From Hall algebras to legendrian skein algebras

Fabian Haiden

Leeds algebra seminar

April 28th, 2020

Introduction

Main point:

There is a fruitful interplay between

- Knot theory (and topology more generally), and
- Representation theory (e.g. quantum groups)

However, it turns out legendrian knot theory also appears naturally, in particular when studying derived categories.

Talk based on preprints arXiv:1908.10358, arXiv:1910.04182, and ongoing joint work with Ben Cooper.

Outline

- (1) Local theory
 - Representation theory of $GL(n, \mathbb{F}_q)$ and $Core(D^b(\mathbb{F}_q))$
 - Braids and legendrian tangles
- (2) Global theory
 - Fukaya categories of surfaces and their Hall algebras
 - Legendrian skein algebras

Representation theory of $GL(n, \mathbb{F}_q)$

"Philosophy of cusp forms", case $G_n := GL(n, \mathbb{F}_q)$

(1) Cuspidal representations of $GL(n, \mathbb{F}_q)$ correspond to characters

$$\mathbb{F}_{q^n}^{\times} \to \mathbb{C}^{\times}$$

not factoring through $\mathbb{F}_{q^{n-1}}^{\times}$.

(2) From cuspidals, get everything else by parabolic induction: partition $n=n_1+\ldots+n_k$, V_i representation of G_{n_i} , then pull-push along the span

 $G_{n_1} imes\cdots imes G_{n_k}\longleftarrow \{ ext{block upper-triangular matrices}\}\longrightarrow G_n$ is representation $V_1\circ\cdots\circ V_k$ of G_n .

Unipotent representations

Take trivial representation $\mathbb C$ of $GL(1,\mathbb F_q)$...simplest cuspidal representation

Parabolic induction gives

$$\mathbb{C} \circ \cdots \circ \mathbb{C} = \mathbb{C}^{G_n/B}$$

where

- $B \subset G_n$ subgroup of upper triangular matrices
- $G_n/B=$ complete flags in \mathbb{F}_q^n
- $\mathbb{C}^{G_n/B} = \text{functions } G_n/B \to \mathbb{C}$

Taking summands & direct sums \longrightarrow unipotent representations

Iwahori-Hecke algebra of type A_{n-1} : Generators

Endomorphisms of representation $\mathbb{C}^{G_n/B}$:

$$\operatorname{End}_{G_n}(\mathbb{C}^{G_n/B}) = \mathbb{C}^{B \setminus G_n/B}$$

Bruhat decomposition: $B \setminus G_n / B \cong S_n$

Transposition $(i,i+1) \in S_n \leftrightarrow$ operator T_i on $\mathbb{C}^{G/B}$ mapping flag

$$0 = E_0 \subset E_1 \subset \ldots \subset E_i \subset \ldots \subset E_n = \mathbb{F}_q^n$$

to sum of q flags

$$0 = E_0 \subset E_1 \subset \ldots \subset E_{i-1} \subset E'_i \subset E_{i+1} \subset \ldots \subset E_n = \mathbb{F}_q^n$$

with $E_i' \neq E_i$.

Iwahori-Hecke algebra of type A_{n-1} : Relations

Complete set of relations among T_i :

• Skein relation:

$$T_i^2 = (q-1)T_i + q, \qquad 1 \le i \le n-1$$

• Braid relations:

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, \qquad 1 \le i \le n-2$$

 $T_i T_j = T_j T_i, \qquad 1 \le i, j \le n-1, |i-j| > 1$

Relations polynomial in $q \implies \exists$ generic lwahori–Hecke algebra over $\mathbb{C}[q]$

Specialization q=1 gives group algebra $\mathbb{C}[S_n]$

Categorical reformulation

Embedding of monoidal category of braids/skein relations:

- Objects: finite subsets of $\mathbb R$ modulo isotopy = $\mathbb Z_{\geq 0}$
- Morphisms $n \to n$: \mathbb{C} -linear combinations of braids of n strands modulo isotopy & skein relation
- Composition: concatenation of braids
- Monoidal product: stacking of braids

into category of functors

$$\operatorname{Core}\left(\operatorname{Vect}^{\operatorname{fd}}_{\mathbb{F}_q}\right)\longrightarrow\operatorname{Vect}^{\operatorname{fd}}_{\mathbb{C}}$$

from underlying groupoid of $\operatorname{Vect}^{\operatorname{fd}}_{\mathbb{F}_q}$, monoidal product = parabolic induction

Categorical reformulation — remarks

Functor from braids/skein relations to representations of $\mathrm{Core}\left(\mathrm{Vect}_{\mathbb{F}_q}^{\mathrm{fd}}\right)$

- Target category is semisimple (representations of finite groups)
- ullet Source category is ${\mathbb C}$ -linear, but does not have sums & summands
- Closure of embedded image in target category is category of unipotent representations
- Irreducible unipotent representations indexed by partitions (c.f. irreducible representations of symmetric group)

Extension to complexes

Replace $\operatorname{Vect}^{\operatorname{fd}}_{\mathbb{F}_q}$ by its bounded derived category

$$\mathcal{D} := D^b \left(\operatorname{Vect}^{\operatorname{fd}}_{\mathbb{F}_q} \right)$$

and consider category of functors

$$\operatorname{Core}(\mathcal{D}) \longrightarrow \operatorname{Vect}^{\operatorname{fd}}_{\mathbb{C}}$$

Monoidal product is pull-push along span of ∞ -groupoids (homotopy types):

$$\operatorname{Core}(\mathcal{D}) \times \operatorname{Core}(\mathcal{D}) \longleftarrow \operatorname{Core}\left(\operatorname{Fun}(\bullet \to \bullet, \mathcal{D})\right) \longrightarrow \operatorname{Core}(\mathcal{D})$$

$$(A, C) \longleftarrow A \to B \to C \to A[1] \longrightarrow B$$

Complexes and legendrian tangles

For representations of $\mathrm{Core}(D^b(\mathbb{F}_q))$, turns out we need $\mathit{legendrian}$ tangles!

$\mathrm{Vect}^{\mathrm{fd}}_{\mathbb{F}_q}$	braids
$D^b(\mathbb{F}_q)$	graded legendrian tangles

Local picture of legendrian curves

Legendrian curve: 1-form dz - ydx vanishes along tangent direction

Under xz-projection (front) $y = dz/dx \implies$

• downward branch over upward branch at crossing

- slope never vertical
- front of generic legendrian curve can have left & right cusps

Legendrian Reidemeister moves (front projection)

Grading of legendrian curves

Assignment of integer to each strand ending at cusps

Condition at cusp: increase by 1 on lower strand

Equivalently: choice of ${\rm Arg}(dx+idy)$ along curve (\Longrightarrow image in xy-plane should have total winding number 0)

Generalizes to contact 3-fold M with given rank 1 subbundle of contact bundle $\subset TM$

Legendrian skein relations (front projection)

$$z:=q^{rac{1}{2}}-q^{-rac{1}{2}}, \qquad \delta_{m,n}=$$
 Kronecker delta

Category of graded legendrian tangles

- Objects: finite \mathbb{Z} -graded subsets X of \mathbb{R} up to isotopy (grading = function $\deg: X \to \mathbb{Z}$)
- Morphisms: $\operatorname{Hom}(X,Y) = \operatorname{vector} \operatorname{space} / \mathbb{C}$ generated by isotopy classes of tangles L with left boundary $\partial_0 L = Y$ and right boundary $\partial_1 L = X$ modulo the skein relations ($q = \operatorname{prime} \operatorname{power}$).
- **Composition**: horizontal composition (concatenation) of tangles
- Monoidal product: vertical composition (stacking) of tangles

Mapping graded subsets of ${\mathbb R}$ to representations

Notation: $\mathbb{C}_G = \text{trivial } 1\text{-dim representation of } G$

Mapping a singleton:

$$\stackrel{n}{ullet} \qquad \mapsto \qquad \mathbb{C}_{\operatorname{Aut}(\mathbb{F}_q[-n])}$$

For larger graded $X \subset \mathbb{R}$ determined by compatibility with \otimes :

$$X \longmapsto \bigoplus_{\delta} \mathbb{C}_{\operatorname{Aut}(H^{\bullet}(\mathbb{F}_q X, \delta))}$$

where sum is over combinatorial differentials: injective maps

$$X \supset \mathrm{Dom}(\delta) \xrightarrow{\delta} X \setminus \mathrm{Dom}(\delta)$$

of degree 1, decreasing with respect to order induced from ${\mathbb R}$

Mapping graded legendrian tangles to intertwiners

Main theorem of local theory

Theorem: The mapping defined above gives a well defined fully faithful functor from the category of graded legendrian tangles modulo skein relations to the category of representations of the underlying groupoid of $D^b(\mathbb{F}_q)$.

- This was proven, in a somewhat different formulation, in *Flags* and *Tangles* [arXiv:1910.04182].
- The functor extends the prototypical functor from braids (in degree 0) to representations of the underlying groupoid of $\operatorname{Vect}_{\mathbb{F}_q}^{\operatorname{fd}}$ discussed before, the same remarks apply.

From local to global

- Disk with two marked points on the boundary (implicitly the setting above) → surface with marked points
- Goal: Show graded legendrian skein algebra appears as subalgebra of Hall algebra of Fukaya category
- Strategy: Glue (form coend) along categories considered in local theory

Hall correspondence

 \mathcal{C} — triangulated DG-category

Various versions of Hall algebra obtained by applying pull-push functors to this span of ∞ -groupoids (point of view advocated by Dyckerhoff–Kapranov in *Higher Segal Spaces*)

Homotopy cardinality

 π -finite space: $\pi_i(X)$ finite for $i \geq 0$ and vanishes for $i \gg 0$, has homotopy cardinality (Baez–Dolan):

$$|X|_h := \sum_{x \in \pi_0(X)} \prod_{i=1}^{\infty} |\pi_i(X, x)|^{(-1)^i}$$

Given map $\phi: X \to Y$ of π -finite spaces get

$$\mathbb{Q}\pi_0(X)_c \xrightarrow{\phi_!} \mathbb{Q}\pi_0(Y)_c$$

$$\phi^* f := f \circ \pi_0(\phi), \qquad (\phi_! f)(y) := \sum_{\substack{x \in \pi_0(X) \\ \phi(x) = y}} |\operatorname{hofib}(\phi|_x)|_h f(x)$$

where $\mathbb{Q}\pi_0(X)_c:=$ functions $f:\pi_0(X)\to\mathbb{Q}$ with finite support

Hall algebra of triangulated DG-category (Toen)

Apply homotopy cardinality formalism to Hall correspondence of triangulated DG-category $\mathcal C$ (satisfying finiteness conditions):

 $\operatorname{Hall}(\mathcal{C})=$ finite $\mathbb{Q}\text{-linear}$ combinations of isomorphism classes of objects of \mathcal{C}

Explicit formula for structure constants:

$$g_{A,C}^{B} = \frac{\left| \operatorname{Ext}^{0}(A,B)_{C} \right| \cdot \prod_{i=1}^{\infty} \left| \operatorname{Ext}^{-i}(A,B) \right|^{(-1)^{i}}}{\left| \operatorname{Aut}(A) \right| \cdot \prod_{i=1}^{\infty} \left| \operatorname{Ext}^{-i}(A,A) \right|^{(-1)^{i}}}$$

where $\operatorname{Ext}^0(A,B)_C := \operatorname{morphisms} A \to B$ with cone C

Surfaces with Liouville and grading structure

- (1) S compact surface with boundary
- (2) $N \subset \partial S$ finite set of marked points
- (3) θ Liouville 1-form on S:
 - $d\theta$ nowhere vanishing (area form)
 - vector field Z with $i_Z d\theta = \theta$ points outwards along ∂S
- (4) $\eta \in \Gamma(S, \mathbb{P}(TS))$ grading structure on S (foliation)

From this data construct:

- Fukaya category $\mathcal{F}(S,N,\theta,\eta;\mathbb{F})$ linear A_{∞}/DG -category over field \mathbb{F} , triangulated
- Contact 3-fold $S \times \mathbb{R}$ with contact form $dz + \theta$ and its (graded, legendrian) skein algebra

Fukaya category of a disk

 $\mathcal{F}(\text{disk with } n+1 \text{ marked points on boundary}) \cong \mathcal{A}_n$ where

$$\mathcal{A}_n := D^b(\underbrace{\bullet o \bullet o \ldots o \bullet}_{n \text{ vertices}})$$

is the bounded derived category of representations of A_n -type quiver over $\mathbb F$ (independent of orientation of arrows)

Equivalently, an object of \mathcal{A}_n can be described as filtered acyclic complex

$$0 = F_0C \subset F_1C \subset \ldots \subset F_nC \subset F_{n+1}C = C \sim 0$$

and the *i*-th boundary functor $A_n \to A_1$ sends this to the chain complex $F_iC/F_{i-1}C$, $1 \le i \le n+1$.

Fukaya category of a surface — gluing

Surface glued to itself along pair of marked points on the boundary:

then $\mathcal{F}(S')$ can be computed (or defined inductively) as homotopy equalizer of DG-categories:

$$\mathcal{F}(S') \longrightarrow \mathcal{F}(S) \Longrightarrow \mathcal{A}_1$$

where pair of parallel arrows are boundary functors corresponding to pair of marked points

Fukaya category of a surface — example

Example: $\mathcal{F}(S)=$ annulus with marked point on each boundary component

 $\mathcal{F}(S)$ computed as coequalizer of DG-categories:

$$\mathcal{F}(S) = D^b(\bullet \rightrightarrows \bullet) \longrightarrow \mathcal{A}_2 \oplus \mathcal{A}_2 \Longrightarrow \mathcal{A}_1 \oplus \mathcal{A}_1$$

Note that $\mathcal{F}(S) \cong D^b(\mathrm{Coh}(\mathbb{P}^1(\mathbb{F}_q)))$ — simple example of homological mirror symmetry

Skein algebra of $S \times \mathbb{R}$

- Generated by graded legendrian links in $S \times \mathbb{R}$, allowed to have endpoints in $N \times \mathbb{R}$
- Impose same skein relations as for tangles before, if $N \neq \emptyset$ also have boundary versions of the skein relation
- Algebra product given by stacking links on top of each other
- For our purposes, coefficient ring is $\mathbb C$ and q is a fixed prime power, but could also define with $q^{\frac{1}{2}}$ a formal variable

Skein algebra — gluing

- Skein algebra itself does to satisfy same gluing axiom as Fukaya category, need variant with frozen boundary condition at subset of $N \subset \partial S$: boundary of link is fixed graded subset $X \subset \mathbb{R}$
- Varying X gives lax monoidal functor from category of graded Legendrian tangles, \mathcal{S} , to $\mathrm{Vect}^{fd}_{\mathbb{C}}$ (i.e. \mathcal{S} -module)
- ullet For boundary condition at several points in N, get functor from \otimes -product of copies of $\mathcal S$
- Gluing pair of boundary marked points corresponds to taking coend of bifunctor (\otimes -product of S-module with itself)

Hall algebra — gluing

- As for skein algebra, need to use variant of Hall algebra with boundary condition: framing (i.e. isomorphism with fixed object X) of image under boundary functor
- Varying X gives lax monoidal functor from category of representations of $\mathrm{Core}(D^b(\mathbb{F}_q))$, to $\mathrm{Vect}^{fd}_{\mathbb{C}}$ (i.e. \mathcal{S} -module)
- Gluing (equalizer) corresponds to taking coend
- Semisimplicity of category of representations makes coend very computable!

Main theorem

- (S,N) marked Surface with Liouville form θ and grading η as before
- \mathbb{F}_q finite field

Theorem: There is an injective homomorphism of associative algebras

$$Skein(S, N, \eta, \theta, q) \hookrightarrow Hall(\mathcal{F}(S, N, \eta, \theta, \mathbb{F}_q))$$

from the legendrian skein algebra to the Hall algebra of the Fukaya category.

The homomorphism was already constructed in *Legendrian skein* algebras and Hall algebras [arXiv:1908.10358], the injectivity part is work in progress jointly with Ben Cooper

Open problems and further directions

- (1) \mathbb{Z}/n grading issue with homotopy cardinality
- (2) More sophisticated variants of Hall algebra: motivic/cohomological
- (3) q = 1 limit, categories "over \mathbb{F}_1 "?
- (4) categorification of skein algebra
- (5) higher dimensional contact manifolds (simplest case: $J^1M=T^*M\times\mathbb{R}$)

— end —