Group **Algebras**, Markus M.R. Tripp

- > development of modern noncommutative abgebra was strongly motivated by representation theory of groups

IDEA OF REPRESENT. THEORY study a group G by representing it in terms of lineor transformations on a vector space V

Definition: A representation of a group G on a vector space V over a field K is a group homomorphism

 $p: G \rightarrow Aut_{K}(V) = \{T: V \rightarrow V : T \text{ K}-e \text{ in } \mathcal{C} \}$ and invertible

 $\frac{1}{16}$ Remork: (1) This is equivalent to the existence of a "multiplication"
• : G x v = v s. t.

$$
g \cdot (h \cdot v) = (gh) \cdot v \qquad c \cdot v = v \qquad g \cdot (v + 2w) = g \cdot v + 2(g \cdot w)
$$

for all g , $h \in G$, $\lambda \in K$, $v,w \in V$ (in short: a the linear structure of V preserving group action of ^G ou XI

 $Proof: \frac{1}{100}$: Assume p representation; def. $\cdot: G \times V \rightarrow V$, $g \cdot V = \rho(g)(v)$

then: $q \cdot (h \cdot v) =$ LEK, $v,w \in V$ (in short of the eigenvalue of 6 on V)
ction of 6 on V)
une p representation; def. $G = V \rightarrow V$
 $\rho(g)(\underline{h} \cdot \underline{V}) = (\rho(g) \cdot \rho(h))(\underline{V}) = (gh) \cdot \underline{V}$
 $= \rho(h)(v) = \rho(gh) \cdot (\rho(g) \cdot \underline{A} \cdot \underline{M}) = \rho(h)(v)$

evgv=vgl plg)k-lin. =

$$
= 8 \cdot 10 + 118 \cdot 10
$$

 $^{\prime\prime}$ \leq ": Couversely, Let : G x V = V be a "multiplication"; def . p : G = Autr (v) $p(g) = (v \mapsto g \cdot$ y, let : G x V
v) ring hom

In this situation, V is called a G -module.

(2) We can naturally transform V into an actual module over a ring; For this sake, we need to puild G into a ring :

Definition: Let K be commutative ring, and G a group. The group algebra KIG] is the free K -module with basis $g \in G$ and multiplication

 $-$ 14 host α ses : K field

For this sake, we need to build G into a ring:
\n*definition*: Let K be commutative ring, and Go group. The gro
\nIf G] is the free K-module with basis
$$
g \in G
$$
 and multiplication
\n
$$
\left(\sum_{g \in G} a_g g\right) \cdot \left(\sum_{g \in G} b_g g\right) := \sum_{g \in G} \left(\sum_{g,g \in G} a_g, b_g e\right) g \leftarrow \text{convolution}
$$

 i dentity in KFG]

Remork: (1) It is routine verification that KIG] is - as the terminology suggests-indeedak-algebra

- σ E : $K \rightarrow K[G],$ $\lambda \mapsto \lambda$ (keg) = leg is a ring monomorphism, so we can regord K as a subring of K[G] (identify 2 with λe_G)
- $\nabla L: G \rightarrow K[G],$ $g \mapsto 1_g$ is a group monomorphism, so we can regard G as a subgroup of κ [G] (identify g with 1 κ g)
- \rightarrow \rightarrow so KFG] is non-commutative unless the group G is commutative
(($(i_{K}, q_{i})(1_{K}, u_{i}) = (1_{K}, u_{i})(1_{K}, q_{i}) \Leftrightarrow q_{i} u_{i} = h q_{i}$)

 (2) Let G be a finite group; then KIG] is <u>not</u> a division algebra.

 $Proof:$ let $g \in G \setminus \{e_G\}$, and $u = \text{ord}(g) < \infty$ (as G finite) s undlest $k \in R$ s.+ $e^{k} = e$ G be a finite group; then KFG] is <u>not</u> a division al

Cet $g \in G \setminus \{e_G\}$, and $u = \text{odd } (g) \le \infty$ (as G
 $\frac{u-t}{\neq 0}$ (1 + 0 + - 0 - 1) = $\sum_{i=0}^{u-t} (g^{i} - g^{i+1}) = 1 - g^{u} = C$
 $\Rightarrow u = h$ or $h \in \mathbb{R}$ (a vect to be a manag

- $+$ hen $|$:
- [3] G can be relaxed to be a monoia the construction still goes through.

(4) NOW : representations of Gouvector spaces over a field K/G-modules < KIG]-modulesone-to-one

If V is G - undouce. Hen $(\sum_{g \in G} g_{g}) \cdot V = \sum_{g \in G} g_{g} (g \cdot V)$ makes V into a K[G]-undock;
conversely, by restriction, every K[G]-undock V is a G-undouce

 (5) Let v , w be 6 undertes over K . We hall a K -linear map $T: V \rightarrow W$ G -Lou ou orpluism if $T(g \vee g - g \cdot T(v))$ for der $g \in G$, $v \in V$.

 $THEN$: besides the obvious decauges in terminology

 G - ω uo ω o ω ozopusus $V \rightarrow V$ = $KIGJ$ -under lou. $V \rightarrow W$

14 T: $v \rightarrow w$ G-hour, then $T(\frac{5}{800} \cos \theta) \cdot v = \frac{7}{5} \cos \theta \cdot 0.000$

Def $= (\frac{5}{800} \cos \theta) \cdot T(v)$;

Conversely by retriction, every KEGJ-module how v > W can be reperided as a G-houlon.

(6) Similarly, for one K -algebra A, a monoid homomorphism $(\rho : G \rightarrow (A))$ extends uniquely to an K-algebra nomomorphism of KIG3 to A

EXIST. (*) only condidate: K-moduce home

= $\sqrt{\sum_{\alpha_1 \in \mathcal{C}} \alpha_{\alpha_1} \alpha_1 (\sum_{\beta_1 \in \mathcal{C}} \alpha_{\beta_1} \alpha_{\beta_2})} = \varphi(\sum_{\beta_1 \in \mathcal{C}} \alpha_{\beta_1} \alpha_1) \varphi(\sum_{\beta_2 \in \mathcal{C}} \alpha_{\beta_1} \alpha_2)$

 $\nabla \varphi (1_{k}e_{G}) = 1_{k} \varphi(e_{G}) = 1_{A}$

$Example: (1)$ $|C| = (Z, +),$ $K[G] = K[x,x^{-1}]$ (downent polynomials)

element of form $\frac{1}{4\pi a}$ and $\frac{1}{4\pi a}$ and $\frac{1}{4\pi a}$

 S iuilozly, $if G = (FG, +)$, $kFG1 = k[x_1,...,x_n]$ (tudtivoziate posyupuriols)

element of form $\Sigma_{\alpha\beta} \alpha_{\alpha} \alpha \hat{+} \hat{\Sigma}_{\alpha} \alpha_{\alpha} \chi^{\alpha}$

- (2) Vicwing KraJ as a module over itself, gives rise to the so halled regular representation of a group G.
- translates to e.g. $G = C_4 \rightarrow K [C_1]$ as $K [C_4]$ -unodule $\longleftrightarrow K [C_4]$ as C_4 -unodule \leftrightarrow representation $\rho \circ \rho | c_1 | \rho | c_1 \rightarrow Aut_R(K[c_1])$
	- $\rho(g^{i}) = (\alpha_{0} + \alpha_{1}g + \alpha_{2}g^{2} + \alpha_{3}g^{3} \mapsto g^{i}(\alpha_{0} + \alpha_{1}g + \alpha_{2}g^{2} + \alpha_{3}g^{3})$

= $000^1 + 019^{11} + 019^{112} + 039^{113}$ $Aut_{K}(K[C_{4}]) \triangleq G(u(K))$

 $def. X: C_4 \rightarrow G\iota_4(k), X(g^i) = [p(g^i)]_{\infty}$ \longleftrightarrow Felpresenting andtrix of p(gi)

> e.g. for g² and a sta. basis of KECu].we find $X(g^2) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

We coll this a <u>matrix representation</u> (we can switch bim these notions if the module interpreted as a K-vector space is finite dimensional

 (3) at $G = 5u$ upturally act on $S = 31.2...b$ (by permitting the elements of S)

extend action

$+$ $\frac{1}{2}$ $\sqrt{5}$ = $\frac{1}{2}$ $\sqrt{2}$, $\sqrt{1}$ + $\frac{1}{2}$ $\sqrt{2}$ + $\frac{1}{2}$ $\sqrt{2}$ + $\frac{1}{2}$ $\sqrt{2}$ + $\frac{1}{2}$ $\sqrt{2}$ + $\frac{1}{2}$ + $\frac{$

with $\pi \cdot (a_1 + ... + a_{n-k}) = a_1 \pi (1) + ... + a_{n-k} \pi (n)$ is s_{n-k} under

This is colled the <u>defining representation</u> of Su. As matrix represent.
Huis reads as (wrt standord basis of KS)

 $X \cdot 5\mu \rightarrow 64.15)$, $X(\pi) = (e_{\pi(i)})_{15}e_{i5}\mu \leftarrow 64.10e_{i5}e_{i5}\mu$

 $((\times(\pi))_i =$ if $\pi(j) = i$

Lastly, we present HASCHKE'S THEOREM - a main result regionaling representations of a finite group G

for κ = 0, it suffices to muderstand so-called irreducible representations of G/simple K[G]-importers as.

 $K[G]$ is semisimple \Leftrightarrow chor (K) + $|G|$.

every KrGJ-module is aud Ootherwise

 $Proof: \frac{1}{10}$ = $\frac{1}{10}$ at V be a K[6]-underle we show: every K[G]-submod it of v is a direct summand <> $13kfd3-kubuod.$ $44V$ s.tv= $404V$ \iff V is semisimple

For this sake, est 4 be a KFGJ-subwood of v; <u>IDEA</u> construct projection TT V + V outo k that is a diso a Kra7-module houromorphism

4' K[6]-saburoduce $\Rightarrow \quad \sqrt{=} \underbrace{\text{int } \pi} \quad \text{or} \quad \frac{1}{2}$ $\frac{1}{\text{projective} \text{meous } \pi^2 = \pi}.$ $=$ α $\begin{array}{c} \mathcal{L}_L + \vee \mathcal{L} \vee \end{array}, \ \mathsf{Hue}_L \ \vee = \frac{\pi(\vee) + (\vee - \pi(\vee))}{\mathsf{C}\lim_{\mathsf{M} \to \mathsf{M}} \mathsf{C}\lim_{\mathsf{M} \to \mathsf{M}}$ \Rightarrow W = $\mathbb{T}(\sqrt{1 + \frac{1}{2}} \cos \theta)$

Let $\pi_{\circ}: V \to V$ be any K-linear map such that $\pi_{\circ}^2 = \pi_{\circ}$ and in $\pi_{\circ} = U$ (to poustfuct it, phoose a bosis for k put extend it to a basis of k , st π_d π_d ds long ds images lie in u|; |2(x) = Tr(T(x)) = |TT(x) | tre k) E_{μ} π μ $=$ π turu IToliu o $\Pi: V \to V$, $\Pi(v) = \frac{4}{161} \sum_{g \in G} q^{-1} \Pi_{0} (gv)$ KrGJ-module hou. $(161.1)^{-1}$ exists (because depr (k) + 161) $= 1 + 1$ $\neq 0$ $\underline{C4A1}$ $\underline{A}:$ π K $C63$ -uoduce uounounoplist $(\Leftrightarrow \pi$ is a 6 -unoduce uou.) \cdot T stice k -cimer as v, we v, $l \in k$. $\frac{1}{\sqrt{1-\frac{1}{1-\$ $T_0 K - U_M = 3V + 2(gw)$
= $\frac{1}{[G]} \sum_{g \in G} g^{-1} T_0(gv) + 2(\frac{1}{[G]} \sum_{g \in G} g^{-1} T_0(gw)) = T_1(v) + 2T(w)$ \cdot let $v \in V, h \in G$; $\Pi(hv) = \frac{1}{|G|} \sum_{g \in G} g^{-1} \Pi_{g}(g(hv)) =$
= (gh)v = $\frac{b}{2}h^{-1} \sum_{c \in G} g^{-1} \pi_0(gh) v = h \sum_{g \in G} h^{-1} g^{-1} \pi_0(gh) v = h \sum_{c \in G} k^{-1} \pi_0(kv) = h \pi(v)$
= $\frac{c}{2}g^{-1} \pi_0(g)$ CLAIM 2: π projection with $\mu \pi = u$ uote, im $\pi \leq u$ as $\forall v \in v$, $\forall g \in G : \pi_{o}(g v) \in u \Rightarrow$ k k F s i - k ool. \Rightarrow $\pi(\sqrt{1-\frac{4}{161}\sum_{g\in G} g^{-1} \pi(g\nu)} \in \alpha)$

remains to show,
$$
\pi |u| = |du|
$$
 $Let u \in U$, $\pi |u| = |\frac{1}{6}|\sum_{\substack{g \in G}} q^{-1} \pi_{0}(gu)| = \frac{1}{16}|\sum_{g \in G} u| = u$

 \Rightarrow ": by contrapositive, assume charlk)| 161; $\frac{1}{3}$ y The. 1.4.10; it suffices to
show of (K[6]) = O (= K[6] not semisimple)
Remuisimple <=

$$
\text{def} \quad e := \frac{1}{8^{4} \cdot 6} \cdot e \quad \text{EXE31} \setminus O \quad \Longleftrightarrow \quad \text{R Artiwian dual} \quad f(\mathbb{R}) = 0
$$

$$
Observe that \forall u \in G, h \in \mathbb{Z} \text{ } h_{\mathcal{G}} = \mathbb{Z} \text{ } k = e, \text{ } t \text{ and } t
$$

$$
2^{2} = \left(\sum_{g \in G} g\right) \cdot g = \sum_{g \in G} g g = 0
$$
\n
$$
e = \sum_{g \in G} g = 0
$$
\n
$$
g = 0
$$
\n
$$
= 0
$$

$$
e^{2} = (\sum_{g \in G} \sum_{\theta}) \cdot e = \sum_{g \in G} \sum_{g \in G} \frac{1}{g} = 0
$$

\n
$$
e = e
$$

\n
$$
2.11.6(2)
$$

\n
$$
2.14.6(2)
$$