Algebraic geometry, Gröbner bases

Problem 1. (a) Let $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ be two algebraic sets, and let

$$
X \times Y=\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathbb{A}^{n+m}:\left(x_{1}, \ldots, x_{n}\right) \in X\left(y_{1}, \ldots, y_{m}\right) \in Y\right\}
$$

be their Cartesian product. Show that $X \times Y$ is an algebraic set.
(b) Show that if both X and Y are irreducible, then also $X \times Y$ is irreducible.

Problem 2. (a) Show (by an example) that an infinite union of algebraic sets is not necessarily an algebraic set.
(b) Give an example of a maximal ideal J in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that $V(J)=\varnothing$. Why does this not contradict the Nullstellensatz?

Problem 3. (a) Show that the set $\{(x, 0): x \neq 0, x \in \mathbb{R}\} \subset \mathbb{A}_{\mathbb{R}}^{2}$ is not an affine variety.
(b) Give an example to show that the set theoretic difference $X \backslash Y$ of two affine algebraic sets does not need to be an algebraic set.

Problem 4. Let $P_{1}, \ldots, P_{k} \in K\left[x_{1}, \ldots, x_{n}\right]$, I be an ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ and $<_{\varepsilon}$ be a monomial order on \mathbb{N}^{n}.
(a) Show that if $P_{i} \in I$ for all $i=1, \ldots, k$ and $\operatorname{lm}(I)=\left\langle\operatorname{lm}_{\varepsilon}\left(P_{1}\right), \ldots, \operatorname{lm}_{\varepsilon}\left(P_{k}\right)\right\rangle$, then P_{1}, \ldots, P_{k} are a generating set for I.
(b) Let $\mathcal{P}=\left(P_{1}, \ldots, P_{k}\right)$. Then show that ${\overline{Q_{1}+Q_{2}}}^{\mathcal{P}}={\overline{Q_{1}}}^{\mathcal{P}}+{\overline{Q_{2}}}^{\mathcal{P}}$ for all $Q_{1}, Q_{2} \in$ $K\left[x_{1}, \ldots, x_{n}\right]$.
(c) If ${\overline{Q_{1}}}^{\mathcal{P}}=0$ and ${\overline{Q_{2}}}^{\mathcal{P}}=0$ and $A_{1}, A_{2} \in K\left[x_{1}, \ldots, x_{n}\right]$, then show that

$$
\overline{A_{1} Q_{1}+A_{2} Q_{2}}{ }^{\mathcal{P}}=0 .
$$

Problem 5. (a) Determine the cardinality of $V(f)$ where $f(z)=z^{5}-z^{4}+z^{3}-1$ is in $\mathbb{C}[z]$ and compare it to $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[z] /\left\langle z^{5}-z^{4}+z^{3}-1\right\rangle\right.$) (dimension here means vector space dimension).
(b) Same question for $V\left(x-2 y, y^{2}-x^{3}+x^{2}+x\right)$ and $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[x, y] /\left\langle x-2 y, y^{2}-x^{3}+x^{2}+\right.\right.$ $x\rangle$. Geometric interpretation?
(c) Same question for $V\left(x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y\right)$ and $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[x, y, z] /\left\langle x^{3}-y z, y^{2}-x z, z^{2}-\right.\right.$ $\left.x^{2} y\right\rangle$. (Hint: Recall that $\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[t])=\infty$ and so also for any \mathbb{C}-module containing $\left.\mathbb{C}[t]\right)$

Problem 6. (a) Fix a monomial order on \mathbb{N}^{3} and let $K=\mathbb{C}$. Are the polynomials $P_{1}=$ $x^{3}-y z, P_{2}=x^{2} y-z^{3}$ and $P_{3}=y^{2}-z^{2}$ a Gröbner basis with respect to this order?
(b) If not, then complete the polynomials to a Gröbner basis.
(c) Does the system of equations $P_{1}(x, y, z)=P_{1}(x, y, z)=P_{2}(x, y, z)=0$ have a solution? (Try to answer this question without actaully calculating one!)

