Primary decomposition, Noether normalisation and the Nullstellensatz
Problem 1. (a) Let $I=\left\langle x^{2}, y^{2}, z^{2}\right\rangle \cap\langle x+y\rangle \cap\langle x-y\rangle$ be an ideal in $R=\mathbb{R}[x, y, z]$. Is the given intersection of ideals a (minimal) primary decomposition of I ? Explain!
(b) Let $R=K[x, y, z]$ be the polynomial ring over a field K, and let $\mathfrak{p}_{1}=\langle x, y\rangle, \mathfrak{p}_{2}=\langle x, z\rangle$, $\mathfrak{m}=\langle x, y, z\rangle$, and $J=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2}$ be ideals in R. Show that $J=\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ is a minimal primary decomposition of J. Which components are isolated and which components are embedded?

Problem 2. (a) Show the proposition from the lecture: Let $R \subset S \subset T$ be rings. If S is a finite R-algebra and T is a finite S-algebra, then T is a finite R-algebra.
(b) Let $R=\mathbb{R}[x, y] /\left\langle x^{5}-y^{3}\right\rangle$. Show that $t=\frac{y}{x}$ and $u=\frac{x^{2}}{y}$ are integral over R. What are the R-module generators of $R[t]$ and $R[u]$?

Problem 3. Decompose $X:=V\left(\left(x^{2} y-x y^{2}\right)(x+y)\right) \subseteq \mathbb{A}_{\mathbb{R}}^{2}$ into irreducible components, that is, write X as a union of $V\left(f_{i}\right)$, where the f_{i} are irreducible polynomials. Same question for $X \subseteq \mathbb{A}_{\mathbb{F}_{2}}^{2}$, where \mathbb{F}_{2} denotes the field with two elements.

Problem 4. Sketch the following affine algebraic sets (you may use a computer algebra program for this!)
(a) $V\left(y^{2}-x^{5}\right) \subset \mathbb{A}_{\mathbb{R}}^{2}$
(b) $V\left(\left(x^{2}+y^{2}\right)^{2}+4 x\left(x^{2}+y^{2}\right)-4 y^{2}\right) \subset \mathbb{A}_{\mathbb{R}}^{2}$
(c) $V\left(x^{2}+y^{2}-1\right) \subset \mathbb{A}_{\mathbb{R}}^{3}$,
(d) $V\left(x^{3}+x^{2} z^{2}-y^{2}\right) \subset \mathbb{A}_{\mathbb{R}}^{3}$
(e) $V\left(x^{4} y^{2}-x^{2} y^{4}-x^{4} z^{2}+y^{4} z^{2}+x^{2} z^{4}-y^{2} z^{4}\right) \subset \mathbb{A}_{\mathbb{R}}^{3}$

Problem 5. Let $F=\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}$ be a polynomial in $\mathbb{R}[x, y, z]$.
(1) Sketch $V(F) \subset \mathbb{A}_{\mathbb{R}}^{3}$.
(2) Let $J_{F}=\left\langle\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right\rangle$ be the Jacobian ideal of F. Find $V\left(J_{F}\right)$ and sketch it.
(3) Is J_{F} radical?

Problem 6. The image of a non-constant complex polynomial map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{3}$ is a hypersurface. Let $f(s, t)=\left(s^{3} t^{3}, s^{2}, t^{2}\right)$.
(a) Find an irreducible polynomial map $F: \mathbb{C}^{3} \rightarrow \mathbb{C}$ such that $\operatorname{Im}(f) \subset V(F)$. (Use coordinates (x, y, z).)
(b) Let again $J_{F}=\left\langle\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right\rangle$ be the Jacobian ideal of F. Find a minimal primary decomposition of J_{F} and its associated primes. (Hint: Ensure J_{F} is simplified as much as possible and try to guess the primary components!)
(c) Hence show that J_{F} has an embedded prime and two isolated primes.

