MATHM5253 EXERCISE SHEET 3

DUE: MARCH 5, 2018

Radical, Modules, Nakayama and exact sequences

Problem 1. (a) Let $R = \mathbb{Q}[[x, y]]$ and let $J = \langle xy + y^3, x + x^2y, xy + 3y, x^4 - 5y^2 + x^2y \rangle$ be an ideal in *R*. Show that *J* is minimally generated by two elements in *R*.

(b) Let R = K[t] and consider $M = K[t, t^{-1}]$ as *R*-module and let I = tR be an ideal in *R*. Show that M = IM but $M \neq 0$. Why does this example not contradict Nakayama's lemma?

Problem 2. Prove the isomorphism theorems for modules (without using the snake lemma).

Problem 3. (a) Let $0 \to A' \xrightarrow{\mu} A \xrightarrow{\epsilon} A'' \to 0$ and $0 \to B' \xrightarrow{\mu'} B \xrightarrow{\epsilon'} B'' \to 0$ be two short exact sequences of *R*-modules. Suppose that in the commutative diagram

 α', α'' are isomorphisms. Then show that α is an isomorphism too.

(b) Give an example of two short exact sequences $0 \to A' \xrightarrow{\mu} A \xrightarrow{\varepsilon} A'' \to 0$ and $0 \to B' \xrightarrow{\mu'} B \xrightarrow{\varepsilon'} B'' \to 0$ with $A' \cong B'$ and $A'' \cong B''$ but where *A* is not isomorphic to *B*. Why does your example not contradict (a)?

Problem 4. (Localisation of a module) Let *R* be a ring and $A \subset R$ be multiplicatively closed. Let *M* be an *R*-module.

- (a) Show that $(m, a) \sim (n, b)$ if and only if mbc = nac for some $c \in A$ defines an equivalence relation on $M \times A$.
- (b) Writing $A^{-1}M$ for the set of equivalence classes of \sim , and $\frac{m}{a}$ for the class containing (m, a), show that the operation

$$\frac{m}{a} + \frac{n}{b} = \frac{bm + an}{ab}$$

is well defined and hence that $A^{-1}M$ is an abelian group.

(c) By defining an appropriate multiplication rule, show that $A^{-1}M$ has the structure of an $A^{-1}R$ -module.

Problem 5. Let *R* be a ring and $A \subset R$ be multiplicatively closed.

- (a) Suppose that $\phi : M \to N$ is a homomorphism of *R* modules. Show ϕ induces an $A^{-1}R$ -homomorphism $A^{-1}M \to A^{-1}N$.
- (b) Suppose $0 \to L \to M \to N \to 0$ is an exact sequence of *R*-modules. Show that $0 \to A^{-1}L \to A^{-1}M \to A^{-1}N \to 0$, with the induced maps from (i), is an exact sequence of $A^{-1}R$ -modules. (*Remark*: This means that localization is an exact functor from the category of *R*-modules to the category of $A^{-1}R$ -modules)

Problem 6. Let *R* be a ring.

- (a) Suppose that $R^m \cong R^n$. Show that m = n.
- (b) Suppose that $\varphi : \mathbb{R}^m \to \mathbb{R}^n$ is surjective. Show that $m \ge n$.