. Then we have a solvable linear
system of equations with coefficients in C. Thus A must have rank 2,
that is, it has two linearly independent rows. Suppose that the first two
rows are linearly independent. Then they can be transformed into the
identity matrix Id2 by elementary row operations and the other rows
can be made equal to zero. Thus f and g are C-linear combinations of
∂x1h and ∂x2h modulo mJh, that is, ∂x1h and ∂x2h generate Jh/mJh.
This means Jh = (∂x1h, ∂x2h) + mJh (as OS,p-modules). Applying
Nakayama’s lemma to the local ring (OS,p,m) yields Jh = (∂x1h, ∂x2h).

First proof of Prop. 2.18. From Lemma 2.22 it follows that Jh can be
generated by two derivatives of h, wlog. Jh = (∂x1h, ∂x2h). Hence one
has ∂xih = ai∂x1(h) + bi∂x2(h), ai, bi ∈ OS,p, for 3 ≤ i ≤ n. Consider
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vector fields δi = ∂xi − ai∂x1 − bi∂x2 for 3 ≤ i ≤ n. Since δi(h) = 0, it
follows that δi ∈ DerS,p(log D). Evaluation of these n− 2 vector fields
at 0 shows that δ3(0), . . . , δn(0) are C-linearly independent vectors in
(S, p) ∼= (Cn, 0). Thus Rossi’s theorem can be applied (see [77]): locally
at p the germ (D, p) is isomorphic to (D� × Cn−2, (0, 0)), where D�

is locally contained in C2. Hence the problem has been reduced to
dimC S = 2. Then Prop. 2.15 shows that locally at p the divisor D is
isomorphic to the union of two transversally intersecting hyperplanes.
Hence the proof is complete.

Remark 2.23. Instead of using Rossi’s theorem in the above proof, we
could use the argument in Lemma 2.3 of [22] and apply induction.

For the second proof we use the notion of primitive ideal: it was in-
troduced by Pellikaan and Siersma (see [75] and references therein) in
order to study analytic functions with given singular locus of dimension
greater than 0.

Definition 2.24. Let OS,p be the local ring at a point p in a complex
manifold S of dimension n, f ∈ OS,p define a divisor {f = 0} and
I ⊆ OS,p an ideal. Denote by Jf = (∂x1f, . . . , ∂xnf) the Jacobian ideal
of f . The primitive ideal

�
I of I in OS,p is defined as

�
I = {f ∈ OS,p : (f) + Jf ⊆ I}.

The primitive ideal
�

I is again an ideal: if f, g ∈
�

I then the ideal
(f + g) + Jf+g is contained in (f + g) + Jf + Jg ⊆ I and if f is in

�
I

and g ∈ OS,p then (fg) + Jfg ⊆ (fg) + fJg + gJf ⊆ f + Jf ⊆ I.
One has the inclusion of ideals I2 ⊆

�
I ⊆ I. In general,

�
I is hard to

determine but if I is radical, then it is characterized by (cf. [75, Prop.
1.6.]): �

I = I(2).

Here I(k) denotes the k-th symbolic power of I: for a prime ideal p,
the k-th symbolic power is defined as p(k)

:= O ∩ (pkOp) and for a
radical ideal I as I(k)

= p
(k)
1 ∩ · · · ∩ p

(k)
m , where I = p1 ∩ · · · ∩ pm is

the irredundant prime decomposition of I. In the case of Gorenstein
singularities the primitive ideal can be described quite explicitly (also
see [75]):
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Proposition 2.25. Let I be a radical ideal in OS,p that defines a

Gorenstein singularity (X, p), that is, OX,p := OS,p/I is a Gorenstein

ring, and suppose that depth(I,O) = 2. Then
�

I = I2
holds.

Proof. By definition of
�

I, the inclusion I2 ⊆
�

I always holds. Since
I has height 2 and O/I is Gorenstein, by Serre’s theorem, I defines a
complete intersection. Thus one can assume that I is generated by a
regular sequence g1, g2 ∈ O. Let now f be an element of

�
I, then f is

clearly also contained in I. Hence f = a1g1 +a2g2 for some ai ∈ O. By
definition of the primitive ideal, Jf is also contained in I, which means
that ∂xj f ∈ I for all j = 1, . . . , n. Differentiating f yields

∂xj f = (∂xj a1)g1 + (∂xj a2)g2 + a1(∂xj g1) + a2(∂xj g2),

hence a1(∂xj g1) + a2(∂xj g2) ∈ I. Denote a = (a1 mod I, a2 mod I)

and consider the exact sequence

O2
X,p

dg �� On

X,p
�� ΩX,p

�� 0 ,

where dg : (a, b) �→ (a(∂x1g1) + b(∂x1g2), . . . , a(∂xng1) + b(∂xng2))
T .

One sees that a is contained in ker(dg). But by [60, 6.B] dg is injective
and hence a1, a2 have to be contained in I. This implies f ∈ I2.

Remark 2.26. The preceding proposition can be generalized in two
ways: first if I is radical of arbitrary height ≤ n and defines a complete
intersection, then with the analogous proof one can show that I2

=
�

I.
Second if I is radical of depth ≤ 3 and O/I is Gorenstein then, with
an argument in [51] one can also show that I2

=
�

I.

Lemma 2.27. Let f ∈ OS,p be a non-unit and (x1, . . . , xn) complex

coordinates around p.
(i) ∂xsxtf �∈ m if and only if in the equation of f the monomial xsxt

has a non-zero coefficient. (ii) f is of the form (possibly after a linear

change of coordinates)

f =

n�

i=1

aixi +

n�

i=1

bix
2
i

+ f̃ ,

where ai, bi ∈ C and f̃ ∈ m3
, that is, f contains no mixed quadratic

terms.

Proof. Straightforward computation.
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Second Proof of Prop. 2.18. The Jacobian ideal Jh = (∂x1h, . . . , ∂xnh)

in OS,p is radical, of depth 2 on OS,p and OSing D,p is Gorenstein. We
show that (D, p) is analytically trivial near p along the subspace {x3 =

· · · = xn = 0} and thus reduce the problem to dimension 2. For this the
triviality criterion A.44 is used: it must be shown that ∂xih ∈ mJh for
i ≥ 3. By Lemma 2.27 we may suppose that h has no mixed quadratic
terms, that is, ∂xixj h ∈ m. From Lemma 2.22 it follows that Jh can be
generated by two derivatives, wlog. Jh = (∂x1h, ∂x2h). Since h ∈

�
Jh,

Prop. 2.25 implies that h is contained in J2
h
. Thus it is of the form

h = a(∂x1h)
2

+ b(∂x1h)(∂x2h) + c(∂x2h)
2,

with a, b, c ∈ OS,p. But then for all i ≥ 3, it follows that

∂xih =∂xia(∂x1h)
2

+ 2a(∂x1h)(∂x1xih) + (∂xib)(∂x1h)(∂x2h)+

b(∂x1xih)(∂x2h)+b(∂x1h)(∂x2xih)+(∂xic)(∂x2h)
2
+ 2c(∂x2h)(∂x2xih).

Noting that J2
h
⊆ mJh, it is easily seen that each summand of ∂xih

is in mJh and thus ∂xih ⊆ mJh. This shows that D is trivial along
{x3 = · · · = xn = 0}, which implies that locally at p one can find
coordinates (y1, . . . , yn) such that h(y1, . . . , yn) = h(y1, y2, 0, . . . , 0).
Thus the problem has been reduced to dim S = 2. Then Prop. 2.15
shows that locally at p the divisor D is isomorphic to the union of two
transversally intersecting hyperplanes.

Unfortunately not all Cohen–Macaulay rings are Gorenstein. One could
try to construct a hypersurface, whose singular locus OSing D is reduced
of dimension (n − 2) but locally not a complete intersection Cohen–
Macaulay ring. In concrete examples one sees that this will not be the
case:
Example 2.28. (The singular cubic space curve) One of the first non-
trivial examples for this situation would be a surface in C3, whose
singular locus is a singular Cohen–Macaulay curve, whose ideal can
minimally generated by more than two elements. A classical example
for such a curve is the singular cubic space curve. Recall, that the
singular cubic is given by the ideal I = (x3 − yz, y2 − xz, z2 − x2y) in
O = C{x, y, z}. Its coordinate ring O/I is Cohen–Macaulay but ideal-
theoretically I is not a complete intersection. We show that the ideal
I defining the twisted cubic space curve cannot be the Jacobian ideal
of a surface D in (C3, 0).
Direct computation, using an analogous argument as in Example 2.19,
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shows that f1 = x3 − yz, f2 = y2 − xz, f3 = z2 − x2y cannot be
partial derivatives of an h ∈ O: if there exists an h such that I =

(∂xh, ∂yh, ∂zh) then

(∂xh, ∂yh, ∂zh)
T

= AfT ,

where A is a 3 × 3 matrix with entries in O and f denotes the vector
(f1, f2, f3). By Nakayama’s lemma A is even contained in GL3(O),
which implies that A(0) (the evaluation of the matrix A at 0) is in
GL3(C). Using the three necessary and sufficient conditions ∂xyh =

∂yxh, ∂xzh = ∂zxh, ∂yzh = ∂zyh (see Lemma 3.5) one finds that the
constant terms of the entries a12, a22, a32 ∈ O of A are equal to zero.
Hence A(0) cannot be invertible and there does not exist an h such
that I = Jh.

2.3.2 Hyperplane arrangements

Hyperplane arrangements are finite unions of hyperplanes in a vector
space. They can be described by combinatorial means by their so-called
intersection lattice and are object of study in many fields of mathemat-
ics. For an introduction to hyperplane arrangements see e.g. [74, 91].
For hyperplane arrangements one can often find formulas to explicitly
compute singularity invariants, like multiplier ideals, zeta-functions or
b-functions, see e.g. [16] and references therein. Some of these invari-
ants are even combinatorial, that is, they only depend on the lattice
associated to the arrangement. An open question in this context is if
the freeness of an hyperplane arrangement is a combinatorial property,
see [85]. Free arrangements were first studied by Terao [94], where he
also proved the Cohen–Macaulayness of the Jacobian ideal of a free
hyperplane arrangement. Wakefield and Yoshinaga [99] have proved
that a central hyperplane arrangement can be reconstructed from its
Jacobian ideal.

Here we prove Theorem 2.1 for hyperplane arrangements and a slight
generalization thereof. First some terminology: A hyperplane arrange-

ment D is a finite collection of affine hyperplanes in an n-dimensional
vector space V over a field k. When each hyperplane contains the ori-
gin, one speaks of a central arrangement. One fixes affine coordinates
(x1, . . . , xn) for V ∗, where V ∗ denotes the dual vector space to V . Then
one considers S := Sym(V ∗

) ∼= k[x1, . . . , xn]. The hyperplane arrange-
ment D =

�
m

i=1 Hi is defined by a (reduced) equation {
�

m

i=1 li = 0}
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where each li is a polynomial of degree 1 in k[x1, . . . , xn] and corre-
sponds to the hyperplane Hi.
Logarithmic differential forms, freeness, etc. are defined according to
the general case, which we have already presented in Chapter 1.

Proposition 2.29. Let D be a central hyperplane arrangement in Cn
,

defined by the reduced equation h = h1 . . . hm where each hi is a homoge-

neous polynomial of degree 1 in k[x1, . . . , xn]. Let J = (∂x1h, . . . , ∂xnh)

be the Jacobian ideal of h. Then OSing D = k[x1, . . . , xn]/J is Cohen–

Macaulay, J has depth 2 on k[x1, . . . , xn] and is radical if and only if

D is a normal crossings arrangement.

Remark 2.30. Note that Aleksandrov’s theorem also holds in the affine
case, see [4]. Also by Terao’s result [94] the Jacobian ideal of a free
hyperplane arrangement is Cohen–Macaulay.

Proof. Since the statement is local, we may assume that D is defined
at a point p by some h = h1 · · ·hm, each hi linear and corresponding to
Di. The number m depends on the chosen point p. By definition the
components of D are smooth and any two of them meet transversally.
In order to apply Thm. 1.42 we only have to show that the dimension of
an intersection Di ∩Dj ∩Dk is less than or equal to n− 3 for i �= j �= k

and i, j, k ∈ {1, . . . ,m}. Let Sing D =
�

l

i=1 Ci be the decomposition of
Sing D into irreducible components Ci, where each Ci is defined by a
prime ideal pi of depth 2 onOS,p. Suppose that C1 were the intersection
of k ≥ 3 hyperplanes. Since dim(Ci ∩ Cj) ≤ n − 3 for all i �= j one
can find a point p in C1\

�
l

i=2 Ci. Since C1 is the intersection of linear
subspaces of Cn, it is again a linear subspace and hence smooth. Thus
w.l.o.g. at p, we can choose p1 = (x1, x2) to be the defining ideal of
C1, where (x1, . . . , xn) are the affine coordinates of Cn at p. We can
also assume that h1 = x1, h2 = x2 and hi = aix1 + bix2 with ai, bi �= 0.
The defining ideal of Sing D at p is

J =(x2h3 · · ·hm + a3x1x2h4 · · ·hm + . . . + amx1x2h3 · · ·hm−1,

x1h3 · · ·hm + . . . + bmx1x2h3 · · ·hm−1).

Clearly J ⊆ (x1, x2)
m−1 � (x1, x2), which implies that J is not radical

at p. Contradiction.
Now all conditions of Thm. 1.42 (iv) are satisfied, that is, the com-
ponents Di of D are smooth (and thus normal), Di and Dj intersect
transversally and dim(Di ∩Dj ∩Dk) ≤ n− 3. Thus, by this theorem,
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Ω
1
Cn,p

(log D) is generated by closed forms for all p. Since by assump-
tion OSing D,p is Cohen–Macaulay and depth(J,OS,p) = 2, Thm. 2.6
ensures that D is a free divisor. Note that by Lemma 1.53 one can find
a basis of Ω

1
Cn,0 consisting of closed forms. Hence by Thm. 1.52 these

conditions imply that D has normal crossings.

Remark 2.31. Splayed divisors provide an alternative proof of this re-
sult, see the second corollary to Prop. 2.48.

As a generalization we can prove Theorem 2.1 for a divisor D that is
locally the union of normal divisors with essentially the same method
as in the hyperplane arrangement case.

Proposition 2.32. Let D be a divisor in S, dim S = n, that has locally

at a point p irreducible components (D1, p)∪. . .∪(Dm, p) such that each

Di is normal. If D is a free divisor with radical Jacobian ideal then D
has normal crossings at p.

Proof. Another application of Theorems 1.42 and 1.52 proves the as-
sertion. For Thm. 1.42 (iv) it only remains to show that any two com-
ponents Di, Dj intersect transversally outside an (n − 3)-dimensional
closed analytic subset and that dim(Di ∩ Dj ∩ Dk) ≤ n − 3 for dif-
ferent i, j, k. Denote by Di ∩ Dj = Cij the (n − 2)-dimensional in-
tersection of Di and Dj . Since the Jacobian ideal is radical and of
depth 2, Cij is a union of irreducible (n − 2)-dimensional irreducible
components and we can find a smooth point q near p on Cij . More-
over, the smooth points on Cij form an open dense subset of dimension
n − 2. If Di and Dj meet tangentially at q then we may assume that
Di = {x1 = 0} and Dj = {xm

2 − x1 = 0}. Then the Jacobian ideal is
Jh,q = (xm

2 −2x1, x1x
m−1
2 ), which is clearly not radical. Contradiction.

If dim(Di ∩ Dj ∩ Dk) = n − 2 then Di ∩ Dj ∩ Dk = Cijk would be a
union of irreducible components of Sing D. Again, we can find a smooth
point q ∈ Cijk near p where wlog. Jh,q = (x1, x2). But then we are
in the 2-dimensional case and Lemma 2.17 or alternatively Prop. 2.15
shows a contradiction. Hence all conditions of Theorem 1.42 (iv) are
satisfied and the rest of our argument is the same as in the hyperplane
arrangement case: one can find a basis of closed forms of Ω

1
S,p

(log D)

and by Thm. 1.52 D has normal crossings at p.



2.4 The general case of Thm. 2.1 73

2.4 The general case of Thm. 2.1

We are now approaching the proof of the general case of the implica-
tion (2) ⇒ (1) of Theorem 2.1. Therefore we reduce the problem in
this section to the case of an irreducible divisor, which will be treated
similarly like the results on the logarithmic residue from Chapter 1.
The goal is to show that if a reducible divisor is free and has radical
Jacobian ideal then already each of its irreducible components has both
properties. This is essentially the content of Prop. 2.48. In order to
achieve a proof of this statement, we introduce so-called splayed divi-
sors, which are divisors whose defining equation h can be factored into
h = h1h2 such that the hi have separated variables (probably after a
coordinate change). Thus splayed divisors are a generalization of the
union of transversally intersecting smooth divisors. First it is shown
that a splayed divisor is free and has radical Jacobian ideal if and only if
its splayed components have these two properties (Lemma 2.38). Then
we show that a divisor that is a union of two components and that
has radical Jacobian ideal is splayed (Lemma 2.40). Along the way we
obtain a characterization of splayed divisors in terms of their Jacobian
ideals (see Thm. 2.43), namely, h1h2 defines locally a splayed divisor if
and only if its Jacobian ideal satisfies the so-called Leibniz property

Jh1h2 = h1Jh2 + h2Jh1 .

For this section we use the following notation: if a divisor D is the union
of some

�
m

i=1 Di, where the Di do not have to be irreducible but have
no common components, then we denote their respective equations at
a point p by h1, . . . , hm, where hi ∈ OS,p. Then D = {h = h1 · · ·hm =

0}. The Jacobian ideal of Di is denoted by Jhi = (∂x1hi, . . . , ∂xnhi) and
the Jacobian ideal of D is denoted by Jh1···hm = Jh = (∂x1h, . . . , ∂xnh).

2.4.1 Splayed divisors

Here splayed divisors are introduced and we show the two properties we
are interested in: a splayed divisor is free if and only if its components
are and a splayed divisor has radical Jacobian ideal if and only if all
its splayed components have radical Jacobian ideal. However, splayed
divisors are certainly interesting in their own right since they are a
natural generalization of normal crossing divisors to divisors with sin-
gular components. In Chapter 3, we will consider singularity invariants
of splayed divisors, in particular, we find that their Hilbert–Samuel
polynomials satisfy an additivity condition.
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Definition 2.33. Let D be a divisor in a complex manifold S, dim S =

n. The divisor D is called splayed at a point p ∈ S (or D is a splayed

divisor at p) if one can find coordinates (x1, . . . , xn) at p such that
(D, p) = (D1, p) ∪ (D2, p) is defined by

h(x) = h1(x1, . . . , xk)h2(xk+1, . . . , xn),

1 ≤ k ≤ n − 1, where hi is the defining reduced equation of Di. Note
that the hi are not necessarily irreducible. The splayed components

D1 and D2 are not unique. Splayed means that D is the union of two
products: since h1 is independent of xk+1, . . . , xn, the divisor D1 is
locally at p a product (D�

1, 0)× (Cn−k, 0), where (D�
1, 0) ⊆ (Ck, 0) (and

similar for D2).

Example 2.34. (1) Let (D, 0) be the divisor in (C2, 0) defined by h1h2 =

x(y − x2
). Since D has normal crossings at the origin, D is splayed.

(2) Let D = {(x3 − y2
)(z2 − w2

) = 0} ⊆ C4. Then D is splayed with
splayed components h1 = x3 − y2 and h2 = z2 − w2.
(3) The divisor D = {(x − y2

)zw = 0} is splayed in (C4, 0) but its
splayed components are not unique, e.g. h1 = x − y2 and h2 = zw or
h1 = (x− y2

)w and h2 = z.
(4) The divisor D = {(x − y2

)yz = 0} is also splayed in (C3, 0) with
components given by h1 = (x− y2

)y and h2 = z.
Let S, T be complex manifolds of dimensions n, m and suppose that
(S × T, 0) ∼= (Cn+m, 0), with complex coordinates (x, y) = (x1, . . . , xn,
y1, . . . , ym) at the origin. Let (Dx

1 , 0) be a divisor in (S, 0), which is de-
fined by a reduced g�(x) ∈ OS,0

∼= C{x1, . . . , xn} and which has a loga-
rithmic derivation module over C{x} denoted by DerS,0(log Dx

1 ). Then
we may consider the cylinder over Dx

1 in the T -direction in (S × T, 0),
namely the hypersurface D1 defined by g(x, y) = g(x, 0) := g�(x) ∈

C{x, y}. It is easy to see that

DerS×T,0(log D1) = (DerS,0(log Dx

1 )⊗C{x} C{x, y})⊕ (DerT,0⊗C{y}C{x, y}).

Similarly define Dy

2 and D2 with equations h�(y) = h(x, y) and also
DerS×T,0(log D2). Note that both g, h are reduced and have no common
factor. Thus we define the (splayed) divisor D = D1∪D2 in S×T that
is given at 0 by the equation gh = 0. Since g and h have separated
variables, there is a natural splitting of DerS×T,0(log D): by definition
for any element δ = δg +δh of DerS×T,0(log D), where δg :=

�
n

i=1 ai∂xi

and δh :=
�

m

j=1 bj∂yj for some ai, bj ∈ C{x, y}, one has

δ(gh) = hδg(g) + gδh(h) = agh, (2.1)
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for some a ∈ OS,p. Dividing (2.1) through g or h this implies that δg(g)

is divisible by g, that is, δg(g) ∈ (g) in C{x, y} and also that δh(h) ∈ (h)

in C{x, y}. Therefore each element δ of DerS×T,0(log D) can be written
uniquely as δ = δg + δh. Conversely, a computation shows that for
any η1 ∈ DerS,0(log Dx

1 ) ⊗C{x} C{x, y} and η2 ∈ DerT,0(log Dy

2) ⊗C{y}

C{x, y} the vector field η1 + η2 is contained in DerS×T,0(log D). Hence
it follows that
DerS×T,0(log D)= (DerS,0(log Dx

1 )⊗C{x}C{x, y})⊕(DerT,0(log Dy

2 )⊗C{y}C{x, y}).
(2.2)

Remark 2.35. The concept of splayed divisors was also studied by J.
Damon under the name product union, see [24].

Lemma 2.36. Let D1, D2 be divisors in some S × T ∼= Cn ×Cm
and

D = D1 ∪D2 be splayed at a point p = (x1, . . . , xn, y1, . . . ym) defined

locally by D1 = {g(x) = 0}, D2 = {h(y) = 0} resp. D = {g(x)h(y) = 0}

with g, h ∈ OS×T,p
∼= C{x, y} . If Jg and Jh are both radical ideals then

Jgh = (g, h) ∩ Jg ∩ Jh.

Proof. First note that (g, h) is a radical ideal (see Remark 2.37). As
D is splayed, it follows that Jgh = gJh + hJg. From Jg and Jh radical
follows g ∈ Jg and h ∈ Jh (see Prop. 2.13). Thus it is clear that Jgh is
contained in (g, h)∩ Jg ∩ Jh. Conversely, suppose that α is an element
in (g, h) ∩ Jg ∩ Jh. Then α can be written as

α = ag + bh =

n�

i=1

ai∂xig =

m�

j=1

bi∂yj h

for some a, b, ai, bj ∈ C{x, y}. The element α − ag = bh is contained
in Jg since g ∈ Jg. The ideal Jg can be written as an intersection of
prime ideals p1 ∩ · · · ∩ ps where all pi are in C{x}. Because g and h
have separated variables, we have h �∈ pi for any i = 1, . . . , s. However,
bh must be contained in each of the pi. Thus it follows that b has to
be contained in each pi, which means nothing else but b ∈ Jg. Inter-
changing the role of g and h yields a ∈ Jh. Hence α is contained in
hJg + gJh = Jgh, which is what had to be shown.

Remark 2.37. In most textbooks it is shown that the tensor product
A ⊗k B of two reduced finitely generated k algebras A, B is again re-
duced. Here, one has to assume that k is a perfect field. A sketch of
the proof is as follows: if A is reduced, then also K ⊗k A is reduced for
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all extension fields K ⊇ k, see [10, ch. 5,§15]. So choose a k-basis (vi)

of A (as a vector space) and suppose that α =
�

i
vi ⊗ bi is a non-zero

nilpotent element in A⊗k B. We may suppose that there exists a maxi-
mal ideal m in B, which does not contain b1 �= 0 (this holds because for
a reduced finitely generated algebra the intersection of its prime ideals
is just 0). Then α ∈ A⊗k (B/m) is nilpotent and not equal to 0. But
B/m is a field and so this is a contradiction to the fact that for all field
extensions of k the tensor product is reduced.
A general proof that the tensor product of reduced k algebras is again
reduced can be found in Bourbaki [10, Ch. 5, §15,Thm. 3]. For re-
duced analytic algebras there is also a proof with the help of Grauert’s
division theorem, which can be found in [27, Thm. 7.3.5.]. For local
analytic algebras A, B a theory about the analytic tensor product was
developed in [44, III, §5].

Lemma 2.38. Let D1, D2 and D be splayed divisors in S defined as

in Lemma 2.36.

(a) The Jacobian ideal of D, denoted by Jgh = (∂x1gh+g∂x1h, . . . , ∂ymgh+

g∂ymh) is radical if and only if both Jh and Jg are also radical.

(b) The splayed divisor D = {g(x)h(y) = 0} is free if and only if

D1 = {g(x) = 0} and D2 = {h(y) = 0} are both free.

Proof. (a): Suppose that Jg and Jh are radical. By Lemma 2.36 the
ideals Jgh and (g, h) ∩ Jg ∩ Jh are equal. We compute its radical
�

Jgh =

�
(g, h) ∩ Jg ∩ Jh =

�
(g, h) ∩

�
Jg ∩

√
Jh = (g, h) ∩ Jg ∩ Jh = Jgh,

where the second equality holds because the radical of an intersection
of ideals is equal to the intersection of the radicals of these ideals (easy
computation) and the third equality because of our assumptions. Con-
versely, suppose that Jgh =

�
Jgh. Then gh is an element of Jgh and

the ideal Jgh can be generated by

Jgh = (gh, (∂x1g)h, . . . , (∂xng)h, (∂y1h)g, . . . , (∂ymh)g).

Localization of C{x, y} in g yields (Jgh)g = ((h) + Jh)g, which is radi-
cal, since Jgh is radical. Note that for an ideal I ⊆ C{x, y}, we denote
by Ig the localization of I in g (cf. Appendix A). The ideal ((h) + Jh)

in C{x, y} can be written as a minimal irredundant primary decom-
position q1 ∩ · · · ∩ qm of primary ideals with associated prime ideals
p1, . . . , pm. Since h only depends on y, all the pi and qi are ideals of
C{y1, . . . , ym}. Hence no power of g is contained in any of the pi, and



2.4 The general case of Thm. 2.1 77

it follows that

((h) + Jh)g = (q1)g ∩ · · · ∩ (qm)g = (p1)g ∩ · · · ∩ (pm)g,

where no (qi)g is the whole ring. Let now α ∈ OS,p be an element of
the radical of ((h)+Jh). This means that there exists an integer k such
that α

k ∈ ((h) + Jh). Then (α/1)
k ∈ ((h) + Jh)g and since this ideal

is radical also α ∈ ((h) + Jh)g holds. Thus α is contained in any (pi)g.
Therefore (by definition of localization) the equality

α =
ai

gt

holds for some ai ∈ pi and some t ∈ N and there exists a u ∈ N such
that gu

(αgt − ai) = 0. This implies αgu+t ∈ pi. But g and h have sep-
arated variables, hence α is contained in pi for any i. This shows the
radicality of ((h)+Jh). Similarly one proves ((g)+Jg) =

�
((g) + Jg).

(b): If both D1 and D2 are free then there exist bases of DerS×T,p(log D1)

and DerS×T,p(log D2) of the form

δ1 =

n�

i=1

a1i∂xi , . . . , δn =

n�

i=1

ani∂xi , δn+1 = ∂y1 , . . . , δn+m = ∂ym

and

ε1 = ∂x1 , . . . , εn = ∂xn , εn+1 =

m�

i=1

bn+1,i∂yi , . . . , εn+m =

m�

i=1

bn+m,i∂yi .

It is easy to see that any δi for 1 ≤ i ≤ n and any εj for n +

1 ≤ j ≤ n + m is also an element of DerS×T,p(log D) (direct com-
putation, using separated variables, see the discussion at the begin-
ning of this section). By Saito’s criterion (Thm. 1.19) it follows that
δ1, . . . , δn, �n+1, . . . , �n+m form a basis of DerS×T,p(log D). Conversely,
suppose that DerS×T,p(log D) is free. From (2.2) we know that

DerS×T,p(log D)∼=(DerCn,0(log Dx
1 )⊗C{x}C{x, y})⊕(DerCm,0(log Dy

2 )⊗C{y}C{x, y}).

Since DerS×T,p(log D) is free, it follows that DerCn,0(log Dx

1 ) ⊗C{x}

C{x, y} and DerCm,0(log Dy

2)⊗C{y}C{x, y} are projective OS×T,p-mod-
ules. Since the notion of projective and free module over regular local
rings coincide (see Appendix A), these two modules are even free.
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2.4.2 Killing components of divisors

In this section we show that the properties of freeness and radical Ja-
cobian ideal of a divisor are preserved under adding to or subtracting
components from the divisor. Suppose that the divisor D ⊆ S, with
dim S = n, is given locally at a point p = (x1, . . . , xn) by

D = {g(x1, . . . , xn)h(x1, . . . , xn) = 0},

with g, h ∈ OS,p reduced but not necessarily irreducible and with no
common factors. Then (D, p) is a union (D1, p) ∪ (D2, p) of D1 =

{g = 0} and D2 = {h = 0} near p. Here we ask for conditions and a
characterization when D is splayed.

Definition 2.39. Let D1 = {g = 0}, D2 = {h = 0} and D = {gh = 0}

at p be defined as above. We say that Jgh satisfies the Leibniz property

if
Jgh = gJh + hJg.

We show a characterization of splayedness by Jacobian Ideals, by the
Leibniz property. This property makes it easy to check in concrete ex-
amples whether a divisor is splayed.

The goal of this section is to show that a reducible free divisor with
radical Jacobian ideal is splayed. First an ideal-theoretic characteriza-
tion of splayedness is proven (Lemma 2.40). Then it is shown that a
divisor is splayed if and only if it has the Leibniz property (Theorem
2.43). Finally we show that if Jgh is radical then it satisfies the Leibniz
property and is thus splayed (Prop. 2.48).

Lemma 2.40. Let dim S = n and at a point p = (x1, . . . , xn) denote

by OS,p = C{x1, . . . , xn} (in short: O = C{x}) the local ring at p. Let

D1 = {g(x) = 0}, D2 = {h(x) = 0} and D = {gh(x) = 0} be divisors,

where we assume that g, h ∈ OS,p are reduced and have no common

factors. Then D is locally at p splayed if and only if

(g) ∩ ((gh) + Jgh) = g((h) + Jh).

Remark 2.41. The idea to consider the equality of these two ideals
comes from the case when one component is smooth, that is, if g = x1.
Then it is rather easy to see that a splayed divisor D = {x1h = 0}

satisfies (x1) ∩ ((x1h) + Jx1h) = x1((h) + Jh).
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Proof. If D is splayed, we can suppose wlog. that D1 = {g(x, 0) = 0}

and D2 = {h(0, x) = 0} where (x) = (x1, . . . , xk, xk+1, . . . , xn). In
this case (separated variables) it is easy to see that Jgh = gJh + hJg.
An element α ∈ g((h) + Jh) can be written as agh + g

�
n

i=k+1 ai∂xih.
Clearly α is contained in the ideal (g) and g

�
n

i=k+1 ai∂xih ⊆ gJh

and this ideal is contained in Jgh. Thus α is contained in (g) ∩ (gh +

Jgh). If α ∈ (g) ∩ ((gh) + Jgh) we can write it as h
�

k

i=1 ai∂xig +

g
�

n

i=k+1 ai∂xih + agh and since α ∈ (g), it follows that g divides
�

k

i=1 aih∂xig. Therefore α = ghã + g
�

n

i=k+1 ai∂xih for some ã ∈ O.
Hence α is also contained in g((h) + Jh).
Conversely, suppose that

(g) ∩ ((gh) + Jgh) = g((h) + Jh). (2.3)

The assertion is shown in two steps: first one can rectify h and second
is the rectification of g. We remark that if ϕ : O → O is a local iso-
morphism, then ϕ((g) ∩ ((gh) + Jgh)) = ϕ(g((h) + Jh)) is isomorphic
to (g ◦ ϕ) ∩ ((gh ◦ ϕ) + Jgh◦ϕ) = (g ◦ ϕ) · ((h ◦ ϕ) + Jh◦ϕ). This means
that (2.3) is stable under a local algebra isomorphism of O. Moreover,
(2.3) is stable under multiplication with units.

First Step: We show that one can assume h(x1, . . . , xn) = h(0, . . . , 0,
xk+1, . . . , xn) and that

∂xih �∈ (h, ∂xk+1h, . . . , �∂xih, . . . , ∂xnh) (2.4)

for all i ∈ {k+1, . . . , n}. If not so, suppose that e.g. ∂x1h is contained in
(∂x2h, . . . , ∂xnh). Then by the triviality lemma A.44 there exists an al-
gebra isomorphism ϕ : O → O such that ϕ(x) = (x1, ϕ2(x), . . . ,ϕn(x))

and h ◦ ϕ(x) = v(x)h(0, x2, . . . , xn), with v ∈ O∗. Then set �h :=

h(0, x2, . . . , xn) and �g := g ◦ ϕ. The divisor defined by �g · �h is clearly
isomorphic to D, and D1 is isomorphic to {g̃ = 0} and D2 is isomorphic
to {�h = 0}. By the above remarks, equation (2.3) also holds for �g and
�h instead of g and h. If another ∂xi h̃ �= 0 were contained in the ideal

(∂x2
�h, . . . ,

�
∂xi

�h, . . . , ∂xn
�h) the triviality lemma could again be applied

to �h.

Second Step: We may assume that h(x) = h(0, . . . , 0, xk+1, . . . , xn) and
that (2.4) holds. Suppose that i is an element of {k + 1, . . . , n}. Since
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any g∂xih ∈ g((h) + Jh), we can also write it (by (2.3)) as

g(∂xih) = a�
i
gh +

n�

j=1

aijg(∂xj h) +

n�

j=1

aijh(∂xj g).

Division through g shows that
�

n

j=1 aijh(∂xj g) = ãigh for some ãi ∈ O.
Hence reduction of the above equation by g yields

∂xih = aih +

n�

j=k+1

aij(∂xj h),

where ai := a�
i
+ ãi. But this equation implies

(1− aii)(∂xih) = aih +

n�

j=k+1,j �=i

aij(∂xj h).

Then (1 − aii) ∈ m, that is, aii ∈ O∗, and aij ∈ m for all i, j =

k + 1, . . . , n, otherwise (2.4) would be contradicted. Again from (2.3),
namely,

0 = a�
i
gh +

n�

j=1,j �=i

aijg(∂xj h) + (aii − 1)g(∂xj h) + h
n�

j=1

aij(∂xj g)

we get

−aiih(∂xig) = a�
i
hg + g

n�

j=1

ãij(∂xj h) + h
n�

j=1,j �=i

aij(∂xj g),

for any i = k + 1, . . . , n. Reduction of these (n − k) equations by h
yields

aii(∂xig) = ãig −
n�

j=1,j �=i

aij(∂xj g), for some ãi ∈ O.

Keeping in mind that the aij for i, j ≥ k + 1 are in m we manipulate
these (n − k) equations (substituting ∂xk+1(g) the second equation,
∂xk+1(g) and ∂xk+2(g) in the third, and so on) such that we arrive at
an equation

∂xng = bng +

k�

j=1

bnj(∂xj g),
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with some coefficients bn, bnj ∈ O. Substituting back in all (n − k)

equations yields

∂xig ∈ (g, ∂x1g, . . . , ∂xkg) for all i = k + 1, . . . , n.

By the triviality lemma there exists an algebra isomorphism ψ : O → O

with ψ(x) = (ψ1(x), . . . ,ψk(x), xk+1, . . . , xn) such that ψ(x1, . . . , xk, 0)

= (x1, . . . , xk, 0). Moreover there exists v(x1, . . . , xk, 0) ≡ 1 such that
g ◦ψ is equal to vg(x1, . . . , xk, 0). Set g̃ := v−1

(g ◦ψ) and h̃ := h ◦ψ =

h = h(0, . . . , 0, xk+1, . . . , xn). By construction g̃h̃ defines a splayed
divisor that is isomorphic to D such that the assertion has been shown.

Example 2.42. Let D be the divisor in C3 given at a point p by x(x +

y2 − z3
). Then D is the union of two smooth components D1 = {h =

x+y2−z3
= 0} and H = {x = 0}. The ideal (x)∩(x(x+y2−z3

), Jxh) =

(xy, x2, xz2
) is strictly contained in (x(x + y2 − z3

), xJh) = (x). Thus
D is not a splayed divisor.

Theorem 2.43. Let (S, D) be a complex manifold S, dim S = n, to-

gether with a divisor D ⊆ S that is locally at a point p = (x1, . . . , xn) ∈

S defined by {gh = 0}, where g and h are reduced elements of OS,p that

are not necessarily irreducible but have no common factor. Then D is

splayed at p if and only if Jgh satisfies the Leibniz property

Jgh = gJh + hJg.

Proof. First suppose that gJh+hJg = Jgh. By Lemma 2.40 the equality
(g) ∩ ((gh) + Jgh) = g((h) + Jh) has to be shown. So take an α ∈

g((h) + Jh), which is of the form

α = agh + g
n�

i=1

ai(∂xih),

for a, ai ∈ OS,p. One sees that gh ∈ ((gh)+Jgh) and g
�

n

i=1 ai(∂xih) ∈

gJh ⊆ Jgh and hence α ∈ ((gh) + Jgh) and also in (g). Now take a
β ∈ (g) ∩ ((gh) + gJh + hJg), which can be written as

β = agh + g
n�

i=1

ai(∂xih) + h
n�

i=1

bi(∂xig).

Since β is also contained in (g) it follows that
�

n

i=1 bi(∂xig) = gb̃ for
some b̃ ∈ OS,p. Hence β ∈ (gJh + (gh)) = g(Jh + h).
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Conversely, let D be splayed. Then we may assume that D is given
locally by

g(x1, . . . , xk, 0, . . . , 0)h(0, . . . , 0, xk+1, . . . , xn).

A direct computation shows that

∂xi(gh) = ∂xi(g)h for i = 1, . . . , k and

∂xi(gh) = g∂xi(h) for i = k + 1, . . . , n.

Thus clearly Jgh is equal to gJh + hJg.

Remark 2.44. Note that with Theorem 2.43 we have obtained an alge-
braic description of splayed divisors by their Jacobian ideals, namely
that their Jacobian ideals satisfy the Leibniz property Jgh = gJh +hJg.
In Chapter 3, we will also derive an algebraic characterization of Sing D
defined by ((gh) + Jgh) of a splayed divisor, namely, D = {gh = 0} at
a point p is splayed if and only if ((gh) + Jgh) = (g, h) ∩ ((g) + Jg) ∩

((h) + Jh).

Lemma 2.45. Let D ⊆ S be a divisor given at p ∈ S by {gh = 0} with

gh ∈ OS,p reduced and suppose that Jgh is radical. Then

Jgh = gJh + hJg.

Proof. By definition Jgh = (∂x1gh + g∂x1h, . . . , ∂xngh + g∂xnh). Since
Jgh is radical, it follows that gh ∈ Jgh (Prop. 2.13). The ideal Jgh

can be written uniquely as an irredundant intersection of prime ideals
p1 ∩ . . . ∩ pk ∩ pk+1 ∩ . . . ∩ pm, where we may assume that g �⊆ pi for
all i = 1, . . . , k and that g is contained in the remaining pi. Localizing
in g yields (Jgh)g = (h, ∂x1h, . . . , ∂xnh)g = ((h) + Jh)g ⊆ (OS,p)g. By
Prop. A.1 one has (Jgh)g =

�
m

i=1(pi)g =
�

k

i=1(pi)g, since the pi with
i = k + 1, . . . ,m contain the unit of the localization. Thus ∂xj h is
contained in (pi)g for i = 1, . . . , k and for all j = 1, . . . , n. Hence

∂xj h

1
=

pi

gti

for all i = 1, . . . , k, where pi ∈ pi and ti ∈ N. This means that there
exists an gli , li ∈ N, such that gli(∂xj (h)gti − pi) = 0. Hence it follows
that ∂xj (h)gti+li ∈ pi. Since by assumption, g is not contained in any
of the pi for i = 1, . . . , k, it follows that ∂xj h ∈ pi. Thus g∂xj (h) is
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contained in all pi with i = 1, . . . , k. Further, g is contained in the
remaining pi, which implies that g(∂xj h) is contained in all associated
primes of Jgh, and thus g(∂xj h) ∈ Jgh for all j = 1, . . . , n. This yields

Jgh = (g∂x1(h), . . . , g∂xn(h), h∂x1(g), . . . , h∂xn(g)) = gJh + hJg.

Example 2.46. A splayed divisor need not have a radical Jacobian ideal,
as the following example shows. Let D be the divisor in (C3, 0) with
coordinates (x, y, z) at 0, that is defined by gh = x(y2

+ z3
). Then

clearly D is splayed. The Jacobian ideal is Jgh = (y2
+ z3, xy, xz2

) =

(y, z2
)∩ (x, y2

+ z3
), which is not radical. Note that D is a free divisor.

Example 2.47. Let D ⊆ C3 be given at the origin by gh = x(x + y2
+

z3
) = 0. Then D is not splayed at the origin. Here the intersection

of the two components is given by the ideal (g, h) = (x, y2
+ z3

). Also
consider the divisor D� ⊆ C3 that is given by g�h� = x(y2

+z3
). Clearly

D� is splayed at the origin and the intersection of the two components is
given by the ideal (g�, h�) = (x, y2

+z3
). Here one sees that splayedness

cannot be determined by just the knowledge of the ideal of the inter-
section of the two components, in contrast to the case of two smooth
divisors intersecting transversally, see Chapter 3.

Proposition 2.48. Let D = D1∪D2 be a divisor in an n dimensional

complex manifold S and let D, D1 and D2 at a point p ∈ S be defined

by the equations gh, g and h, respectively. Suppose that Jgh is radical.

Then D is splayed and Jh and Jg are also radical. If moreover D is

free at p then also D1 and D2 are free at p.

Proof. By Theorem 2.43 and Lemma 2.45 it follows that D is locally
splayed. By Lemma 2.38 also Jg and Jh are radical and from the same
lemma follows that D1 and D2 are free if D is free.

Corollary. Let D�
= {h = 0} be a free divisor in S with Jh =

√
Jh and

D the union of D�
with a smooth component, wlog. D = {x1h = 0}.

Then D is free and Jx1h is radical if and only if D is splayed.

Proof. Follows directly from Lemma 2.38 and Prop. 2.48.

Corollary. Let (S, D) be a complex manifold, dim S = n, together with

a divisor D ⊆ S and suppose that locally at a point p ∈ S the divisor

(D, p) has the decomposition into irreducible components
�

m

i=1(Di, p)
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such that each (Di, p) is smooth. Let the corresponding equation of D
at p be h = h1, . . . , hm. If D is free at p and Jh =

√
Jh then D has

normal crossings at p.

Proof. We use induction on n. If n = 2, then apply Prop. 2.15. Now
suppose the assertion is true for divisors in manifolds of dimension
n−1. For a smooth component D1 of D, one can find local coordinates
(x1, . . . , xn) such that D1 = {h1(x1, . . . , xn) = x1 = 0}. Prop. 2.48
shows that the divisor (D \ D1) := h2 · · ·hm is also free and has a
radical Jacobian ideal. Moreover, D is locally splayed, that is, D \D1

is locally isomorphic to some divisor depending only on the last n− 1

coordinates. Thus by induction hypothesis D \ D1 is isomorphic to a
normal crossings divisor y2 · · · ym = 0, where the yi are the result of
a coordinate transformation of (x1, . . . , xn) such that x1 = y1. Thus
x1, y2, . . . , yn are also local coordinates at p. This implies that m ≤

n−1. Hence D is isomorphic to the normal crossings divisor x1y2 · · · ym.

In this section the problem of proving Thm. 2.1 has been reduced to
the “irreducible” case: by Prop. 2.48 a divisor D, which is a union of
irreducible components, is free and has radical Jacobian ideal if and
only if all its components have these properties. Thus D can only
have smooth components and/or irreducible components with (n− 2)-
dimensional singular locus. For the irreducible case we have to show
that D is free, has radical Jacobian ideal at a point and its normaliza-
tion is Gorenstein if and only if it is smooth at this point.

2.4.3 Proof of Theorem 2.1

If D has normal crossings at p, then D is free at p, that is, it is ei-
ther smooth or depth(Jh,OS,p) = 2 and OSing D,p is Cohen–Macaulay
(Aleksandrov’s theorem). The normalization of a normal crossing divi-
sor D =

�
m

i=1 Di is smooth since it is the disjoint union of the smooth
components Di (cf. Example A.27). So it remains to show that for a
point p ∈ Sing D the ideal Jh is radical at p. This is done by direct
computation: since D has normal crossings at p ∈ Sing D, we can as-
sume that D =

�
m

i=1(Di, p) is given by the equation h = x1 · · ·xm,
1 < m ≤ n where each xi corresponds to an irreducible component Di
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passing through p. Then

Jh =

m�

i=1

(x1 · · · x̂i · · ·xm).

Using facts about primary decomposition of monomial ideals, see e.g.
[54], it follows that

Jh =(x2, x1x3 · · ·xm) ∩ (x3 · · ·xm, x1x2x4 · · ·xm, . . . , x1 . . . xm−1)

=

m�

i=1
i�=2

(xi, x2) ∩

m�

j=1
j �=3

(xj , x3) ∩ (x4 · · ·xm, x1 · · · x̂4 · · ·xm, . . . , x1 · · ·xm−1)

=

�

1≤i<j≤m

(xi, xj).

This irredundant primary decomposition shows that Jh is the inter-
section of prime ideals of height 2. Thus Jh is clearly radical.
Conversely, suppose that Jh =

√
Jh and OSing D,p is Cohen–Macaulay

of dimension (n−2) and moreover that the normalization O �D is Goren-
stein (here π : �D → D denotes the normalization morphism). Prop. 2.48
implies that each Di is free at p and has a radical Jacobian ideal. So we
may assume that D is irreducible. By our hypothesis, Piene’s theorem
A.42 and Remark A.43 yield the equality of ideals

CDIπO �D,p
= JhO �D,p

.

Since by Lemma 1.69 one has Jh = CD in OD,p, this implies CD =

CDIπ in π∗O �D,p
. By Nakayama’s lemma, it follows that Iπ = O �D,p

.
Hence Ω

1
�D/D

= 0. If �D is smooth at π
−1

(p) then a similar argument as
in the proof of Thm. 1.63 yields that D is already smooth at p: then
O �D

∼= C{z1, . . . , zn−1} for some independent variables z1, . . . , zn−1.
Hence one has an inclusion of rings

OD,p = C{f1, . . . , fr} ⊆ C{z1, . . . , zn−1},

where f1, . . . , fr ∈ O �Di
and r ≥ n− 1. By definition one can write

0 = Ω
1
�D/D

=

n−1�

i=1

O �Ddzi/
r�

j=1

O �Ddfj .

By Nakayama’s lemma one finds n − 1 generators of OD,p, w.l.o.g.,
f1, . . . fn−1 such that the Jacobian determinant ∂(f1,...,fn−1)

∂(z1,...,zn−1)
�= 0. By
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the implicit function theorem, f1, . . . , fn−1 are independent variables
and hence OD,p

∼= O �D is smooth.
If π

−1
(p) ∈ Sing �D, then because n− 2 ≥ dim(Sing �D) and π is a finite

map, one finds that dim(Sing D) = dim(π(Sing �D)) = dim �D ≤ n − 2.
By Theorem A.24, D is normal at p. By Aleksandrov’s theorem, D is
then already smooth at p. For (D, p) =

�
m

i=1(Di, p) this means that
we are in the situation of the second corollary of Proposition 2.48 and
the assertion follows.
Remark 2.49. We can also give a different proof of (2) ⇒ (1) of Thm. 2.1
using the characterization of normal crossings by the logarithmic residue
of Thm. 1.63: let (D, p) =

�
m

i=1(Di, p) be the decomposition into ir-
reducible components and suppose that Jh =

√
Jh. Then the singular

locus of the singular locus Sing(Sing D) is of dimension less than or
equal to (n − 3). By Lemma 2.17, D has normal crossings at smooth
points of Sing D. Hence D has normal crossings in codimension 1. From
Lemma 1.80 it follows that the logarithmic residue is holomorphic on
the normalization, that is, ρ(Ω

1
S
(log D)) = π∗O �D. Then Theorem 1.63

shows that D is a normal crossing divisor.

Remark 2.50. We do not know whether the condition on the normaliza-
tion of D in Theorem 2.1 is necessary. If (D, p) is free and has a radical
Jacobian ideal, then by Lemma 1.65 the normalization ( �D,π−1

(p)) is
Cohen–Macaulay. One can use Piene’s theorem only if �D is Gorenstein
because then the canonical sheaf ω �D is invertible. More precisely, one
can prove the following: ω �D = CDO �D if and only if �D is Gorenstein
(see Prop. 3.5 of [66]). Moreover, �D is Gorenstein if and only if it is
isomorphic to the blowup of D in the conductor CD (by Thm. 2.7
of [101]).

Question 2.51. Let D ⊆ S be a divisor in a complex manifold S that

is locally at a point p given by h = 0 and denote by π : �D → D its

normalization. Suppose that D is free at p and that Jh =
√

Jh. Is then

the normalization �D of D already Gorenstein at π
−1

(p)?



Chapter 3

Jacobian ideals of
hypersurfaces

In this chapter we have two different aims: the first one is to classify
divisors with radical Jacobian ideals. The second one is to study two
possible generalizations of normal crossing divisors, namely splayed di-
visors and mikado divisors. We consider some of their properties and
also try to characterize them in terms of their singular loci given by
their Jacobian ideals.
First we ask for an analogue of Theorem 2.1 for radical Jacobian ideals
of higher codimension. In low ambient dimension, that is, dim S ≤ 3

divisors with radical Jacobian ideal can be described with the help of
Thm. 2.1 (see Prop. 3.2). However, it is not clear how to classify divi-
sors with radical Jacobian ideal in higher dimensional ambient spaces,
since then also embedded components of the Jacobian ideal have to
be taken into account. Here we have results in special cases and con-
jectures for more general situations. The second topic of this chapter
is splayed divisors (also see Chapter 2), which are a natural general-
ization of normal crossing divisors. The difference between the two
classes of divisors is that irreducible components of splayed divisors
may have singularities. Here we present a characterization of splayed
divisors in terms of their Jacobian ideals (corresponding to the geom-
etry) and compute their Hilbert–Samuel polynomials, which satisfy a
certain additivity property. Finally we consider another generalization
of normal crossing divisors, so-called mikado divisors. The irreducible
components of a mikado divisor are smooth and all possible intersec-
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tions between them are also smooth. The difference to normal crossing
divisors is that more than n components can meet at a point. We give
a characterization of a mikado divisor D ⊆ S in terms of its Jaco-
bian ideal for dim S = 2. Finally we ask for a generalization to higher
dimensions.

3.1 Radical Jacobian ideals

In Chapter 2 it was shown that if a free divisor with a Gorenstein nor-
malization in a complex manifold has a radical Jacobian ideal, then
it is already a normal crossing divisor. Now we consider a more gen-
eral problem. Suppose that D is a divisor in a smooth complex n-
dimensional manifold S that is locally at a point p given by a reduced
equation h ∈ OS,p = C{x1, . . . , xn}. Denote by Jh = (∂x1h, . . . , ∂xnh)

its Jacobian ideal and suppose that Jh is radical. Which ideals I ⊆ OS,p

can be such radical Jacobian ideals Jh? More precisely: given a radical
ideal I ⊆ OS,p, when does there exist a divisor (D, p) = {h = 0} such
that I = Jh?

The case of dim S = 2 was treated in Chapter 2: if D is a reduced curve
in S, then its singular locus consists of isolated points. Thus locally at
such a singularity, the ideal Jh is an m-primary ideal and if Jh =

√
Jh

is radical then it has to be the maximal ideal. With the theorem of
Mather–Yau (or with the Corollary of Theorem 3.49) it follows that
(D, p) is a normal crossing singularity. For dim S = 3 we need a little
preparation.

Lemma 3.1. Let (R,m) be an n-dimensional regular local ring, I ⊆ R
an ideal of height (n− 1) and suppose that R/I is reduced. Then R/I
is a one-dimensional Cohen–Macaulay ring.

Proof. Since I has height (n − 1) in R and R is Cohen–Macaulay, it
follows from the height-equality that R/I is of dimension 1. Since R/I
is reduced, I is radical and can be written as as a finite intersection
of minimal prime ideals p1 ∩ · · · ∩ pk, where height(pi) ≥ n − 1. If
height(pi) = n holds for some i, then pi = m (any prime ideal is con-
tained in a maximal ideal). But m cannot be a minimal element of the
primary decomposition of I since at least one pi is of height (n − 1)

and hence strictly contained in m. Thus all pi have height (n − 1)

and I is equidimensional. Now it remains to show that the depth of
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R/I is 1. The maximal ideal of R/I is m, where m is the image of m
under the canonical projection. We show that m is not contained in
Ass(R/I) = {p ∈ R prime: p = ann(ā), for an ā ∈ R/I}. Suppose
therefore that m were contained in Ass(R/I). This means that there
exists an ā �= 0 such that m · ā = 0̄. If ā �= 0̄ were also contained in
m, then ā2

= 0̄ would hold, which is a contradiction to R/I reduced.
Hence ā ∈ (R/I)

∗, that is, there exists some b̄ ∈ R/I such that a · b = 1̄.
Then ab · m = m and by Nakayama’s lemma ab = 0. Contradiction.
Thus there exists a c̄ ∈ m such that for all ā ∈ R/I we have ac �= 0̄,
that is, R/I contains a nonzerodivisor. Hence c̄ is regular on R/I, so
depth(R/I) ≥ 1 and since its dimension is already one, it follows that
R/I is Cohen–Macaulay.

Proposition 3.2. Let S be a 3-dimensional manifold and let D ⊆ S be

a divisor such that at a point p, D is defined by h ∈ OS,p and has radical

Jacobian ideal Jh �= (1). Suppose moreover that the normalization �D
of D is Gorenstein. Then one of the two cases occurs:

(i) depth(Jh,OS,p) = 3 and (D, p) is an A1-singularity.

(ii) depth(Jh,OS,p) = 2 and D has normal crossings at p.

Proof. (i) Since Jh is of depth 3 on a three-dimensional local ring, it
defines an isolated singularity. From the radicality of Jh follows that
Jh has to be the maximal ideal m ⊆ OS,p. The rest is the content of
Prop. 3.9.
(ii) If depth(Jh,OS,p) = 2, then Jh defines a reduced curve C in S.
Since OS,p/Jh is a reduced one-dimensional local ring, it is Cohen–
Macaulay by Lemma 3.1. Hence it follows by Theorem 2.1 that D has
normal crossings at p.

Question 3.3. Does there exist a surface (D, p) ⊆ (C3, p) such that

(D, p) is free and Jh =
√

Jh �= (1) but ( �D, p̃) is not Gorenstein?

For dim S ≥ 4 the situation is more complicated. We split this part
into two subsections.

3.1.1 Singular locus of codimension 1

This question was already considered, in case Jh =
√

Jh, depth(Jh) = 2

and OS,p/Jh is Cohen–Macaulay: then the equation h = 0 locally de-
fines a normal crossing divisor D, that is, there exist complex coor-
dinates (x1, . . . , xn) such that h = x1 · · ·xm, for some m ≤ n. Then
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the Jacobian ideal has the prime decomposition Jh =
�

i<j≤m
(xi, xj),

which means that Sing D is locally at p the union of
�
m

2

�
smooth codi-

mension 2 subvarieties of S. However, if we drop the Cohen–Macaulay
condition, we know less. If Jh is of depth 2 on OS,p and OS,p/Jh is not
Cohen–Macaulay, then this means either that Jh is not equidimensional
or if Jh is equidimensional, then projdim(O/Jh) �= 2. Another way to
phrase this is: Jh is not perfect (see Appendix A).
For the equidimensional case we have a conjecture based on the follow-
ing type of example:
Example 3.4. Consider a manifold (S, p) ∼= (C4, 0) with coordinates p =

(x, y, z, w). Then the ideal I = (x, y)∩(z, w) = (xz, xw, yz, yw) ⊆ OS,p

is radical and defines an equidimensional 2-dimensional analytic space
germ (Z, p). In Remark A.5 it is shown that OS,p/I is not Cohen–
Macaulay, which implies that I is not a complete intersection. By
computation we show that there does not exist an h ∈ OS,p such that
I = Jh: first note that I is the Jacobian ideal of a divisor defined by
some h ∈ OS,p if and only if there exists a matrix A ∈ GL4(OS,p) such
that

(∂xh, ∂yh, ∂zh, ∂wh)
T

= AfT , (3.1)

where f is the vector (f1, . . . , f4) := (xz, yz, xw, yw). This follows from
Nakayama’s lemma. Since A ∈ GL4(OS,p), the matrix A(0) has to be in
GL4(C). We will show that this cannot be the case. Therefore Lemma
3.5 is used: the partial derivatives of h have to satisfy six equations,
namely

∂xyh = ∂yxh, ∂xzh = ∂zxh, ∂xwh = ∂wxh,

∂yzh = ∂zyh, ∂ywh = ∂wyh, ∂zwh = ∂wzh.

From (3.1) it follows that these equations are of the form (e.g., for
∂xzh = ∂zxh)

∂xa3− · f + a31z + a33w = ∂za1− · f + a11x + a12y, (3.2)

where ∂xai− ·f stands for
�4

j=1 ∂xaij ·fj , and aij ∈ OS,p are the entries
of A. Denote by αij ∈ C the constant term of aij . The order of ∂za1− ·f
(and similarly of ∂xa3− · f) is greater or equal 2 (since ord(fi) = 2).
Thus for the order 1 term of (3.2) the equation α31z + α33w = α11x +

α12y holds. This implies α11 = α12 = α31 = α33 = 0. Similarly follows
from ∂xwh = ∂wxh that α13 = α14 = 0. Thus in the matrix A(0) the
first row is zero, which means that A �∈ GL4(OS,p). Hence there does
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not exist an h as asserted and the ideal I cannot be the Jacobian ideal
of a divisor D.

Lemma 3.5. Let f1, . . . , fn be in OS,p. Then there exists a g ∈ OS,p

such that fi = ∂xig if and only if for all 1 ≤ i, j ≤ n we have

∂xifj = ∂xj fi.

Proof. Let f1, . . . , fn be such that ∂xifj = ∂xj fi. Define the differential
form ω =

�
n

i=1 fidxi. By Poincaré’s lemma ω = dg for some g ∈ OS,p

if and only if dω = 0. A computation shows

dω =

�

i<j

(∂xifj − ∂xj fi)dxi ∧ dxj ,

which is (using the relation between the ∂xj fi) equal to zero. The other
implication follows by reading the argument backwards.

Conjecture 3.6. Let D ⊆ S be a divisor defined at a point p by h ∈
OS,p. If Jh is radical, of depth 2 on OS,p and equidimensional, then

OS,p/Jh is already Cohen–Macaulay. In other words: we conjecture

that if a divisor that has locally at a point p ∈ S an equidimensional

radical Jacobian ideal of depth 2 is already free at p.

If Jh is not equidimensional, the only thing we can say is that it is the
intersection of some prime ideals whose minimal height is 2.

Example 3.7. (The Jacobian ideal can be of height 2 and radical but
it may not be equidimensional) Consider S = C5 at the origin with
coordinates (x, y, z, s, t). Let the divisor D be locally defined by h =

(x2
+y2

+z2
)(s2−t2) ∈ O = C{x, y, z, s, t}. Note that D is splayed and

the union of a normal crossing divisor and a cone. The Jacobian ideal
Jh = (xs2− xt2, ys2− yt2, zs2− zt2, x2s + y2s + z2s, x2t + y2t + z2t) is
radical, its height is 2 and it has the prime decomposition

(x, y, z) ∩ (s− t, x2
+ y2

+ z2
) ∩ (s, t) ∩ (s + t, x2

+ y2
+ z2

).

The ideal Jh is not unmixed and hence OSing D = O/Jh is not Cohen–
Macaulay.

Question 3.8. Suppose that Jh of a divisor D is radical and of height

2 but not equidimensional. Which Jh are possible?



92 Jacobian ideals of hypersurfaces

3.1.2 Higher codimensional singular locus

We start to tackle this question with special cases that are easy gener-
alizations of the free divisor case from Chapter 2:

Proposition 3.9. Let D be a divisor in an n-dimensional complex

manifold S, locally at a point p = (x1, . . . , xn) defined by a reduced h ∈
OS,p. Let Jh =

√
Jh be the Jacobian ideal and denote by (Sing D, p) the

singular locus of D at p with associated ring OSing D,p = O/Jh. Suppose

that codimp(Sing D,S) = k and that (Sing D, p) is smooth. Then D is

locally isomorphic to {x2
1+· · ·+x2

k
= 0}, that is, (D, p) is isomorphic to

a Cartesian product (V ×Cn−k, (0, 0)) where (V, 0) = {x2
1+· · ·+x2

k
= 0}

is an A1-singularity in (Ck, 0).

Proof. This is a generalization of the smooth case, see Lemma 2.17.
Since Sing D is smooth and of codimension k at p, we may assume Jh =

(x1, . . . , xk). Since Jh is radical, h is also contained in Jh and can be
written as h =

�
k

i=1 fixi. For any j ≤ k the ∂xj h =
�

k

i=1 ∂xj fixi + fj

are in Jh. This implies that all fj , 1 ≤ j ≤ k are also contained in Jh.
Hence h lies in (x1, . . . , xk)

2 and it can be written as h =
�

k

i=1 aix2
i
+�

1≤i<j≤k
bijxixj . Computing ∂xj h for j > k yields ∂xj h ∈ mJh. An

application of Nakayama’s lemma yields

(∂x1h, . . . , ∂xkh) = Jh = (x1, . . . , xk).

Hence using the Triviality lemma A.44, one finds that D is locally
analytically trivial along {xk+1 = . . . = xn = 0} and we may as-
sume that h(x1, . . . , xn) = h(x1, . . . , xk, 0). Thus D may be consid-
ered in (Ck, 0) defined by h∗(x1, . . . , xk) := h(x1, . . . , xk, 0). But in
this situation Jh∗ = (x1, . . . , xk) defines an isolated singularity and
by the theorem of Mather–Yau (or direct computation) it follows that
{h = 0} ∼= {x2

1 + · · ·+ x2
k

= 0}.

Proposition 3.10. Let Jh =
√

Jh be the Jacobian ideal of the divisor

D ⊆ S and denote by Sing D its singular locus with associated ring

OSing D,p = O/Jh at p. Suppose that codimp(Sing D,S) = k and that

(Sing D, p) is a complete intersection. Then D is isomorphic to {x2
1 +

· · ·+ x2
k

= 0}, that is, D has locally along Sing D an A1-singularity.

Proof. The proof is again similar to the free divisor case, see Prop. 2.18.
Since (Sing D, p) is a complete intersection, there exist f1, . . . , fk ∈ O
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such that Jh = (f1, . . . , fk). Since the fi generate Jh, there is an n× k
matrix A with entries in O such that

A(f1, . . . , fk)
T

= (∂x1h, . . . , ∂xnh)
T .

Consider the O/m = C module Jh/mJh: the fi are a minimal set of
generators of Jh, thus their residues modulo mJh, denoted by f̄1, . . . , f̄k,
form a basis of the C-vector space Jh/mJh and the matrix Ā has entries
in C. Hence the linear system of equations

Ā(f̄1, . . . , f̄k)
T

= (∂x1h, . . . , ∂xnh)
T

is solvable over C, that is, there exist k partial derivatives, wlog. ∂x1h,
. . . , ∂xkh such that Jh = (∂x1h, . . . , ∂xkh). But then the remaining
∂xih, i = k + 1, . . . , n are contained in (∂x1h, . . . , ∂xkh) and once more
an application of the Triviality lemma shows that D is trivial along
{xk+1 = . . . = xn = 0}. Hence D may be considered in (Ck, 0) and
defined by h∗(x1, . . . , xk) = h(x1, . . . , xk, 0). Then since Jh∗ is a com-
plete intersection of codimension k in (Ck, 0), it defines an isolated
singularity. Since Jh∗ is by assumption radical, the only possibility is
Jh∗ = (x1, . . . , xk). Like in the previous proposition we find that D is
locally isomorphic to {x2

1 + · · ·x2
k

= 0}.

Corollary. Let Jh =
√

Jh be the Jacobian ideal of the divisor D and

denote by (Sing D, p) its singular locus with associated ring OSing D,p =

O/Jh. Suppose that codimp(Sing D,S) = k. Then (Sing D, p) is a

complete intersection if and only if Sing D is locally at p smooth and

thus D is isomorphic to {x2
1 + · · ·+ x2

k
= 0}.

Remark 3.11. Note that if Jh is radical of height n in O, then Jh is
already equal to the maximal ideal of O and hence the corresponding
germ (D, p) is an A1-singularity. Moreover, in Lemma 3.1 it is shown
that if Jh =

√
Jh has height n− 1 in O, then O/Jh is already Cohen–

Macaulay. However, in this case we cannot ensure a priori that Jh =
√

Jh is a complete intersection.
It is not clear how to treat non-complete intersection radical Jacobian
ideals of height k, 3 ≤ k < n in O, we do not even know if there
exist divisors D = {h = 0} such that Jh =

√
Jh is not a complete

intersection.
Example 3.12. Consider S = C6 at the origin with coordinates (x1, . . . , x6).
The ideal I = (x1, x2, x3)∩(x4, x5, x6) ⊆ O = C{x1, . . . , x6} is of height
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3, so dim(O/I) = 3. A computation with Singular [98] shows that
projdimO(O/I) = 5 and by Auslander–Buchsbaum depth(O/I) = 1.
Hence O/I is not Cohen–Macaulay and I is not a complete intersection
ideal. We show that I cannot be the Jacobian ideal of some h ∈ O. If
I were Jh for some (reduced) h ∈ O, then

(∂x1h, . . . , ∂x6h)
T

= AfT (3.3)

would hold, where f = (x1x4, x1x5, x1x6, x2x4, x2x5, x2x6, x3x4, x3x5, x3x6)

and A is an 6 × 9 matrix with entries in O. Considering I as an O-
module, take the equation modulo mI and obtain the equation Af̄

T
=

∂xh
T , where the entries of A are in C. Using Nakayama’s lemma, it

follows that the rank of A is 6. Denote again by αij the constant
parts of the entries of A. Apply Lemma 3.5: from ∂x4x1h = ∂x1x4h,
∂x1x5h = ∂x5x1h and ∂x6x1h = ∂x1x6h it follows that all α1i must be
zero and hence the rank of A is strictly smaller than 6. (Using the
remaining relations, all αij are found to be zero).

The propositions and examples above motivate the following

Conjecture 3.13. Let D be a divisor in a complex manifold S, defined

locally at a point p by a reduced h ∈ OS,p. Suppose that the Jacobian

ideal Jh is radical, equidimensional and of depth ≥ 3 on OS,p. Then

the variety Sing D with coordinate ring O/Jh is a complete intersec-

tion, that is, Sing D is Cohen–Macaulay and must even be smooth by

Prop. 3.10.

3.2 Properties of splayed divisors

Splayed divisors were introduced in Chapter 2 to prove Thm. 2.1. But
splayed divisors are interesting in their own right, in particular for
computational reasons. We start here a study of properties of splayed
divisors by considering their Hilbert–Samuel polynomials. We find that
multiplicities behave the same for splayed as for non–splayed divisors
but that the Hilbert–Samuel polynomials for splayed divisors are ad-
ditive, which means the following: let (D, p) = (D1, p) ∪ (D2, p) be a
splayed divisor at a point p in a complex manifold. Then from the
exact sequence

0 → OD,p → OD1,p ⊕OD2,p → OD1∩D2,p → 0
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follows
χD,p + χD1∩D2,p = χD1,p + χD2,p,

where χD,p denotes the Hilbert–Samuel polynomial of D at p. Then a
“geometric” characterization of splayed divisors in terms of their Jaco-
bian ideals is given (see Prop. 3.37). It would be interesting to compute
other singularity invariants for splayed divisors, therefore we list some
questions at the end of this section.

We mostly use notation from [62] and [27]. Often the term “additive
function” is used. With this we mean the following: let R be a noethe-
rian ring and let

0 → M1 → M2 → M3 → 0

be an exact sequence of finitely generated R-modules. Then a function
λ : Rmod→ Z is called additive if λ(M1)− λ(M2) + λ(M3) = 0.
Recall that a divisor D in a complex manifold S with dim S = n is called
splayed at a point p if there exist complex coordinates (x1, . . . , xn) at
p such that (D, p) = (D1, p) ∪ (D2, p) is defined by

h(x) = h1(x1, . . . , xk, 0)h2(0, xk+1, . . . , xn),

1 ≤ k ≤ n− 1, where hi is the defining reduced equation of Di. When
working with splayed divisors, we will simplify the notation and write
for the coordinates (x1, . . . , xk, xk+1, . . . , xn) = (x, y) and h(x, y) =

h1(x)h2(y). Moreover, we will also abbreviate O := OS,p = C{x, y}.

3.2.1 The polynomial case

First we consider graded modules over polynomial rings. We intro-
duce the Hilbert function, the Hilbert–Poincaré series and the Hilbert
polynomial. Then we compute these objects for divisors D in some Pn

C
defined by polynomial equations. For the results of the computations
it makes no difference whether D is splayed or not.

Hilbert function, Hilbert–Poincaré series and Hilbert polyno-
mial

In this section the above notions are introduced and some useful results
are given for the computation of Hilbert–Poincaré series and Hilbert
polynomials. Let k be a field and let A =

�
n≥0 An be a noetherian
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graded k-algebra and let M =
�

n∈Z Mn be a finitely generated A-
module. The Hilbert-function HM : Z → Z of M is defined by

HM (n) = dimk(Mn).

The Hilbert–Poincaré series PM of M is the formal power series defined
by

PM (t) =

�

n∈Z
HM (n)tn ∈ Z[[t]][t−1

].

One can easily show the following properties of HM and PM :
Let 0 → M � → M → M �� → 0 be a short exact sequence of finitely
generated graded A-modules (where A is as above). Then

HM (n) = HM �(n) + HM ��(n)

for all n, that is, H is additive. This implies that

PM (n) = PM �(n) + PM ��(n).

For an integer d one has

HM(d)(n) = HM (n + d),

where M(d) is the d-shifted graded module M , that is, (M(d))n =

Md+n. From this follows

PM(d)(t) = t−dPM (t).

Keeping the notation from above and assuming that A1 = (x1, . . . , xn)A0

generates A as an A0-algebra, i.e., A = A0[x1, . . . , xn], one finds that
there exists a polynomial QM (t) ∈ Z[t] such that PM (t) =

QM (t)
(1−t)n , see

e.g. [27, Prop. 4.2.10].
One can show that HM (d) behaves like a polynomial for d � 0. Then
the Hilbert-Polynomial ϕM ∈ Q[d] is defined as the polynomial such
that ϕM (d) = HM (d) for all positive integers d � 0. One can show
that deg ϕM ≤ n− 1, see e.g., [62]. The Hilbert-Poincaré series deter-
mines the Hilbert-polynomial in the following way (see [45, Definition
5.1.4]): Write PM (t) as

PM (t) =
G(t)

(1− t)s
, 0 ≤ s ≤ n, G(t) =

d�

i=0

git
i
∈ Z[t],
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such that gd �= 0 and G(1) �= 0. This means that the order of the pole
of PM (t) at t = 1 is equal to s. Then the Hilbert-polynomial of M is

ϕM (t) =

d�

i=0

gi

�
s− 1 + t− i

s− 1

�
∈ Q[t].

For the computation of the Hilbert–Poincaré series the following lemma
is useful.

Lemma 3.14. (a) Let I ⊆ k[x1, . . . , xn] be a homogeneous ideal and

let f be a homogeneous element of k[x1, . . . , xn] of degree deg(f) = d.
Then one has

Pk[x]/I(t) = Pk[x]/(I,f)(t) + tdPk[x]/(I:(f))(t).

(b) Let > be a monomial ordering on k[x]. Then

Pk[x]/I(t) = Pk[x]/L(I)(t),

where L(I) denotes the leading ideal of I, that is, the ideal generated

by the leading monomials of elements in I (see definition 3.23).

Proof. (a) is Lemma 5.2.2 of [45] and (b) is Theorem 5.2.6. of loc. cit.

Example 3.15. (a) Let k[x] = k[x1, . . . , xn] be the polynomial ring in n
variables with the standard grading. Then the Hilbert function of k[x]

is given as Hk[x](d) =
�
n+d−1

n−1

�
because there are

�
n+d−1

n−1

�
monomials of

degree d in k[x]. Hence Pk[x](t) =
1

(1−t)n .
(b) Let f be a homogeneous polynomial of degree d. Using (a) of the
preceding lemma with I = (0) one finds Pk[x](t) = Pk[x]/(f)(t) + tdPk[x]

and hence

Pk[x]/(f) =
1− td

(1− t)n
=

�
d−1
i=1 ti

(1− t)n−1
.

Using the procedure to compute the Hilbert polynomial of k[x]/(f)

described above, yields ϕk[x]/(f)(t) =
�

d−1
i=1

�
n−2+t−i

n−2

�
.

Remark 3.16. The Hilbert polynomial of a hypersurface D = {f = 0}

depends only on the degree of f ∈ k[x].
The following lemma will be used in the sequel to compute Hilbert–
Poincaré series and Hilbert–Samuel polynomials.
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Lemma 3.17. Let R be any commutative ring and let I, J be two ideals

in R. Then the sequence

0 → R/(I ∩ J) → R/I ⊕R/J → R/(I + J) → 0

with the first map: a mod (I ∩ J) �→ (a mod I, a mod J), and the

second map: (a mod I, b mod J) �→ (a− b) mod (I + J), is exact.

Proof. Computation.

Application to divisors

Now the Hilbert–Poincaré series and the Hilbert-polynomial are com-
puted for divisors defined by homogeneous polynomials. Let therefore
k[x] = k[x1, . . . , xn] be the polynomial ring over a field k in n vari-
ables considered as graded algebra with the standard grading. Let
D = {g(x)h(x) = 0} be a divisor with g and h homogeneous of degree
m and k. Using Lemma 3.14 with I = (gh) and f = g and the example
(b) above, the Hilbert–Poincaré series has the following form

Pk[x]/(gh)(t) = Pk[x]/(g)(t) + tmPk[x]/(h)(t) =
1− tm+k

(1− t)n

and the Hilbert-polynomial ϕk[x]/(gh)(t) =
�

m+k−1
i=0

�
n−2+t−i

n−2

�
. We are

also able to compute the Hilbert–Poincaré series for the intersection of
{g(x) = 0} and {h(x) = 0}: from Lemma 3.14 (a) with I = (g) and
f = h follows Pk[x]/(g)(t) = Pk[x]/(g,h)(t) + tkPk[x]/(h), and hence

Pk[x]/(g,h)(t) =
(1− tk)(1− tm)

(1− t)n
.

Combining the explicit formulas one sees that the Hilbert–Poincaré
series is additive:

Pk[x]/(gh)(t) + Pk[x]/(g,h)(t) = Pk[x]/(g)(t) + Pk[x]/(h)(t).

The Hilbert-polynomial can easily be computed using the exact se-
quence from Lemma 3.17 and the obvious exact sequence

0 → k[x]/(g) → k[x]/(g)⊕ k[x]/(h) → k[x]/(h) → 0.

Using the additivity of the Hilbert-polynomials, it follows that

ϕk[x]/(g,h)(t) = ϕk[x]/(g)(t) + ϕk[x]/(h)(t)− ϕk[x]/(gh)(t).
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If g and h from above are not homogeneous, Lemma 3.14 (b) can be
used to compute the Hilbert–Poincaré series of k[x, y]/(gh) explicitly.

Up to now the splayed property has played no role!

3.2.2 Dimension, multiplicity and beyond

Our main objective is to study the local case, namely the Hilbert–
Samuel polynomials of finite modules over local rings. Therefore we
introduce the local counterparts to the Hilbert-function and the Hilbert
polynomial, namely the Hilbert–Samuel function and the Hilbert–Samuel
polynomial. These do not only depend on the module one is consid-
ering but also on a chosen filtration. However, the degree and leading
coefficient of the Hilbert–Samuel polynomial are independent of the fil-
tration. So one gets characterizations of dimension and multiplicities
of modules over a local ring. Here the definitions are given (mostly
without proofs, which can be found for example in [27,45,62]).
First we compute multiplicities of divisors D = D1 ∪D2. Then we see
that the Hilbert–Samuel polynomials of splayed divisors are additive.

Hilbert–Samuel polynomials and standard bases

Let R be a noetherian local ring with maximal ideal m. Let I ⊆ R be
an ideal and let M be a module over R. A set {Mn}n≥0 of submodules
of M is called an I-filtration of M if M = M0 ⊃ M1 ⊃ M2 ⊃ . . .
and IMn ⊆ Mn+1 for all n ≥ 0. An I-filtration is called stable if
IMn = Mn+1 for n ≥ 0 sufficiently large.
Let q be an m-primary ideal of R and let {Mi} be a q-filtration. Then
the Hilbert–Samuel function of the filtration {Mi} is

HS{Mi}
: N → N, d �→ length

R/mM/Md.

In order to see that this definition makes sense, namely that the length
of (M/qn

) over R/m is finite, one considers the associated graded
module Grq(M) =

�∞

n=0 Mn/Mn+1 and reduces everything to the
homogeneous case, see e.g. [27, 4.2] or [62, §13]. Further one can
show that there exists a polynomial χ{Mi}

with rational coefficients
such that HS{Mi}

(d) = χ{Mi}
(d) for d sufficiently large. We call

χ
q
M

:= χ{qnM}n≥0 the Hilbert–Samuel polynomial of M with respect

to q. The degree of χ
q
M

(k) =
�

d

i=0 aiki only depends on M and not
on q. Therefore we denote the degree d of χ

q
M

by d(M). By a result of
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dimension theory, the Krull-dimension dim(M) is equal to the degree
of the Hilbert–Samuel polynomial d(M). The leading coefficient ad of
the Hilbert-Samuel polynomial depends on q and the positive integer
d!ad is called the multiplicity of M with respect to q and is denoted by
e(M, q). The multiplicity e(M,m) is simply called the multiplicity of M .

In general, there is no straightforward way to compute Hilbert–Samuel
polynomials. However, when considering Hilbert–Samuel polynomials
of modules over a local ringO = C{x1, . . . , xn} w.r.t. the maximal ideal
m, one can use standard bases to simplify computations. In particular
one obtains an analogue to the graded case, namely that the Hilbert–
Samuel function of some O-module O/I is equal to the Hilbert–Samuel
function of O/L(I). Here we will only give the definitions and theorems
that we need to state this result and to prove the additivity for Hilbert–
Samuel polynomials of splayed divisors.

Definition 3.18. Let xα
= xα1

1 · · ·xαn
n

be a monomial in C[x] and
denote by S = {xα

: α ∈ Nn} the set of all monomials in C[x]. A
monomial ordering is a total ordering on S (resp. Nn) compatible with
the semigroup structure, i.e., from xα > xβ follows xα+γ > xβ+γ for
all γ ∈ Nn. (We will always assume that the considered orderings are
well-orderings, i.e., every non-empty set of monomials has a minimal
element w.r.t. to the ordering.)

Definition 3.19. Let > be a monomial ordering and let f ∈ C{x} be
a non-zero power series. Then f can be written in the form

f =

�

i≥1

aix
αi ,

such that ai �= 0 ∈ C and xαi < xαi+1 for all i. Then L(f) = xα1

is called the leading monomial of f . For an ideal I ∈ C{x} we call
L(I) = ({L(f) : f ∈ I, f �= 0}) the leading ideal. Note that L(I) is the
ideal generated by all leading monomials of nonzero f ∈ I.

Remark 3.20. In general the leading ideal L(I) is not equal to the
ideal generated by the leading monomials of a set of generators of I.
However, if the generators f1, . . . , fk of I form a standard basis (see
next definition), then L(I) = (L(fi)).
In the following we use the degree lexicographical ordering with a weight
vector w = (w1, . . . , wn) ∈ Rn

+. For α ∈ Nn define |α|w :=
�

n

i=1 αiwi.
Then xα < xβ if and only if |α|w < |β|w or if |α|w = |β|w, then α < β
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with respect to the lexicographical ordering. In order to define standard
bases an analogous of division with remainder of polynomials for power
series is needed. Therefore we recall

Theorem 3.21 (Grauert’s division theorem). Let f1, . . . , fm ∈ C{x}.
Then for any g ∈ C{x} there exist elements q1, . . . , qm ∈ C{x} and an

element r ∈ C{x} such that

g =

m�

i=1

qifi + r,

satisfying the two conditions:

(1) No monomial of r is divisible by L(fi) for i = 1, . . . ,m,

(2) L(qifi) ≥ L(g) for i = 1, . . . ,m.

Proof. See [27, Theorem 7.1.9].

Remark 3.22. Denote S = {f1, . . . , fm} the ordered set formed by the
fi of the theorem. In the proof of Grauert’s division theorem one con-
structs the r of the theorem explicitly and this r is uniquely determined
with respect to S. Then one calls NF (f |S) := r (or just NF (f) if S is
fixed) the normal form of f .

Definition 3.23. Let I be an ideal in C{x}. A set S = {f1, . . . , fm},
with all fi ∈ I is called a standard basis of I if

L(I) = (L(f1), . . . , L(fm)).

Remark 3.24. One can show that any ideal I of C{x} has a stan-
dard basis and if S = {f1, . . . , fm} is such a standard basis, then
I = (f1, . . . , fm). For two standard bases S = {f1, . . . , fm} and T =

{g1, . . . gk} of I, the equality NF (f |S) = NF (f |T ) holds for any f ∈
C{x}. This means that NF (f) is independent of the chosen standard
basis. Then one can construct (again in analogy to the polynomial case
of Gröbner bases) standard bases via syzygy polynomials and Buch-

berger’s criterion, but this is not needed here. For details see [27].

Lemma 3.25. Let f, g ∈ C{x} and assume that L(f) and L(g) are

coprime. Then L((f, g)) = (L(f), L(g)), that is, f, g are a standard

basis of the ideal (f, g).

Proof. (Notations from [27]) Choose a monomial ordering <. In order
to show that f and g form a standard basis, we have to show that
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NF (spoly(f, g)|{f, g}) = 0 (for the definition of spoly(f, g), the S-
polynomial of the leading coefficients of f and g, see [27]). Suppose
that f = xα

+ P (x) and g = xβ
+ Q(x) with L(f) = xα and L(g) = xβ

are coprime. Then of course xα < P and xβ < Q. The power series
Syz(f, g) = xβP −xαQ can be written in the form of Grauert’s division
theorem as xβf − xαg. Hence NF (Syz(f, g)|{f, g}) = 0.

The following Proposition 3.26 requires the weight-vector w ∈ Rn

+ the
chosen monomial ordering < to be equal to (1, . . . , 1). So from now on
we assume w = (1, . . . , 1).

Proposition 3.26. Let I ⊆ C{x} be an ideal. Then

HSC{x}/I,m(k) = HSC{x}/L(I),m(k).

In particular, C{x}/I and C{x}/L(I) have the same Hilbert–Samuel

polynomial with respect to m.

Proof. See [27].

In contrast to the graded case, the Hilbert–Samuel polynomial is not
additive on exact sequences, one has a certain error polynomial, whose
degree can be determined with a theorem of Flenner and Vogel, see
Thm. 3.28 below.

Lemma 3.27. Let (R,m) be a noetherian local ring, 0 → M � → M →

M �� → 0 an exact sequence of finitely generated R-modules and q an

m-primary ideal. Then

χ
q
M

= χ
q
M � + χ

q
M �� − S,

where S is a polynomial, whose degree is strictly smaller than the degree

of χ
q
M � .

Theorem 3.28 (Flenner–Vogel). Notation as in the lemma. Denote

further

Grq(M) =

∞�

i=0

qiM/qi+1M

the associated graded ring of a finite R-module M . Then, for the exact

sequence of the lemma, the following holds:

(a) supp ker(Grq(M �
) → Grq(M)) = supp ker(Grq(M)/Grq(M �

) →
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Grq(M ��
)).

(b) Denote d the dimension of these supports. Then for all n ≥ 0

S(n) := χ
q
M �(n) + χ

q
M ��(n)− χ

q
M

(n),

where S(n) is a polynomial of degree d− 1 for n � 0. In particular, if

d = 0, then set S = 0.

Proof. See [34].

Multiplicities – Additivity of Hilbert–Samuel polynomials

First a well-known general result about multiplicities of divisors is
shown. Then we see that for splayed divisors the Hilbert–Samuel poly-
nomial is additive (Prop. 3.33). Let now D = D1 ∪D2 ⊆ Cn be a not
necessarily splayed divisor that is locally at a point p = (x, y) defined
by h1(x)h2(x) ∈ O = C{x}, with components (D1, p) = {h1(x) = 0}

and D2 = {h2(x) = 0}. We assume here that the hi are not necessarily
irreducible but have no common irreducible factor. The multiplicities of
Di at p are denoted by mp(Di) := e(OS,p/(hi),m). The Hilbert–Samuel
polynomial of Di at p is denoted by χDi,p := χ

m
O/(hi)

, and similarly the
multiplicity and Hilbert–Samuel polynomial for D.
Remark 3.29. In order to compute the Hilbert–Samuel polynomial of
O/I for any ideal I ⊆ O we can consider O/I either as ring or as an
O-module. This does not make a difference for the Hilbert–Samuel
functions, since they only depend on the graded structure of O/I and
this is the same for a q ∈ O or the corresponding q ∈ O/I.
We have the following:

Proposition 3.30. Let D, Di be defined as above. Then mp(D) =

mp(D1) + mp(D2).

Proof. Since D1 and D2 are assumed to have no common components,
it is clear that dimp(D1 ∩ D2) ≤ n − 2. Consider the exact sequence
from Lemma 3.17:

0 → O/(h1h2) → O/(h1)⊕O/(h2) → O/(h1, h2) → 0. (3.4)

By Lemma 3.27 it follows that χ
m
O/(h1)⊕O/(h2)

= χD,p +χ
m
O/(h1,h2)

−R,
where R is a polynomial in Q[t] of degree strictly smaller than that of
χD,p. The exact sequence

0 → O/(h1) → O/(h1)⊕O/(h2) → O/(h2) → 0
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yields that χ
m
O/(h1)⊕O/(h2)

= χD1,p + χD2,p, see Lemma 3.32. Since
the Krull-dimensions of D and the Di are all (n − 1), the degrees of
χDi,p and χD,p are equal to (n − 1) and the degree of χO/(h1,h2) is
strictly less than n−1. Combining the equalities of the Hilbert–Samuel
polynomials, one finds that

χD,p = χD1,p + χD2,p − χ
m
O/(h1,h2) − T,

with deg(T ) ≤ n−2. Thus it follows that the leading coefficient of χD,p

is the sum of the leading coefficients of the χDi,p and hence mp(D) =

mp(D1) + mp(D2).

Remark 3.31. This proposition can be easily generalized to m ≥ 2

components (D1, p), . . . , (Dm, p).
We now ask if in the case of splayed divisors the additivity formula
from Lemma 3.27 holds without remainder: is it true that for the germ
of a splayed divisor (D, p) = (D1, p) ∪ (D2, p), one has

χD,p = χD1,p + χD2,p − χD1∩D2,p? (3.5)

First consider the problem for arbitrary local rings (R,m). If

0 → N → M → M/N → 0

is an exact sequence of finitely generated R-modules and q an m-
primary ideal, then

0 → N/(qnM ∩N) → M/qnM → (M/N)/qn
(M/N) → 0

is an exact sequence, which implies

χ
q
M

= χ
q
M/N

+ χ{qnM∩N}.

But in general χ
q
N
�= χ{qnM∩N}, where χ{qnM∩N} denotes the Hilbert–

Samuel polynomial w.r.t. the filtration N/(qnM ∩N).
However, for split exact sequences the Hilbert–Samuel polynomial is
always additive:

Lemma 3.32. Let (R,m) be a local ring and let M,N be finitely gen-

erated R-modules. Consider the exact sequence

0 → M → M ⊕N → N → 0.

Then χ
q
N⊕M

= χ
q
M

+ χ
q
N

for any m-primary ideal q.
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Proof. Above we have seen that there is an exact sequence

0 → M/M ∩ qn
(M ⊕N) → (M ⊕N)/qn

(M ⊕N) → N/qnN → 0.

So this lemma is shown if M ∩ qn
(M ⊕N) = qnM for all n. We may

consider M∩qn
(M⊕N) as (M⊕0)∩qn

(M⊕N) and qnM as qn
(M⊕0).

Then

(M⊕0)∩qn
(M⊕N) ⊆ (M⊕0)∩(qnM⊕qnN) = (qnM⊕0) = qn

(M⊕0).

Conversely, take a (qα, 0) ∈ qn
(M⊕0), where α ∈ M and q ∈ qn. Since

(qα, 0) = q(α, 0) ∈ qn
(M ⊕ N) and (qα, 0) ∈ M ⊕ 0, it is shown that

M ∩ qn
(M ⊕N) = qnM . Hence it follows that

χ
q
N⊕M

= χ
q
M

+ χ
q
N

.

Proposition 3.33. Let (D, p) = (D1, p) ∪ (D2, p) be splayed at p ∈ S,

where (S, p) ∼= (Cn, 0). Then the Hilbert–Samuel polynomials of the

components D1 and D2 are additive, that is,

χD,p(t) + χD1∩D2,p(t) = χD1,p(t) + χD2,p(t).

Proof. Denote by O := C{x, y} = C{x1, . . . , xk, yk+1, . . . , yn} the co-
ordinate ring of (Cn, 0). With Prop. 3.26 the question can be reduced
to leading ideals because the exact sequence (3.4) remains exact if we
just consider the leading ideals. This is not true in general because
L(h, g) �= (L(g), L(h)) is possible! The divisor D is splayed, so we can
assume that it is defined by g(x)h(y). Choosing any valid monomial
ordering one finds L(g) = xα, L(h) = yβ , L((gh)) = xαyβ , and by
Lemma 3.25 follows L((g, h)) = (xα, yβ

). From the exact sequence

0 → O/(xα
) → O/(xα

)⊕O/(yβ
) → O/(yβ

) → 0

and Lemma 3.32 it follows that

χ
m
O/(xα) + χ

m
O/(yβ) = χ

m
O/(xα)⊕O/(yβ).

Thus it remains to prove that the Hilbert–Samuel polynomials w.r.t.
m of the exact sequence

0 → O/(xα
· yβ

) → O/(xα
)⊕O/(yβ

) → O/(xα, yβ
) → 0
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are additive. In order to apply the theorem of Flenner–Vogel we show
that the map

Grm(O/(xαyβ
))

ϕ �� Grm(O/(xα
)⊕O/(yβ

))

is injective. The map ϕ clearly preserves the degree, so it is enough to
show the assertion for a homogeneous element of degree d, that is, to
show that
md(O/(xαyβ))/md+1(O/(xαyβ))→ md(O/(xα)⊕O/(yβ))/md+1(O/(xα)⊕O/(yβ))

is an injection. Therefore take some a ∈ md
(O/(xαyβ

))/md+1
(O/(xαyβ

)).
This means that a is the representative of the element a = a + fxαyβ

of O, where f with the right degree is in O. Consider a as an el-
ement in O: from Grauert’s division theorem follows that a can be
written as α + α1xα

+ α2yβ , where α is the unique remainder from
the division through xα and yβ and α1 ∈ O is not divisible by yβ

(else α1 would be 0 in O/(xαyβ
)) and α2 is not divisible by xα (for

the analogue reason). Suppose that ϕ(a) = (0, 0). Then write ϕ(a) =

ϕ(α+α1xα
+α2yβ

) = (α+α2yβ , α+α1xα
) in O/(xα

)⊕O/(yβ
). In O

this reads as α + α2yβ
= cxα and α + α1xα

= c�yβ for some c, c� ∈ O

with the right order. Taking one of these two equations one sees that
α ∈ (xα, yβ

). But α is the unique remainder from the division through
the standard basis (xα, yβ

), so α = 0 in O. Hence there are two rela-
tions between xα, yβ , namely

α2y
β
− cxα

= 0 and α1x
α
− c�yβ

= 0.

Since xα, yβ are clearly a regular sequence inO, their syzygies are trivial
and from the conditions on α1, α2 it follows that α1 = α2 = 0. But this
means nothing else but a = 0, that is, ker(ϕ) = (0) and ϕ is injective.
Hence by the theorem of Flenner–Vogel, the remainder polynomial S
is the zero polynomial and the assertion of the proposition follows.

Remark 3.34. If we just consider the question for the leading ideals,
then we are in the case of monomial ideals and one can argue that ϕ is
injective by looking at the Newton polyhedra of these monomial ideals.

In general the Hilbert–Samuel polynomial of a divisor (D, p) = (D1, p)∪

(D2, p) is not additive, as is seen in the following example.

Example 3.35. By Lemma 4.2.20 of [27] one can explicitly compute
the Hilbert–Samuel polynomial of O/(f), where O = {x1, . . . , xn} and
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ord(f) = m, namely

χ
m
O/(f)(d) =

m�

j=1

�
n + d− j − 1

n− 1

�
. (3.6)

Consider now (C2, 0) with coordinate ring O = C{x, y} and with
h1 = x2 − y and h2 = y. Then the germ of the divisor (D, 0) =

(D1, 0)∪ (D2, 0) that is locally given by {y(x2−y) = 0} with (D1, 0) =

{x2 − y = 0} and (D2, 0) = {y = 0} is not splayed. The intersection
(D1 ∩ D2, 0) is locally given by the ideal (x2, y) and coordinate ring
O/(x2, y) = C{x}/(x2

). By formula (3.6) we can compute the Hilbert–
Samuel polynomials of D,D1, D2 and D1 ∩ D2 and obtain χD,p(t) =

2t−1, which is clearly not equal to χD1,p(t)+χD2,p(t)−χD1∩D2,p(t) =

t + t− 2.
One might ask if the additivity of the Hilbert–Samuel polynomials char-
acterizes splayed divisors. However, here is a counterexample to this
assertion:
Example 3.36. Consider D ⊆ C3 locally defined by gh = (x2−y3

)(y2−

x2z). Then (D, p) is the union of the cylinder over a cusp (D1, p) and
of the Whitney Umbrella (D2, p). Clearly (D, p) is not splayed (use for
example the Leibniz–property). However, L(g) = x2 and L(h) = y2, so
the leading monomials of g and h are coprime and one can repeat the
argument in the proof of the preceding proposition to find that

χD,p + χD1∩D2,p = χD1,p + χD2,p.

3.2.3 A characterization of splayed divisors by their

singular locus

In the spirit of our characterization of normal crossing divisors we want
to characterize a splayed divisor D ⊆ S, locally at a point p given by a
gh ∈ OS,p, by OSing D,p = OS,p/((gh) + Jgh).

Proposition 3.37. The divisor D, defined at p as above, is splayed if

and only if

((gh) + Jgh) = (g, h) ∩ ((g) + Jg) ∩ ((h) + Jh). (3.7)

Remark 3.38. Here it can be seen that for splayed divisors the Jacobian
ideal is the intersection of the two ideals defining the singular loci of
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the splayed components D1 and D2 plus the intersection of D1 and D2.
For two smooth divisors D1 and D2 this means nothing else but that
D = D1 ∪D2 is a splayed divisor if and only if the scheme-theoretical
intersection D1 ∩ D2 is smooth, which is in turn equivalent to saying
that D1 and D2 intersect transversally.

Proof. Recall here that a divisor {gh = 0} is splayed if and only if

(g) ∩ ((gh) + Jgh) = g((h) + Jh) (3.8)

First suppose that (3.7) holds. We have to show that (3.8) holds.
Let therefore α be an element of g((h) + Jh), that is α = agh +

g
�

n

i=1 ai∂xih. Clearly α ∈ (g). But it is immediately seen that
α ∈ ((h)+Jh), and hence α ∈ (g, h)∩ ((g)+Jg)∩ ((h)+Jh)). By (3.7)
this means that α ∈ ((gh)+Jgh). Conversely, let α ∈ (g)∩((gh)+Jgh).
In Chapter 2 it was seen that (without further conditions on ((gh)+Jgh)

such an α is also contained in g((h) + Jh).
For the other implication we use Grauert’s division theorem: Suppose
that D = {gh = 0} is splayed. Then wlog. g(x, y) = g(x) and h(x, y) =

h(y) in C{x, y} = C{x1, . . . , xn, y1, . . . , ym}. Clearly ((gh) + Jgh) ⊆

(g, h)∩ ((g)+Jg)∩ ((h)+Jh). So let α be an element of the right-hand
side, that is, α = ag + bh = cg +

�
n

i=1 ai∂xig = dh +
�

m

j=1 bj∂yj h for
some a, b, c, d, ai, bi ∈ O. Then also α−ag = bh = (c−a)g+

�
n

i=1 ai∂xig
is contained in ((g) + Jg). By Grauert’s division theorem here exist
some ã, ãi, r, r̃i such that for all i = 1, . . . , n one has c − a = ãh + r
and ai = ãih + ri and the leading monomial L(h) does not divide any
monomial of the unique remainders r, ri. Then write

(b− ãg −
n�

i=1

ãi(∂xig))h = rg +

n�

i=1

ri(∂xig).

Since h only depends on y and g only on x, it follows that L(h) does also
not divide any of the monomials of the right-hand side of the equation.
But this is only possible if the right-hand side of the equation is 0
(otherwise at least one monomial of h, which is a multiple of L(h) would
occur on the right-hand side). Hence (b− ãg−

�
n

i=1 ãi(∂xig))h = 0 and
since h is not a zero-divisor in O, it follows that b = ãg+

�
n

i=1 ãi(∂xig)

is contained in ((g)+Jg). Interchanging the roles of g and h yields that
a ∈ ((h) + Jh) and thus α = ag + bh ∈ (gh, gJh + hJg). The Leibniz
property of Jgh implies that α ∈ ((gh) + Jgh).
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3.2.4 Questions about splayed divisors

1. Can we separate the splayed components of a divisor by some
algebraic procedure? (The normalization does too much and the
blowup of the intersection scheme may be singular. We search for
something like a deformation, where h1(x)h2(y) �−→ h1(x)(z −
1) + h2(y)z but multiplicatively)

2. Does the additivity of Hilbert–Samuel polynomials (equation (3.5))
characterize a particular class of divisors? Is it enough for the ad-
ditivity that the leading monomials of the defining equations of
D1 and D2 are coprime?

3. Can we compute other singularity invariants of splayed divisors
in terms of their splayed components, e.g., Milnor fibres, Zeta
functions, jumping numbers?

3.3 Mikado divisors

In this section we consider another generalization of normal crossing
divisors, so-called mikado divisors. The idea behind mikado divisors is
to allow more smooth components meeting at a point than indicated
by the dimension of the ambient space. However, the irreducible com-
ponents of a mikado divisor still have to be smooth and the divisor
has to satisfy the additional property that it is closed under taking
scheme-theoretical intersections (see definition below). Mikado singu-
larities appear in the study of arrangements of subvarieties, namely, a
collection of smooth algebraic subvarieties in a smooth ambient space
form an arrangement of subvarieties in the sense of [58] if and only if
their maximal members form a mikado variety. Here one is interested
e.g. in wonderful compactifications of these arrangements, see [58] for
details. Mikado divisors are also present in resolution of singularities,
see [49] and [33].
First we study mikado divisors in a complex manifold of dimension
2,that is, plane mikado curves, and give a characterization of their sin-
gular loci in terms of their Jacobian ideals. Therefore we need some
theory about generalized Milnor numbers, see [93]. Then we give some
examples and ask questions related to mikado divisors.

Let X and Y be two irreducible algebraic subvarieties of Cn defined by
radical ideals IX and IY . Then their intersection Z := X∩Y is scheme-
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theoretically smooth if Z is set-theoretically smooth and its defining
ideal IZ is equal to IX + IY . In particular this means that IX + IY is
radical. A collection of smooth algebraic subvarieties X1, . . . Xk in S is
called mikado if all possible intersections

�

j∈J

Xj , with J ⊆ {1, . . . , k}

are scheme-theoretically smooth. We can also make the analogue defi-
nition locally at a point p for analytic space germs (X1, p), . . . (Xk, p).
We then say that the germ of a variety (X, p) =

�
k

i=1(Xi, p), where
the Xi are the irreducible components at p, is a mikado singularity at
p (or is mikado at p) if and only if the X1, . . . ,Xk are mikado at p.

Example 3.39. (1) The divisor D = D1∪D2∪D3 = {(x−y3
)(y−x2

)(y−
x) = 0} in C2 is mikado at 0: with the normal crossings criterion of
Theorem 2.1 one sees that the ideals of the pairwise intersections of the
irreducible components of D are reduced and hence Di∪Dj has normal
crossings everywhere. The ideal of the triple intersection at the origin
is easily seen to be reduced.
(2) All hyperplane arrangements in Cn are mikado divisors: let H =�

m

i=1 Hi be a hyperplane arrangement in Cn with defining polynomial
Q(x) =

�
m

i=1 li(x), where each li is a linear polynomial. Clearly, any
intersection

�
i∈I

Hi for some I ∈ {1, . . . ,m} is again a linear space
with defining ideal (li, i ∈ I) =

�
i∈I

IHi and hence smooth.
(3) The divisor Tülle D = D1∪D2∪D3 in C3 defined by h = h1h2h3 =

xz(x+ z−y2
) is not mikado at the origin. All components are smooth,

their pairwise intersections are transversal but the ideal of their triple
intersection is ID1 + ID2 + ID3 = (x, y2, z), which is not the reduced
ideal defining the origin.

3.3.1 Plane mikado curves

In dimension two one can give a characterization of mikado divisors in
terms of the Jacobian ideal (see Thm. 3.49). For the proof we need
some properties of the generalized Milnor number, which was first in-
vestigated by Teissier. We closely follow the exposition in [93].

Note again that we always work in the analytic context. For plane
curves (X, p) =

�
k

i=1(Xi, p) being mikado at p is equivalent to the
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fact that the irreducible components (Xi, p) are all smooth and that
Xi and Xj intersect transversally at p for i �= j. This means that
the tangent cone TK(X)p of X at p is reduced (see the next lemma).
Recall here that for X = {h = 0}, with h =

�
i≥o≥1 hi, where hi is the

homogeneous part of h of degree i, the tangent cone TK(X)p of (X, p)

is the homogenous part of h of smallest degree, that is, ho.

Lemma 3.40. Let (X, p) =
�

k

i=1(Xi, p) be a mikado curve-singularity

in (C2, 0) defined locally at p by h = h1 · · ·hk. Then the tangent cone

TK(X)p of X at p is reduced and consists of o = k lines meeting at

the origin.

Proof. First note that TK(X)p = ho, where ho is a homogeneous poly-
nomial of degree o in two variables. Since the hi define nonsingular
curves Xi, the order of each hi = 1, so o = k. By dehomogenizing ho

we obtain a polynomial of degree k in one variable over C that has k
different zeros (since the k tangent directions of X at p are distinct).
Homogenizing again it follows that TK(X)p is the product of k linear
forms and is reduced because of the mikado condition.

Remark 3.41. In 3.2 the Hilbert–Samuel polynomial χ
q
M

of a finite mod-
ule M over a local ring (R,m) w.r.t. an m-primary ideal q and the mul-
tiplicity e(M, q) of M w.r.t. q was defined. Using Koszul homology, one
gets the formula e(M, q) =

�
n

i=0(−1)
ihi(M, q) where hi(M, q) denotes

the dimension of the i-th Koszul-homology group. If q is generated by
an M -regular sequence, then hi = 0 for i ≥ 1 by [88, Prop. 3, IV]. By
definition the 0-th Koszul-homology group is M/qM and hence

h0 = e(M, q) = length(M/qM).

Theorem 3.42 (Rees). Let (R,m) be an equidimensional analytic al-

gebra and q1 and q2 be two m-primary ideals with q1 ⊆ q2. Then their

multiplicities are equal if and only if their integral closures agree, that

is,

e(R, q1) = e(R, q2) ⇐⇒ q1 = q2.

Proof. See for example [55] or [93].

Let D be a divisor in Cn, that is, D is defined at a point p by a reduced
holomorphic equation h = 0, h ∈ O = C{x1, . . . , xn}. Recall that the
germ (D, p) is an isolated singularity if D − {p} is non-singular (in
a sufficiently small neighbourhood of p). One can show that this is
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equivalent to the fact that the Jacobian ideal Jh = (∂x1h, . . . , ∂xnh) is
m-primary. Denote the multiplicity of Jh in O by µp(D). Note that it
does neither depend on the choice of coordinates of p nor on the choice
of the equation h. The Jacobian ideal Jh is generated by a regular
sequence because it is a complete intersection. Thus, by remark 3.41
also

µp(D) = dim C{x1, . . . , xn}/Jh.

So µp(D) is the Milnor number of the isolated singularity (D, p), see
[27,64].

Teissier has shown how the notion of the Milnor number µ can be
generalized by general hyperplane sections [93, chapitre 1]: Let D be
a hypersurface in Cn and p ∈ D. For any 1 ≤ i ≤ n there exists a
neighbourhood V of x in Cn and a Zariski-open dense set U (i)

0 of the
Grassmannian Gn−1,i−1 of i-planes of Cn passing through p such that
for any i-plane H ∈ U (i)

0 one has

V ∩ Sing(D ∩H) = V ∩H ∩ Sing(D).

If i0 is the codimension of (Sing(D), p) in Cn then for any 0 ≤ i ≤ i0
there exists a Zariski-open dense U (i)

1 of Gn−1,i such that for H ∈ U (i)
1 ,

D ∩H has an isolated singularity in p. Thus, for i ≤ i0 the i-planes of
Cn passing through p and cutting Sing(D) in p in a neighbourhood of
p form a Zariski-open, dense subset of Gn−1,i.
If (D, p) ⊆ (Cn, 0) is a reduced hypersurface, then for any 0 ≤ i ≤ n

there exists an open Zariski-dense subset U (i)
2 of Gn−1,i such that the

topological type of (D ∩ H, p) is independent of H ∈ U (i)
2 . Thus one

can speak of the so-called topological type of a generic plane section of
D (or general i-plane), see [93].

Definition 3.43. Let (D, p) ⊆ (Cn, 0) be the germ of an analytic
hypersurface. Let i0 be the codimension of the singular locus Sing(D)

in Cn. By the preceding considerations one can speak of the Milnor

number of a generic i-plane section, if i ≤ i0. We denote this number
by µ(i)

p . For i0 < i ≤ n we set µ(i)
p = +∞ and we define the vector

µ∗
p

= (µ(n)
p

, . . . , µ(0)
p

).

Note that µ(n)
p < +∞ if and only if (D, p) is an isolated singularity

and if that is the case then µ(n)
p = µp(D), that is, µ(n)

p is the usual
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Milnor–number of (D, p).
Furthermore, µ(1)

p = mp(D)− 1, where mp(D) denotes the multiplicity
of the hypersurface germ (D, p). Moreover, µ(0)

p = 1 always holds.

Proposition 3.44. Let (D, p) ⊆ (Cn, 0) be an isolated hypersurface

singularity with local equation h = 0. The following are equivalent:

(i) µ(n)
p = µ(1)

p

n

,

(ii) Jh = mµ
(1)

,

(iii) (D, p) is isomorphic to the general fibre of a one-parameter µ∗-
constant deformation of a cone with isolated singularity. This cone is

the tangent cone of (D, p).

Proof. We show here only (i) ⇔ (ii). For the other equivalences see
[93, ch. II, Prop. 2.7]. The multiplicity of the ideal mk in O =

C{x1, . . . , xn} can be calculated by using the formula e(O,mk
) = kn

e(O,m), which holds for m-primary ideals, see [62]. Since e(O,m) = 1, it
follows that e(O,mk

) = kn. By definition of µ(1)
p one has Jh ⊆ mµ

(1)
p and

by Remark 3.41 follows e(O, Jh) = µ(n)
p . By the above e(O,mµ

(1)
p ) =

µ(1)
p

n

. Application of Rees’ theorem (Thm. 3.42) shows the equivalence
of (i) and (ii).

Definition 3.45. Let (C, p) ⊆ (Cn, 0) be a reduced curve. Denote by
π : ( �C, p̃) → (C, p) the normalization of (C, p). We denote by δp(C) the
C-vector space dimension of π∗O �C,p̃

/OC,p. The nonnegative integer
δp(C) is called the δ-invariant of C at p. It is sometimes also called
the order of singularity of C at p. Let (C �, p) be another curve in
Cn. Let C and C � be given locally at p by ideals IC and IC� , where
IC , IC� ⊆ OCn,0. Then we define

(C · C �
)p := length(OCn,0/(IC + IC�)),

the intersection multiplicity of C and C � at p.

Lemma 3.46. Let (C, p) be a reduced curve singularity in C2
. Suppose

that locally at p the curve C has m irreducible analytic components.

Then

µp(C) = 2δp(C)−m + 1.

Remark 3.47. This lemma is due to Milnor [64]. It can be generalized
to complete intersection curves. For more information and a proof
see [14].
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The next lemma of Hironaka, see [52], is useful to compute the δ-
invariant for reducible curves:

Lemma 3.48 (Hironaka). Let (C, p) be a reduced curve in C2
that has

locally m components: (C, p) = (C1, p) ∪ · · · ∪ (Cm, p). Then we have

δp(C) =

m�

i=1

δp(Ci) +

m�

i,j=1,i<j

(Ci · Cj)p.

Now we are ready to prove the characterization of mikado singularities
by Jacobian ideals in two dimensions:

Theorem 3.49. Let (X1, p), . . . , (Xk, p) with k ≥ 2 be smooth curves

in (C2, p). Suppose, that they are locally defined by (reduced) equations

h1 = 0, . . . , hk = 0 with hi ∈ C{x1, x2}. Let (X, p) =
�

k

i=1(Xi, p)

with equation h = h1 · · ·hk. Denote Jh the Jacobian ideal of h. Then

X1, . . . ,Xk are mikado at p if and only if Jh = mk−1
.

Proof. Suppose that (X, p) is mikado. Then µ(1)
p = k− 1 by definition.

According to Prop. 3.44 it must be shown that µp(X) = µ(2)
p = (k−1)

2.
By Lemma 3.46 we have µp(X) = 2δp(X)−k+1. Note that δp(Xi) = 0,
since Xi is smooth at p and that (Xi · Xj)p = 1, since Xi and Xj

intersect transversally at p for j �= i. Then Hironaka’s lemma says that
δp(X) =

�
k

2

�
and plugging this into Milnor’s δ formula yields µp(X) =

(k − 1)
2. This finishes one implication.

The other implication follows by argumenting backwards and noting
that δp(C) = 0 if and only if C is smooth at p.

With Thm. 3.49 we obtain a simpler proof than that of Chapter 2 of
the fact that Jh = m if and only if the plane curve (X, p) has normal
crossings at p (and thus we avoid the theorem of Mather–Yau):

Corollary. Let (X, p) be a curve in (C2, p) defined by h ∈ OC2,p such

that Jh = m. Then (X, p) has normal crossings at p.

Proof. If Jh = m, then from µ(2)
p = dimC(O/Jh) = 1 it follows that

the ordinary Milnor number of (X, p) is 1. By Prop. 3.44 we have 1 =

µ(2)
p = (µ(1)

p )
2 if and only if Jh = m. By definition of µ(1)

p = mp(X)− 1

it follows that X is of multiplicity 2 at p and has k ≤ 2 irreducible
components. By the δ formula one can discard the possibility k = 1

and by Theorem 3.49 follows the assertion.
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3.3.2 Mikado divisors in higher dimensions

A satisfying characterization of mikado divisors in a complex manifold
S of complex dimension 2 was found. Naturally, one asks for a similar
criterion for mikado divisors in higher dimensional manifolds. However,
it is not quite clear how to generalize Theorem 3.49, since in higher
dimension the singularities of a mikado divisor are no longer isolated.
New phenomena occur and the integral closure of the Jacobian ideal
will certainly not be an m-primary ideal. One idea of generalization
would be to take generic hyperplane sections (in the spirit of [93]). But
this seems not to be the right approach:
Example 3.50. Let (D, 0) ⊆ (C3, 0) be the divisor Tülle, that is given
by D = D1 ∪D2 ∪D3 = {xz(x + z − y2

) = 0} (also cf. Example 1.43,
where we have shown that D is free and mikado everywhere but at the
origin). The common intersection of D1 = {x = 0}, D2 = {z = 0} and
D3 = {x + z − y2

= 0} is not scheme-theoretically smooth, thus (D, 0)

is not mikado. The Jacobian ideal Jh is integrally closed. However,
taking the hyperplane section with H = {x = y + z} yields D ∩H =

{(y + z)z(y + 2z − y2} ⊆ (C2, 0), which is mikado.
Example 3.51. Let D ⊆ C3 be the divisor D = D1 ∪D2 ∪D3 defined
by h = xy(x + y). Clearly D is a mikado divisor. Taking the generic
hyperplane section with H = {z = 0}, one sees that D ∩H = {xy(x +

y) = 0} ⊆ C2 is a mikado divisor.
Hence we pose the following

Question 3.52. Let D ⊆ S be a divisor in a complex manifold S of

complex dimension n ≥ 3 and suppose that D is mikado at a point p. Is

there a characterization of the mikado property in terms of the singular

locus (Sing D, p) given by the Jacobian ideal Jh of D? In the same

vein, another interesting question is if mikado is stable under generic

hyperplane sections.





Appendix A

Algebraic and complex
analytic basics

Here we collect the most important notions and theorems that are used
in the text and we also fix our notation. So this appendix is thought to
serve as a reference to previous chapters. All results presented here are
covered in textbooks. Therefore we only prove statements which we
think are interesting for this thesis and give references to the remain-
ing proofs. Nonetheless, we try to exhibit the beautiful description of
normal varieties in the analytic context and some important theorems
connected with it.
This appendix is divided into two sections, commutative algebra and
local analytic geometry. However, commutative algebra heavily plays
into local analytic geometry, therefore it is at the beginning.

A.1 Commutative algebra

In this section we recall some results from commutative algebra that
are mostly used in Chapter 2. In particular, we define depth of a mod-
ule and Cohen–Macaulay modules, pass by projective dimension and
perfect modules and quote some important theorems connected with
these notions. Finally the integral closure of ideals and rings is consid-
ered, which leads the way into the analytic geometry section.
The first result tells us how primary decomposition behaves under lo-
calization (this is used in the section on splayed divisors in Chapter 2).
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Then we state Nakayama’s lemma, since it is frequently used through-
out the text.

Proposition A.1. Let R be a commutative ring and let S be a multi-

plicative set in R. Then all ideals of RS, the localization of R in S, are

of the form IRS where I is an ideal in R. Every prime ideal of RS is

of the form pRS with p a prime ideal in R and p ∩ S = ∅. Conversely

pRS is prime in RS for any such p. The same holds for primary ideals.

If I is an ideal of R then the set of associated primes AssR(I) is equal

to AssRS (I). If R is noetherian then we have Ass(IRS) = Ass(I) ∩

Spec(RS). In particular, if I =
�

k

i=1 q is the primary decomposition

of I in R, then IS =
�

k

i=1(qi)S (we write IS for the ideal IRS) is the

primary decomposition of IS in RS.

Proof. See [62] Thm. 4.1 and Thm. 6.2.

Theorem A.2 (Nakayama’s lemma). (i) Let R be a commutative ring,

M a finite (=finitely generated) R-module and I an ideal of R. If

M = IM then there exists an element x ∈ R such that xM = 0 and

x ≡ 1 mod I. If moreover I is contained in the radical of R (the in-

tersection of all maximal ideals of R), then M = 0.

(ii) Let M be an R module, I an ideal contained in the radical of R
and N ⊆ M a submodule such that M/N is finite over R. Then from

M = N + IM follows M = N .

(iii) Let (R,m) be a regular local ring and M a finite R-module. Denote

k = R/m and M = M/mM . Then M is a finite-dimensional k-vector

space of some dimension n. Then one has:

(a) If {ū1, . . . , ūn} is a basis for M over k, then choosing inverse im-

ages ui ∈ M for each ūi ∈ M yields a minimal system of generators

{u1, . . . , un} of M ,

(b) conversely, any minimal system of generators of M is obtained in

this way and thus has n elements,

(c) if {u1, . . . , un} and {v1, . . . , vn} are both minimal systems of gen-

erators of M , and vi =
�

n

j=1 aijuj with matrix A = (aij)1≤i,j≤n, then

det(A) is a unit in R, that is, A is an invertible matrix over R.

Proof. See [62] Thm. 2.2 and Thm. 2.3.

The next theorem is a useful characterization of free modules over 2-
dimensional regular local rings, which, in Chapter 1, provides the proof
that any divisor in a 2-dimensional complex manifold is free.
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Theorem A.3. Let R be a regular local ring of Krull-dimension 2 and

M be a finite R-module. The following are equivalent:

(i) M is free.

(ii) M is reflexive, that is, the canonical map M → Hom(Hom(M,R), R)

is an isomorphism.

Proof. See Corollary 6 of Theorem 9 of Chapter IV of [88].

A.1.1 Cohen–Macaulay rings and modules

Let R be a noetherian ring and M an R-module. A sequence of el-
ements x1, . . . , xn ∈ I, where I is an ideal in R, is called a regular

M -sequence in I if (x1, . . . , xn)M �= M and if for i = 1, . . . , n the ele-
ment xi is a nonzerodivisor in M/(x1, . . . , xi−1)M . If M �= IM , then
the length of a maximal M -sequence in I is well-defined, and is called
the depth of I on M (or the I-depth of M) and denoted by depth(I, M).
(If IM = M we define the I-depth of M to be ∞). If M = R we sim-
ply speak of the depth of I and write depth(I) or depth(I, R). For a
local ring (R,m) and an R-module M we denote the depth of M by
depth(M) := depth(m, M).
The height of a prime ideal p ∈ R is the maximal length m of a chain
of prime ideals p0 ⊆ . . . ⊆ pm = p with pi ∈ R. The (Krull-)dimension

of a ring R is the maximal height of a prime ideal in R and denoted
by dim(R). A noetherian local ring (R,m) is called Cohen–Macaulay if
depth(R) = dim(R). A finite R-module M is called a Cohen–Macaulay

module if M �= 0 and depth(M) = depth(m, M) = dim(M) or if
M = 0. A noetherian ring R is a Cohen–Macaulay ring if Rm is a
Cohen–Macaulay local ring for every maximal ideal m of R. One can
show that a noetherian local ring R is Cohen–Macaulay if and only if
its completion �R is Cohen–Macaulay (see e.g. [62, Theorem 17.5]) and
that a localization S−1R of a Cohen–Macaulay ring R is again Cohen–
Macaulay.
Cohen–Macaulay is an algebraic condition and cannot be interpreted
geometrically in a satisfying way. However, one geometric property of
Cohen–Macaulayness is equidimensionality, that is, the scheme corre-
sponding to a Cohen–Macaulay ring is always equidimensional:

Lemma A.4. Let (R,m) be a Noetherian local ring and let M be a

finitely generated R-module. If M is a Cohen–Macaulay module then

for any p ∈ Ass(M) one has

dim(R/p) = dim(M) = depth(M).
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Hence M has no embedded associated primes. In particular, if M =

R/I for an ideal I ⊆ R is Cohen–Macaulay, then I is equidimensional,

that is, in an irredundant primary decomposition I =
�

qi, with pi the

associated prime to qi, the pi’s are all of the same height.

Proof. If M is a Cohen–Macaulay module then by definition we have
for any p ∈ Ass(M) that dim(R/p) = dim M = depthM . Thus M has
no embedded primes. The assertion for M = R/I is clear.

Remark A.5. We remark here that it is not enough to check equidimen-
sionality if one wants to prove that a local ring is Cohen–Macaulay. An
example therefore:
Let R = C{x1, x2, x3, x4} and I = (x1, x2) ∩ (x3, x4) an ideal in R.
Then the dimension of R/I is 2 whereas the depth of R/I is only one.
The depth can be computed by the Auslander–Buchsbaum formula (see
below):

projdim
R
(R/I) + depth(m, R/I) = depth(m, R).

Since depth(m, R) = 4 and projdim
R
(R/I) = 3 (by a Singular [98]

computation), one obtains depth(m, R/I) = 1.
In Example 3.4 we show that there does not exist a divisor in C4 that
has I ∈ C{x1, x2, x3, x4} as Jacobian ideal at the point p = (x1, . . . , x4).

A.1.2 Projective modules and some homological al-

gebra

Let R be a ring. An R-module P is called projective if P is a direct
summand of a free R-module. There are also a few equivalent char-
acterizations, see e.g. [32, Prop. A3.1]. A projective resolution of an
R-module M is a complex

F : · · · �� Fn

ϕn �� · · ·
ϕ1 �� F0

�� M �� 0

of projective R-modules Fi, such that F has no homology, i.e., is exact.
If all Fi are free R-modules, then F is called a free resolution. If for
some n < ∞ one has Fn+1 = 0 but Fi �= 0 for any 0 ≤ i ≤ n, then
F is called a finite resolution of length n. One defines the projective

dimension projdim
R
M (also written projdimM , if the ring is clear from

the context) to be the minimum length of a projective resolution of M .
One sets projdim

R
M = ∞ if M has no finite projective resolution.

Since we mostly deal with local rings, the following lemma is very
important:
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Lemma A.6. Let (R,m) be a local ring. Then a projective module

over R is free.

Proof. See e.g. [62, Theorem 2.5.] or [56].

The following results are used to prove Aleksandrov’s theorem in Chap-
ter 2. We also introduce perfect modules, which are important in the
theory of Cohen–Macaulay modules.

Theorem A.7 (Auslander–Buchsbaum). Let (R,m) be a noetherian

local ring and M �= 0 a finite R-module. Suppose that projdim
R
M <

∞; then

projdim
R
M + depth(m, M) = depth(m, R) = depth(R).

Proof. See e.g. [32, Theorem 19.9] or [62, Theorem 19.1].

Definition A.8. Let R be a noetherian ring and M be a non-zero,
finite R-module. Then M is called perfect if

projdimM = depth(AnnM,R).

An ideal I ⊆ R is called perfect if R/I is a perfect module.

Lemma A.9. Let R be a noetherian ring and let I ⊆ R be an ideal

such that proj dimR R/I = depth(I, R), that is, I is perfect. If R is

Cohen–Macaulay then R/I is also Cohen–Macaulay.

Proof. First we can reduce the problem to R local since the following
holds: R is Cohen–Macaulay if and only if Rp is Cohen–Macaulay for
all maximal ideals p in R. For depth the inequality depth(I, M) ≤

depth(Ip, Mp) holds for any ideal I ⊆ p, p prime in the support of
a finite R-module M [32, Lemma 18.1]. Further, by [32, Cor. 18.5],
the inequality projdim

R
M ≥ depth(AnnM,R) holds for finite M . The

localization functor is exact, hence projdim
Rp

Mp ≤ projdim
R
M . Plug-

ging M = R/I into the first inequality, everything localized in the sec-
ond inequality and using that I is perfect in R follows that Ip is perfect
in Rp for p maximal in R.
Now let R be local with maximal ideal m. We have to show that
dim(R/I) = depth(R/I). By the theorem of Auslander–Buchsbaum
(Thm. A.7) the following equality holds: projdim

R
R/I = depth(m, R)−

depth(m, R/I). Since I is perfect, this equality becomes

depth(I, R) = depth(m, R)− depth(m, R/I).
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From R local and Cohen–Macaulay follows dim(R) = dim(R/I)+ht(I).
A combination of these two equalities and using Cohen–Macaulayness
of R, that is, the height of any ideal in R is equal to its depth on R,
yields dim(R/I) = depth(m, R/I). Hence

depth(R/I) ≥ depth(m, R/I) = dim(R/I),

which completes the proof.

Remark A.10. One can show that for a local Cohen–Macaulay ring
and a finite R-module M of finite projective dimension the following
holds: M is a Cohen–Macaulay module if and only if it is perfect,
see [12, Theorem 2.1.5.].

The next theorem characterizes modules of the form R/I, where R is
a local ring and I ⊆ R is an ideal such that projdimR/I = 2.

Theorem A.11 (Hilbert–Burch). Let R be a local ring.

(a) If a complex

F : 0 �� F2
ϕ2 �� F1

ϕ1 �� R �� R/I �� 0

is exact, F2 is free and F1
∼= Rp

, then F2
∼= Rp−1

and there exists a

nonzerodivisor x ∈ R such that I = xIp−1(ϕ2). Here Ip−1(ϕ2) denotes

the ideal generated by the (p − 1) × (p − 1)-minors of the p × (p − 1)-

matrix representing ϕ2. Moreover, the ideal Ip−1(ϕ2) has depth exactly

2 in R.

(b) Conversely, given any p×(p−1) matrix ϕ2 such that depth Ip−1(ϕ2)

is greater than or equal to 2 and a nonzerodivisor x, the map ϕ1,

obtained as in (a) makes of F a free resolution of R/I, with I =

xIp−1(ϕ2).

Proof. See e.g. [32, Theorem 20.15].

A.1.3 Integral closure of rings and ideals

We need normalization of analytic spaces as well as the integral clo-
sure of ideals. Here we describe the commutative algebra behind the
geometry. Recall that a reduced commutative ring R is called normal
if it is integrally closed in its total ring of fractions. In the following we
denote the normalization of a ring R by �R.
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Theorem A.12 (Splitting of normalization). Let R be a reduced noethe-

rian ring and (0) = p1 ∩ · · · ∩ pk be an irredundant primary decompo-

sition. Then there is a canonical isomorphism between �R, the normal-

ization of R, and the direct sum of the normalizations of R/pi, that

its,

�R ∼=

� �R/pi.

Proof. See Theorem 1.5.20 of [27].

Remark A.13. The geometric content of this theorem is that normal-
ization separates the analytic branches of a variety (see next section).

Definition A.14. Let R be a commutative ring and let I ⊆ R be a
proper ideal. One says that an element f ∈ R is integral over I if there
exists a relation

fk
+ a1f

k−1
+ · · ·+ an = 0,

where ai are elements of Ii. Then the integral closure of the ideal I is
defined to be set of all integral elements over I and is denoted by I.

One can easily show that I is also an ideal of R and that one always has
the chain of inclusions I ⊆ I ⊆

√
I and (I)

n ⊆ In for all n ≥ 0. Integral
closure of ideals was first defined in [104, Appendix]. In [57] various
characterizations and applications of integral closure, in particular in
the analytic case are discussed.

A.2 Complex analysis – local analytic ge-

ometry

In local analytic geometry one uses concepts from complex analysis as
well as from commutative algebra. First we recall the definitions of the
objects we work with in the text. These definitions and more back-
ground info and proofs can be found in many textbooks, e.g. [27,69,70,
97].

A.2.1 Analytic spaces, sheaves and notation

The notions of sheaf and locally ringed space can be found in any text-
book on algebraic or analytic geometry. Here we remark that instead
of the usual definition via open sets one can also define a sheaf via
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its stalks, as e.g. in [87]: Let X be a topological space. A sheaf F of
abelian groups (modules, rings, . . . ) consists of
(a) a function x �→ Fx that corresponds to each x ∈ X an abelian group
(module, ring, . . . ),
(b) a topology on F =

�
x∈X

Fx, the disjoint union of the stalks Fx.
We use this characterization of sheaves when we define the sheaves of
logarithmic differential forms and vector fields in Chapter 1.
Let (X,OX) be a locally ringed Hausdorff space. Then (X,OX) is
called a complex manifold if for any p ∈ X there exists a neighbour-
hood U ⊆ X such that (U,OX|U ) is isomorphic to (V,OV ), where V
is a domain in Cn. The integer n is called the (complex) dimension

of X and denoted by dim X. One also has an equivalent differential-
geometric definition: a complex manifold M is a topological manifold
equipped with a system of local charts ϕi : Ui → Cn, ϕi a diffeomor-
phism such that the open sets Ui cover M and the change of charts
morphisms

ϕj ◦ ϕ
−1
i

: ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

are holomorphic. The ϕi = (ϕi1, . . . ,ϕin) on Ui are called (local) com-

plex coordinates on M and are mostly denoted by (x1, . . . , xn). Further,
a locally ringed space (X,OX) is called an analytic space if any p ∈ X
has a neighbourhood U such that (U,OX|U ) is isomorphic to (V,OV ),
where V is an analytic subset of an open set W ⊆ Cn for some n, and
the ring OV = (OW /I (V ))|V .
By definition, an analytic space is always reduced. Sometimes we need
a non-reduced structure on an analytic space (e.g. when dealing with
Jacobian ideals in Chapters 2 and 3): a locally ringed Hausdorff space
(X,OX) is called a complex space if any p ∈ X has a neighbourhood U
such that (U,OX|U ) is isomorphic to (V,OV ), where V is an analytic
subset of an open W in some Cn and OV = (OW /J)|V , J ⊆ OW an
ideal sheaf such that for all p ∈ V ,

�
Jp = I (V )p.

Recall that a sheaf F on a locally ringed space (X,OX) is called coher-

ent if it is finitely generated and of relation finite type, that is, for any
point x ∈ X there is an open neighborhood U ⊆ X and a surjective
morphism of sheaves Oq

X|U
→ F|U → 0 and for any open set U and

any morphism of sheaves α : O
q

X|U
→ F|U the kernel ker(α) is finitely

generated. Sometimes we need

Theorem A.15 (Meta-Theorem for coherent sheaves). Let F and G
be coherent sheaves of OX-modules. Then every reasonable operation
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with F ,G (finitely generated subsheaves, taking kernel or cokernel, ten-

sor product, . . . ) results again in a coherent sheaf.

Proof. See [27, Theorem 6.2.3].

The following theorem due to G. Scheja is about the singularities of co-
herent sheaves is the main ingredient to answer Saito’s question (Chap-
ter 1) in general.
Let (X,OX) be a complex space and F be a coherent sheaf of OX -
modules on X. Denote for a point x ∈ X

depth
x

F =

�
∞ if Fx = 0,

depth(mx, Fx) else (where mx is the maximal ideal of OX,x).

Further define the singular subvarieties of F as

Sm(F ) = {x ∈ X : depth
x

F ≤ m}.

Theorem A.16 (Scheja). Let (X,OX) be a complex space and F a

coherent sheaf of OX-modules on X. Then the sets Sm(F ) are subva-

rieties of X and dim Sm(F ) ≤ m.

Proof. See [84] and for this formulation (1.11) of [90].

A germ of an analytic space (X,x) is called normal if the local ring
OX,x is a normal ring and the analytic space X is called normal if for
all x ∈ X the germ (X,x) is normal. Note that a normal germ of an
analytic space is irreducible, see [27, Thm. 1.5.7].

We always work with a divisor D in a complex manifold S with dim(S)

= n. A divisor D is by definition an analytic hypersurface in S, that
is, locally at a point p = (x1, . . . , xn) ∈ S, where (x1, . . . , xn) denote
complex coordinates, D is defined by an equation h = 0 (we also say: D
is given by h or write D = {h = 0} locally), where h is a holomorphic
function germ in OS,p

∼= C{x1, . . . , xn} (sometimes only denoted by
O). Note that a-priori we do not assume that h is reduced. However,
in our context we nearly always work with reduced defining equations,
that is, (D, p) is an analytic space. The next notion is crucial in the
whole thesis, therefore it gets its own definition:

Definition A.17. Let (S, D) be a complex manifold with dim(S) = n
together with a divisor D. We say that D has normal crossings at a
point p ∈ S if one can find local coordinates (x1, . . . , xn) such that D
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is defined by the equation x1 · · ·xr = 0, where 0 ≤ r ≤ n depends on
the considered point. In this case we also say that (D, p) has normal
crossings or is a normal crossing singularity. A divisor D is called a
normal crossing divisor if D has normal crossings at any point p ∈ S.

Example A.18. Let D ⊆ S = C2 be globally defined by h = x3 − y2.
At the origin D does not have normal crossings since (D, 0) is an A3-
singularity. At any point p ∈ D, p not the origin, one finds that (D, p)

is smooth and hence one can find local coordinates (x�, y�) at p, such
that D = {x� = 0}. Thus (D, p) is a normal crossing singularity. At a
point p �∈ D, D is clearly defined by h ≡ 0, so in this case D has also
normal crossings at p.
Two divisors D1 and D2 in a complex manifold S are said to intersect
transversally at a point p if they are both smooth at p and their union
D1 ∪D2 has normal crossings at p. Otherwise we say that D1 and D2

meet tangentially at p. The following fact about reduced divisors is
used on various occasions throughout the text.

Lemma A.19. Let S be a complex manifold of complex dimension n
and D a divisor in S. Suppose that at a point p the divisor is defined

by a reduced h ∈ OS,p. Then one can choose coordinates (x1, . . . , xn)

at p such that dim{h = ∂xnh = 0} ≤ n − 2, i.e., h and ∂xnh do not

have a common factor.

Proof. We may suppose that h is a Weierstrass-polynomial in OS,p
∼=

C{x1, . . . xn}, see [27]. Then

h = xp

n
+ an−1(x1, . . . , xn−1)x

p−1
n

+ · · ·+ a0(x1, . . . , xn−1),

with ai ∈ C{x1, . . . , xn−1}. Let h = h1h2, where the hi are not neces-
sarily irreducible. Suppose that h and ∂xnh had some common com-
ponents, namely the ones of h1. Then one had ∂xnh = h1g for some
g �= 0 ∈ OS,p. Note that ∂xnh1 �= 0 because otherwise it would follow
(using that h is a Weierstrass-polynomial) that h1 is a unit in OS,p.
Differentiating by xn yields

∂xnh = (∂xnh1)h2 + h1(∂xnh2) = h1g,

which implies
(g − ∂xnh2)h1 = (∂xnh1) · h2.

Since ∂xnh1 is not equal to zero, h1 divides (∂xnh1) · h2. But h1 does
not divide any factor of h2, thus h1 has to divide ∂xnh1, which yields
a contradiction.
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Next we recall some facts about vector fields and differential forms
on manifolds: Let S be a complex manifold and p ∈ S a point. A
tangent vector v is an element of the tangent space TpS. Equivalently,
a tangent vector can be given as a derivation χ : OS,p → C, that is,
a C-linear map such that for all f, g ∈ OS,p we have χ(fg) = fχ(g) +

gχ(f). The TpM make up the tangent bundle TS of S, which is also
denoted by DerS . A section of the tangent bundle is called vector

field. Informally speaking, a vector field δ assigns continuously to each
p ∈ S a vector δ(p) ∈ TpS. The dual bundle (TS)

∗
= Hom(TS , C) is

called the cotangent bundle and denoted by Ω
1
S
. A section of Ω

k

S
:=�

k
Ω

1
S

is called a (holomorphic) differential k-form. In local coordinates
(x1, . . . , xn) in a neighbourhood U of a point p ∈ S a vector field δ

can be expressed by δ =
�

n

i=1 ai(x)∂xi with ai ∈ OU . The elements
dxI = dxi1 ∧ · · ·∧ dxik ∈ Ω

k

U
, i1 < · · · < ik, provide a basis of Ω

k

U
. One

can also consider meromorphic differential k-forms that are locally in U
of the form ω =

�
I
wIdxI with wI ∈MU , the meromorphic functions

on U .

A.2.2 Extension Theorems

In analytic geometry, one often wants to extend holomorphic functions
that are only defined on a subset of an analytic space to the whole space.
Extension theorems (Hartogs, Riemann) tell us when this is possible.
In the following section we will also learn about weakly holomorphic
functions, which are connected to Riemann’s extension theorem.

Theorem A.20 (Riemann’s extension theorem). Let U ⊆ Cn
be open

and connected and X ⊆ U an analytic set. Consider a holomorphic

function

f : U\X −→ C

and suppose that f is locally bounded, that is, for all p ∈ X there exists

a neighbourhood V of p such that f |V \(V ∩X) is bounded. Then there

exists a holomorphic extension of f to U . This means that there exists

a holomorphic function F : U → C such that F restricted to U\X is

equal to f .

Theorem A.21 (Hartogs’ theorem). Let U ⊆ Cn
be an open set and

consider an analytic set A ⊆ U with dimp(A) ≤ n − 2 for all p ∈ A,

that is, the codimension of A in U is at least 2. Let

f : U\A → C
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be a holomorphic function. Then there exists a unique holomorphic

extension of f to U .

Proof. [27, Theorem 3.1.15] and [27, Theorem 4.1.24].

This theorem can be stated in more generality for analytic spaces,
namely, instead of Cn it is enough to have a normal ambient space:

Theorem A.22. Let X be a normal analytic space and A be an analytic

subset of X with dimp(A) ≤ dimp(X) − 2 for all p ∈ X. Then any

holomorphic function on X\A can be extended to X.

Proof. See [69, Proposition 4, Ch. VI].

A.2.3 Normalization, universal denominators and

weakly holomorphic functions

In this section we give a brief overview of some notions and results
related to normalization of analytic spaces, which are used in chapter
1. Briefly, normalization of an analytic space separates its irreducible
components and kills all singularities of codimension 1.

In order to define the normalization of an analytic space germ (X,x),
which is in general not again an analytic space germ, we need some more
notions: a multi-germ (X,x) of analytic spaces (X1, x1), . . . , (Xk, xk),
k ≤ ∞ is the disjoint union (X,x) = (X1, x1) ∪ · · · ∪ (Xk, xk). By
definition, the ring OX,x is

�
k

i=1OXi,xi . Note that OX,x is a semi-
local ring. Finally, let (Y, y) = (Y1, y1) ∪ · · · ∪ (Ym, ym) be another
multi-germ. Suppose, we are given a system of maps of ϕi : (Xi, xi) →

(Yα(i), yα(i)) for i = 1, . . . , k and some α(i) ∈ {1, . . . ,m}. Then a map
ϕ : (X,x) → (Y, y) is given by this system and this map induces and
is induced by a C-algebra map ϕ

∗
: OY,y → OX,x. One can define

properties of this map (e.g. finite, proper) in an obvious way. A multi-
germ (X,x) is called normal if OX,x is a normal ring. It is easy to
see that the ring OX,x is normal if and only if OXi,xi is normal for
i = 1, . . . , k.

Definition A.23. Let (X,x) be an analytic space germ. A normaliza-

tion of (X,x) is a multi germ ( �X, x̃), which is normal, together with a
proper map π : ( �X, x̃) → (X,x) with finite fibers such that if (Sing X,x)

denotes the singular set of (X,x) and (A, x̃) := (π
−1

(Sing X), x̃), then
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( �X\A, x̃) is dense in ( �X, x̃) and via π|�X\A
analytically isomorphic to

(X\Sing X,x).

One can prove that a normalization always exists (see Thm. 4.4.8. of
[27]) and that it is uniquely determined. For the normalization of
a germ (X,x) =

�
k

i=1(Xi, x), with Xi irreducible, one obtains that
�OX,x =

�
k

i=1
�OXi,x (by the splitting of normalization theorem). In

particular the normalization of an irreducible space germ (X,x) is again
an irreducible space germ ( �X, x̃).

Theorem A.24. Let (X,x) be a normal analytic space germ. Denote

Sing X the singular locus of X. Then one has

dimx(Sing X) ≤ dimx(X)− 2.

If X is a hypersurface in a complex manifold, then the other implication

holds.

Proof. See Chapter VI, Theorem 2 of [69]. We prove here the second
statement for hypersurfaces: Let X be a hypersurface in a complex
manifold S of dimension n. Suppose that locally at a point x the
hypersurface is defined by a reduced h ∈ OS,x. Denote (X,x) be the
corresponding analytic germ at x and suppose that dimx(Sing X) ≤

n−2. We show that OX,x is a normal ring with Serre’s characterization
of normal rings (see [27, Thm. 4.4.11]); the ring OX,x is normal if and
only if the following two conditions hold:
(R1) For each prime ideal p ∈ OX,x the ring (OX,x)p is a regular local
ring.
(S2) If f ∈ OX,x is a nonzerodivisor, then the ideal (f) ⊆ OX,x has no
embedded primes.
The condition (R1) follows from the assumption on the singular locus of
X (using the Jacobian criterion for regularity [32, Cor. 16.20]). For (S2)
we remark that OX,x is a Cohen–Macaulay ring, since X is locally a
complete intersection (it is a hypersurface). Hence for a nonzerodivisor
f , the ring OX,x/(f)OX,x is also Cohen–Macaulay (see e.g. [32]). But
this implies that the ideal (f) is unmixed, that is, it has no embedded
primes, and hence (S2) holds for OX,x.

Remark A.25. In general the following holds: If (X,x) is locally a
Cohen–Macaulay singularity, that is, OX,x is Cohen–Macaulay, and if
dimx(Sing X) ≤ dimx(X) − 2, then (X,x) is a normal analytic space
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germ. The proof is the same as in the hypersurface case since for (S2)
we just need that OX,x is a Cohen–Macaulay ring.
We gave the definition of a normal space from the algebraic point of
view. But one also has an interpretation of a normal analytic space in
complex analysis. Namely, an analytic space is normal if and only
if the Riemann extension theorem holds for it. Therefore we need
the notion of weakly holomorphic functions. Moreover, we will come
across so-called universal denominators, that is, holomorphic functions
f such that the multiplication of a weakly holomorphic function on an
analytic space germ with f yields a holomorphic function. But first a
few definitions.

Definition A.26. Let X be an analytic space and denote by Sing X
its singular locus. A function f : X\Sing X → C is said to be weakly

holomorphic on X if the following two conditions hold:
(1) f is holomorphic on X\Sing X.
(2) f is locally bounded along Sing X.
Let (X,x) be an analytic space germ. For any x ∈ X we may de-
fine the germ of a weakly holomorphic function at x. Obviously the
germs of weakly analytic functions at x form a ring, the ring of weakly

holomorphic functions, which we denote by O�
X,x

.

Example A.27. Let (X,x) be a normal crossing divisor in Cn defined
by

OX,x = C{t1, . . . , tn}/(t1 · · · td)

with 1 ≤ d ≤ n. The coordinate ring of the normalization is then
�OX,x = ⊕d

i=1C{t1, . . . , tn}/(ti). Geometrically, the normalization ( �X, x̃)

of (X,x) consists of d copies of smooth hyperplanes (Xi, xi) with co-
ordinates (t1, . . . ,�ti, . . . , tn). The normalization map π is given by the
d maps πi : (Xi, xi) → (X,x), sending (t1, . . . ,�ti, . . . , tn) to (t1, . . . , 0,
. . . , tn).
Example A.28. Let (X,x) be the cusp with OX,x = C{x, y}/(y2 − x3

).
The element t :=

y

x
is integral over OX,x since t2 =

y
2

x2 =
x
3

x2 = x,
and t satisfies the integral equation T 2 − x = 0. The normalization
ring is C{x, y, t}/(y2 − x3, t2 − x) = C{t}. It is easy to see that the
normalization map is given by t �→ (t2, t3).
Example A.29. Let (X,x) be the E8-singularity in (C3, 0) with coor-
dinate ring OX,x = C{x, y, z}/(x2

+ y3
+ z5

). Since dimx(Sing X) =

2 − 2 = 0, it follows from Thm. A.24 that (X,x) is already normal.
Hence the normalization map is the identity.
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One sees that OX,x embeds into O�
X,x

. On the other hand, one may
even find a holomorphic f ∈ OX,x such that fO�

X,x
⊆ OX,x. Such an f

is called a “universal denominator”. We list some facts about universal
denominators before stating that O�

X,x
= �OX,x.

Definition A.30. Let X be an analytic set in an open set U in some
Cn. A holomorphic function f on U is called a universal denomina-

tor for X at a point x ∈ X if we can find a neighbourhood V of
X in U such that: if g is a holomorphic function on the analytic set
X �

= (X\Sing X) ∩ V and if g is bounded on X �, then there exists a
neighbourhood W of x such that fg is the restriction of a holomorphic
function on W to X � ∩W .

The previous definition can be used for analytic spaces in an obvious
way.

Theorem A.31. Let X be an analytic set in Cn
and x ∈ X. Then

there exists a neighbourhood V of x and finitely many holomorphic func-

tions f1, . . . , fm in V such that:

(1) The set Sing(X ∩ V ) = {p ∈ V : f1(p) = · · · = fm(p) = 0};

(2) Each fi is a universal denominator at every point of V .

Proof. See [69, III, Thm. 6].

Theorem A.32 (Tsikh). Let U ⊆ Cn
be a domain and X = {z ∈

U : f1(x) = · · · = fp(x) = 0} for some fi ∈ OU be a complete inter-

section analytic subset of U , that is, dim X = n − p and X is pure-

dimensional. Define for any I = (i1, . . . , ip) ∈ {1, . . . , p} the function

gI =
∂(f1,...,fp)

∂(xi1 ,...,xip ) . If gI does not vanish on any irreducible component

of X, then gI is a universal denominator forX.

Proof. See [96, Thm. 1]

Theorem A.33. Let (X,x) be an analytic space germ. A function

germ f is in the integral closure of OX,x if and only if f is a weakly

holomorphic function germ, that is, one has a canonical isomorphism

O
�

X,x
∼= �OX,x.

Moreover, (X,x) is normal if and only if every germ of a weakly holo-

morphic function on (X,x) can be extended to a holomorphic function

on (X,x).
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Remark A.34. This theorem means that an analytic space germ (X,x)

is normal if and only if the Riemann extension theorem holds for (X,x).
We have another isomorphism, namely the direct image sheaf of the
normalization of the analytic space X, denoted by π∗O�X , is isomor-
phic to the normalization sheaf �OX . To state this result properly we
need some more facts about coherent sheaves on analytic spaces, in
particular Oka’s finite mapping theorem.

Let (X,OX) and (Y,OY ) be analytic spaces and let f : X → Y be a
holomorphic map. An analytic sheaf F on X is a sheaf of OX -modules.
We define a presheaf f∗F on Y by the following rule: for an open set
U ⊆ Y set

f∗F (U) = F (f−1
(U)).

The restriction maps are the obvious ones, and one can easily see that
f∗F is a sheaf on Y . The sheaf f∗F is called the direct image (sheaf)

of F , with stalk f∗Fy at a point y ∈ Y .
Example A.35. Let X be any analytic space with an analytic sheaf F
and suppose that Y = {p} is a point and f : X → Y is the map sending
the whole of X to p. Then f∗F is a sheaf on a point and can hence
be identified with a ring. But we also have f∗F (U) = F (f−1

(U)) =

F (X). Thus the direct image sheaf is in this case just the ring of global
sections of F over X.
Remark A.36. Let (X,OX) and (Y,OY ) be analytic spaces, such that
for all x ∈ X the stalk OX,x is a local ring and let f : X → Y be a
holomorphic map. Then by definition of a morphism of locally ringed
spaces there is also a morphism f∗ of sheaves of OY -modules:

f∗ : OY → f∗OX ,

such that the induced map on the stalks f∗
x

: OY,f(x) → OX,x sends the
maximal ideal of OY,f(x) into the maximal ideal of OX,x.

Theorem A.37 (Finite mapping theorem). Let f : X → Y be a finite

mapping of analytic spaces, and let F be a coherent OX-sheaf. Then

f∗F is a coherent OY -sheaf.

Proof. See [27, Thm. 6.3.5].

The finite mapping theorem is used to prove the following theorem, in
whose proof one shows the equality of the normalization sheaf �OX and
the direct image sheaf of the normalization π∗OX .
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Theorem A.38 (Oka). Let (X,OX) be an analytic space and denote

by π : �X → X its normalization. The normalization sheaf �OX is the

sheaf whose stalk at a point x ∈ X is �OX,x. Then the normalization

sheaf is OX-coherent.

Proof. See [27, Thm. 6.3.7.].

From Theorems A.33 and A.38 we can conclude that the three rings
O�

X,x
, π∗O�X,x

and �OX,x are isomorphic for any x in an analytic space
X.
Remark A.39. We remark here a fact about universal denominators (in
O�

X,x
and hence also in π∗O�X,x

). Obviously, the ring OX,x is contained
in O�

X,x
. If g is a universal denominator at x which does not vanish on

any irreducible component of the analytic space germ (X,x), then we
obtain an exact sequence

0 �� O�
X,x

·g �� OX,x.

This means that the OX,x-homomorphism O�
X,x

→ OX,x given by the
multiplication with g is injective and maps O�

X,x
onto some subring of

OX,x.

Definition A.40. Let (X,x) be the germ of an equidimensional ana-
lytic space with normalization π : �X → X. Then the conductor ideal

CX,x at x is the largest ideal that is an ideal in OX,x as well as in
π∗O�X,x

(we write CX if there is no danger of confusion regarding the
point x). Alternatively, the conductor CX,x can be defined as the ideal
quotient (OX,x : π∗O�X,x

) = {f ∈ OX,x : fπ∗O�X,x
⊆ OX,x} or as

HomOX,x(π∗O�X,x
,OX,x).

Remark A.41. The conductor CX is a coherent sheaf of ideals over OX .

Theorem A.42 (Piene’s Theorem). Let X be a locally complete inter-

section variety of dimension s over an algebraically closed field k. Let

f : Z → X be a desingularization of X and denote by If = F 0
Z
(Ω

1
Z/X

)

the ramification ideal of f in OZ and by JX the ideal F s

X
(Ω

1
X/k

). Sup-

pose that f is finite. Then there is an equality of ideals

JXOZ = IfCXOZ .

Proof. See Theorem 1 and Corollary 1 of [76].
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Remark A.43. (1) The above theorem also holds in the analytic case
since all constructions in the proof of Theorem 1 of [76] also work,
cf. [4, 43, 66]. It also holds if we take as Z the normalization �X of X
and �X is Gorenstein (because in the proof of Piene’s Theorem one only
needs that the dualizing sheaf ωZ is invertible, cf. [43]).
(2) The ideal JX is sometimes also called “Jacobian ideal of X”. We
need the above theorem in the case where X is a divisor D in a com-
plex manifold S defined locally at a point p by {h = 0}. Then JD is
simply the ideal Jh in OD,p (resp. the ideal ((h)+Jh) ⊆ OS,p) defining
the singular locus (Sing(D), p). Clearly, D is locally at p a complete
intersection.

A.2.4 Cartesian products

Sometimes it is useful to know that an analytic space (X,x) is a
Cartesian product, which means that (X,x) is locally isomorphic to
some (X � × T, (x�, t)) where (X �, x�) is of lower dimension than (X,x)

and (T, t) is a smooth factor. Then one can read off properties of
X from X � or apply induction on the dimension on X. Since we
deal exclusively with hypersurfaces, the following is described only
for them. A stronger form of the Cartesian product structure is an-
alytic triviality, where one prescribes the structure of (X �, x�). More
precisely: let T ∼= Cm and let {(Xt, 0)t∈T } = {V (gt), 0)}t∈T be a
family of analytic hypersurface germs with (Xt, 0) ⊆ (Cn, 0) where
gt := g(x1, . . . , xn, t1, . . . , tm) ∈ C{x1, . . . , xn, t1, . . . , tm}. The family
{(Xt, 0)}t∈T is called locally analytically trivial at t = 0 ∈ T if for all
t ∈ T there exists a biholomorphic map ϕt : (Cn, 0) → (Cn, 0) sending
(Xt, 0) to (X0, 0) that can additionally chosen to be analytic in t. This
means nothing else but that X = V (g(x, t)) ⊆ Cn+m is locally isomor-
phic to (X0, 0)× (T, 0) = (X0 × T, (0, 0)).
The next lemma gives an ideal-theoretic characterization of Cartesian
product structure resp. local analytic triviality. It is used frequently
and can be found in various different formulations in the literature
(e.g. in [22, 27, 39, 81]). We will give a partial proof and will refer to
this lemma as the triviality lemma.

Lemma A.44 (Triviality lemma). Let (S, p) locally be isomorphic to

(Cn+m, 0) and denote OS,p = C{x1, . . . , xn, y1, . . . , ym} (in short: O =

C{x, y}) and let h(x1, . . . , xn, y1, . . . , ym) be an element of O. Then

the following are equivalent:

(a) The ideal (∂y1h, . . . , ∂ymh) is contained in the ideal (h, ∂x1h, . . . , ∂xnh).
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(b) There exists a local biholomorphic map ϕ : (Cn+m, 0) → (Cn+m, 0)

and a holomorphic v(x, y) ∈ O∗ such that

ϕ(x, y) = (ϕ1(x, y), . . . ,ϕn(x, y), y1, . . . , ym),

ϕ(x, 0) = (x, 0), v(x, 0) ≡ 1 and h ◦ ϕ(x, y) = v(x, y)h(x, 0).

This means that D = {h(x, y) = 0} is locally at p isomorphic to some

(D� × Cm, (0, 0)) where D�
is locally contained in Cn

.

Analytic triviality is characterized as follows. Under the same hypothe-

ses as above the following are equivalent:

(a’) The ideal (∂y1h, . . . , ∂ymh) is contained in the ideal

(x1, . . . , xn, y1, . . . , ym)(∂x1h, . . . , ∂xnh).

(b’) There exists a local biholomorphic map ϕ : (Cn+m, 0) → (Cn+m, 0)

such that ϕ(x, y) = (ϕ1(x, y), . . . ,ϕn(x, y), y1, . . . , ym), ϕ(x, 0) = (x, 0),

ϕi − xi ∈ (x1, . . . , xn) and h ◦ ϕ(x, y) = h(x, 0).

This means that (D, p) ∼= (D0 × Cm, (p�, 0)) where D0 = {h(x, 0) = 0}

is the “fiber” at the origin.

Proof. We prove (a) ⇔ (b). First suppose (b): From h ◦ ϕ(x, y) =

v(x, y)h(x, 0) follows ∂yi(
h◦ϕ

v
) = 0 for all i = 1, . . . ,m. By chain and

product rule one gets

∂yi(h ◦ ϕ)v = ∂yiv · h ◦ ϕ

n�

j=1

∂xj h ◦ ϕ · ∂yiϕj + ∂yih ◦ ϕ =
∂yiv

v
h ◦ ϕ.

Since ϕ is biholomorphic one may substitute (x, y) with ϕ
−1

(x, y). This
yields
∂yih ∈ (h, ∂x1h, . . . , ∂xnh), what has to be shown.
Conversely, the statement is proven by induction on the number of yi.
We show the assertion for m = 1, i.e., y = y1. Then (a) yields an
equation

∂yh +

n�

i=1

ai∂xih = ah. (A.1)

We define the vector field δ = ∂y+
�

n

i=1 ai∂xi , which satisfies δ(h) = ah,
δ(xi) = ai and δ(y) = 1. Then consider its integral Ψ which gives
a biholomorphic map with a parameter t, namely Ψ : (Cn+1+1, 0) →

(Cn+1, 0), which sends (x, y, t) to (Ψ1(x, y, t), . . . ,Ψn(x, y, t), y+t) with
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Ψi(x, y, t) :=
�∞

k=0
t
k

k! δ
k
(xi) for i = 1, . . . , n and Ψn+1 =

�∞

k=0
t
k

k! δ
k
(y)

= y + t. On the algebra level the dual morphism for an f ∈ O is
Ψ
∗
(f, t) =

�∞

k=0
1
k!δ

k
(f)tk (a priori Ψ

∗ is only formal but using Artin’s
approximation theorem, one finds that it is actually analytic). From
equation (A.1) one gets

h(Ψ(x, y, t)) = eta(x,y)h(x, y). (A.2)

Now define ϕi(x, y) = Ψi(x, 0, y) for i = 1, . . . , n and ϕn+1(x, y) =

Ψn+1(x, 0, y) = y. One immediately sees ϕi(x, 0) = xi for i = 1, . . . , n.
Clearly ϕ is a biholomorphic map and ϕ

∗
(h) = h(Ψ(x, 0, y)). From

equation (A.2) it follows that h(ϕ1, . . . ,ϕn, ϕn+1) = eya(x,0)h(x, 0).
Then putting v(x, y) := eya(x,0) satisfies v(x, 0) ≡ 1. Hence we have
shown all conditions of (b). The induction from k to k + 1 for k < m
is done in an obvious way, see for example [81].
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Figures

In this appendix3 illustrations of some examples of divisors in 2- and
3-dimensional manifolds appearing in the main text are shown. The
divisors are visualized in R2 and R3. This realization may cause some
geometric features of the divisors (originally defined over the complex
numbers) to change. The pictures were produced by the author with
the ray-tracing program POV-ray.

The main object of the thesis are divisors with normal crossings. In
figure B.1 the typical normal crossing divisor in R2 and R3 is shown.

Figure B.1: Normal crossing divisor in R2 defined by h = xy (left) and
in R3 defined by h = xyz (right)

In fig. B.2 the curves node and cusp are pictured. The node has normal
crossings at the origin, i.e., it has an A1-singularity. The cusp, on

3In order not to distract the reader’s attention from the mathematics in the main
text, we have chosen to defer the pictures to this appendix.
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the other hand, has an A2-singularity. Note that the cusp is even
analytically irreducible.

Figure B.2: The node with equation x2
= y2

+x3 and the cusp x3
= y2.

In chapter 1 free divisors are introduced. It is not easy to grasp the
concept of freeness geometrically. In fig. B.3 the discriminant of a
versal deformation of an A3-singularity is shown (see Example 1.17).
The singular locus of this free surface is one-dimensional and consists
of a parabola and a cusp. Note that because of the visualization in R3

one cannot “see” the singular parabola. Another important example of
a free divisor is the 4-lines divisor (fig. B.3) of Example 1.16: it consists
of four smooth components and locally at the origin its singular locus
is the z-axis. In fig. B.4 the free surface of Example 2.9 (2) is pictured.
Here the singular locus consists of three smooth curves, along which
the divisor does not have normal crossings.

Figure B.3: The 4-lines: xy(x + y)(x + yz) (left) and discriminant of
versal deformation of an A3-singularity (right).

The two divisors of fig. B.5 are everywhere free but at the origin. The
Whitney Umbrella was considered in Example 1.13. It has the z-axis
as singular locus but at the origin the Jacobian ideal has an embedded
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Figure B.4: Sekiguchi’s FB,1-example, with h = z(x2y2−4y3−4x3z +

18xyz − 27z2
).

primary component. Outside the origin along the z-axis the Whitney
Umbrella is analytically isomorphic to the union of two transversally
intersecting hyperplanes, that is, it has normal crossings. The surface
Tülle of Example 1.43 is the union of three smooth surfaces. In Example
3.50 it was shown that Tülle is not mikado at the origin.

Figure B.5: The Whitney Umbrella: x2− y2z (left) and Tülle: xz(x+

z − y2
) (right).

In fig. B.6 the two surfaces from Example 2.47 are displayed: both have
the cusp as singular locus. One surface is the union of the cylinder over
the cusp with a transversal plane and is splayed and even free at the
origin, whereas the other is neither free nor splayed at the origin.
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Figure B.6: The cusp as singular locus: h = x(y2 − z3 (left) and
h = x(x + y2 − z3

) (right).
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Abstract English

The main objective of this thesis is to give an effective algebraic char-
acterization of normal crossing divisors (= hypersurfaces) in complex
manifolds. In order to obtain such a characterization we study logarith-
mic vector fields along a divisor, i.e., vector fields defined on the ambient
space, which are tangent to the divisor at its smooth points, as well as
logarithmic differential forms. Using the corresponding theory, which
was developed by K. Saito, a characterization of a normal crossing di-
visor in terms of logarithmic differential forms (vector fields) is shown.
Also a characterization of a normal crossing divisor in terms of the log-
arithmic residue is given (which is essentially due to Granger–Schulze).
With this a question posed by K. Saito in 1980 can be answered.
In the second chapter we study singularities of normal crossing divi-
sors, in particular we consider Jacobian ideals, which define the singu-
lar locus of a divisor. The main theorem is that a divisor has normal
crossings at point if and only if it is free at the point, its Jacobian ideal
is radical and its normalization is Gorenstein. Free divisors are defined
via logarithmic vector fields and form a class of divisors containing nor-
mal crossing divisors. Since there exists an algebraic characterization
of free divisors by their Jacobian ideals, our result yields a purely al-
gebraic characterization of the normal crossings property. During the
proof of the main theorem splayed divisors are introduced, which are a
slight generalization of normal crossing divisors.
In the last part we consider further-reaching questions: first we ask,
which radical ideals can be Jacobian ideals of divisors. Then splayed
divisors are studied in more detail, in particular, we show that their
Hilbert–Samuel polynomials satisfy a certain additivity property. Fi-
nally, we consider another generalization of normal crossing divisors,
so-called mikado divisors. Here the plane curve case is studied and we
characterize mikado curves by their Jacobian ideal.





Zusammenfassung Deutsch

Das Hauptziel dieser Dissertation ist eine effektive algebraische Charak-
terisierung von Divisoren (= Hyperflächen) mit normalen Kreuzungen
in komplexen Mannigfaltigkeiten anzugeben. Um eine derartige Cha-
rakterisierung zu finden, studieren wir sowohl logarithmische Vektorfel-
der entlang eines Divisors, d.h., Vektorfelder des umgebenden Raumes,
die in allen glatten Punkten des Divisors tangential an ihn sind, als auch
logarithmische Differentialformen. Mit Hilfe der zugehörigen Theorie,
entwickelt von K. Saito, wird eine Charakterisierung von Divisoren mit
normalen Kreuzungen durch logarithmische Differentialformen (Vek-
torfelder) gezeigt. Des weiteren wird eine Charakterisierung durch das
logarithmische Residuum vorgestellt (diese beruht auf Ergebnissen von
Granger und Schulze). Damit kann eine Frage von K. Saito beantwortet
werden.
Im zweiten Kapitel werden Singularitäten eines Divisors mit normalen
Kreuzungen untersucht, insbesondere betrachten wir das Jacobi Ideal,
das den singulären Ort des Divisors definiert. Unser Hauptsatz besagt,
dass ein Divisor genau dann normale Kreuzungen in einem Punkt be-
sitzt, wenn er frei in diesem Punkt, sein Jacobi Ideal radikal und seine
Normalisierung Gorenstein ist. Freie Divisoren werden durch logarith-
mische Differentialformen definiert und bilden eine Klasse von Diviso-
ren, die insbesondere Divisoren mit normalen Kreuzungen enthält. Da
eine algebraische Charakterisierung von freien Divisoren durch deren
Jacobi Ideale existiert (nach A. G. Aleksandrov), ergibt sich aus un-
serem Resultat eine rein algebraische Charakterisierung der normalen
Kreuzungsbedingung. Im Laufe des Beweises des Hauptsatzes werden
gespreizte Divisoren eingeführt, die eine leichte Verallgemeinerung von
Divisoren mit normalen Kreuzungen darstellen.
Im letzten Teil der Arbeit werden weiterreichende Probleme betrachtet:
Zuerst fragen wir, welche radikalen Ideale Jacobi Ideale von Divisoren
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sein können. Dann werden gespreizte Divisoren genauer untersucht, ins-
besondere zeigen wir, dass ihre Hilbert–Samuel Polynome eine gewisse
Additivitätsbedingung erfüllen. Schließlich wird eine weitere Verallge-
meinerung von Divisoren mit normalen Kreuzungen betrachtet, soge-
nannte Mikado Divisoren. Hier charakterisieren wir ebene Mikado Kur-
ven durch ihr Jacobi Ideal.
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