MATHM5253 EXERCISE SHEET 2

DUE: FEBRUARY 19, 2018

Problem 1. *Monomial orders:* Show that $<_{lex}$ is a monomial order on $K[x_1, ..., x_n]$ (or equivalently, on \mathbb{N}^n).

- Problem 2. (a) Show that R[x, y]/(x³ y²) is isomorphic to R[t², t³]. [Hint: First homomorphism theorem. First show that f(x, y) = x³ y² is in the kernel of the map φ as defined in the lecture. In order to see that (f(x, y)) is the full kernel, you may use the fact, that the kernel of φ is generated by elements of the form x^ay^b x^{a'}y^{b'}, where a, a', b, b' ∈ N. This fact can be proved using Gröbner bases methods]
 (b) Is (x³ y²) a prime ideal in R[x, y]? Explain!
- **Problem 3.** (a) Let $f(x), g(x) \in K[x]$, *K* a field. Show that the ideal (f(x), g(x)) = (d(x)), where d(x) is the gcd of f(x) and g(x).
- (b) Use part (a) to show that every ideal in K[x] is principal.
- (c) Show that the ideal $(x^4 5x^3 + 7x^2 5x + 6, x^4 + 2x^2 + 1, x^4 2x^3 + x^2 2x)$ in $\mathbb{R}[x]$ is maximal.
- **Problem 4.** (a) Consider K[x, y, z] and order all monomials of degree less than or equal to 3 with respect to the following monomial orders: (i) $<_{lex}$, (ii) $<_{deglex}$, (iii) $<_{\lambda}$, where λ is a suitable linear form $\lambda : \mathbb{R}^3 \to \mathbb{R}$.
- (b) Determine leading monomial and coefficient of the polynomial $f = x^4 + z^5 + x^3z + yz^4 + x^2y^2$ with respect to the momomial orders from (a).

Problem 5. Let *R* be a ring. Show that *R* is local if and only if the nonunits of *R* form a maximal ideal.

Problem 6. Let *I* be an ideal of *R* and *A* be a multiplicatively-closed subset of *R*. Show that:

- (a) $A^{-1}I$ is an ideal of $A^{-1}R$;
- (b) $\frac{x}{a} \in A^{-1}I$ if and only if there is some $b \in A$ with $xb \in I$;
- (c) $A^{-1}I = A^{-1}R$ if and only if $I \cap A \neq \emptyset$;
- (d) localisation commutes with quotients, that is

$$A^{-1}R/A^{-1}I \cong \overline{A}^{-1}(R/I),$$

where $\overline{A} = \{a + I : a \in A\}.$