MATHM5253 EXERCISE SHEET 5 - THE LAST ONE!

DUE: MAY 1, 2018

Algebraic geometry, Gröbner bases

Problem 1. (a) Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ be two algebraic sets, and let

$$X \times Y = \{(x_1, \dots, x_n, y_1, \dots, y_m) \in \mathbb{A}^{n+m} : (x_1, \dots, x_n) \in X (y_1, \dots, y_m) \in Y\}$$

be their Cartesian product. Show that $X \times Y$ is an algebraic set.

- (b) Show that if both *X* and *Y* are irreducible, then also $X \times Y$ is irreducible.
- **Problem 2.** (a) Show (by an example) that an infinite union of algebraic sets is not necessarily an algebraic set.
- (b) Give an example of a maximal ideal J in $\mathbb{R}[x_1, \dots, x_n]$ such that $V(J) = \emptyset$. Why does this not contradict the Nullstellensatz?
- **Problem 3.** (a) Show that the set $\{(x,0): x \neq 0, x \in \mathbb{R}\} \subset \mathbb{A}^2_{\mathbb{R}}$ is not an affine variety.
- (b) Give an example to show that the set theoretic difference $X \setminus Y$ of two affine algebraic sets does not need to be an algebraic set.

Problem 4. Let $P_1, \ldots, P_k \in K[x_1, \ldots, x_n]$, I be an ideal in $K[x_1, \ldots, x_n]$ and $<_{\varepsilon}$ be a monomial order on \mathbb{N}^n .

- (a) Show that if $P_i \in I$ for all i = 1,...,k and $lm(I) = \langle lm_{\varepsilon}(P_1),...,lm_{\varepsilon}(P_k) \rangle$, then $P_1,...,P_k$ are a generating set for I.
- (b) Let $\mathcal{P}=(P_1,\ldots,P_k)$. Then show that $\overline{Q_1+Q_2}^{\mathcal{P}}=\overline{Q_1}^{\mathcal{P}}+\overline{Q_2}^{\mathcal{P}}$ for all $Q_1,Q_2\in K[x_1,\ldots,x_n]$.
- (c) If $\overline{Q_1}^{\mathcal{P}} = 0$ and $\overline{Q_2}^{\mathcal{P}} = 0$ and $A_1, A_2 \in K[x_1, \dots, x_n]$, then show that $\overline{A_1O_1 + A_2O_2}^{\mathcal{P}} = 0$.

Problem 5. (a) Determine the cardinality of V(f) where $f(z) = z^5 - z^4 + z^3 - 1$ is in $\mathbb{C}[z]$ and compare it to $\dim_{\mathbb{C}}(\mathbb{C}[z]/\langle z^5 - z^4 + z^3 - 1 \rangle)$ (dimension here means vector space dimension).

- (b) Same question for $V(x-2y,y^2-x^3+x^2+x)$ and $\dim_{\mathbb{C}}(\mathbb{C}[x,y]/\langle x-2y,y^2-x^3+x^2+x\rangle$. Geometric interpretation?
- (c) Same question for $V(x^3 yz, y^2 xz, z^2 x^2y)$ and $\dim_{\mathbb{C}}(\mathbb{C}[x, y, z] / \langle x^3 yz, y^2 xz, z^2 x^2y \rangle$. (Hint: Recall that $\dim_{\mathbb{C}}(\mathbb{C}[t]) = \infty$ and so also for any \mathbb{C} -module containing $\mathbb{C}[t]$)

Problem 6. (a) Fix a monomial order on \mathbb{N}^3 and let $K = \mathbb{C}$. Are the polynomials $P_1 = x^3 - yz$, $P_2 = x^2y - z^3$ and $P_3 = y^2 - z^2$ a Gröbner basis with respect to this order?

- (b) If not, then complete the polynomials to a Gröbner basis.
- (c) Does the system of equations $P_1(x,y,z) = P_1(x,y,z) = P_2(x,y,z) = 0$ have a solution? (Try to answer this question without actaully calculating one!)