MATHM5253 EXERCISE SHEET 2

DUE: FEBRUARY 19, 2018

Problem 1. Monomial orders: Show that $<_{\text {lex }}$ is a monomial order on $K\left[x_{1}, \ldots, x_{n}\right]$ (or equivalently, on \mathbb{N}^{n}).

Problem 2. (a) Show that $\mathbb{R}[x, y] /\left(x^{3}-y^{2}\right)$ is isomorphic to $\mathbb{R}\left[t^{2}, t^{3}\right]$. [Hint: First homomorphism theorem. First show that $f(x, y)=x^{3}-y^{2}$ is in the kernel of the map φ as defined in the lecture. In order to see that $(f(x, y))$ is the full kernel, you may use the fact, that the kernel of φ is generated by elements of the form $x^{a} y^{b}-x^{a^{\prime}} y^{b^{\prime}}$, where $a, a^{\prime}, b, b^{\prime} \in \mathbb{N}$. This fact can be proved using Gröbner bases methods]
(b) Is $\left(x^{3}-y^{2}\right)$ a prime ideal in $\mathbb{R}[x, y]$? Explain!

Problem 3. (a) Let $f(x), g(x) \in K[x], K$ a field. Show that the ideal $(f(x), g(x))=(d(x))$, where $d(x)$ is the gcd of $f(x)$ and $g(x)$.
(b) Use part (a) to show that every ideal in $K[x]$ is principal.
(c) Show that the ideal $\left(x^{4}-5 x^{3}+7 x^{2}-5 x+6, x^{4}+2 x^{2}+1, x^{4}-2 x^{3}+x^{2}-2 x\right)$ in $\mathbb{R}[x]$ is maximal.

Problem 4. (a) Consider $K[x, y, z]$ and order all monomials of degree less than or equal to 3 with respect to the following monomial orders: (i) $<_{l e x}$, (ii) $<_{d_{e g l e x}}$, (iii) $<_{\lambda}$, where λ is a suitable linear form $\lambda: \mathbb{R}^{3} \rightarrow \mathbb{R}$.
(b) Determine leading monomial and coefficient of the polynomial $f=x^{4}+z^{5}+x^{3} z+$ $y z^{4}+x^{2} y^{2}$ with respect to the momomial orders from (a).

Problem 5. Let R be a ring. Show that R is local if and only if the nonunits of R form a maximal ideal.

Problem 6. Let I be an ideal of R and A be a multiplicatively-closed subset of R. Show that:
(a) $A^{-1} I$ is an ideal of $A^{-1} R$;
(b) $\frac{x}{a} \in A^{-1} I$ if and only if there is some $b \in A$ with $x b \in I$;
(c) $A^{-1} I=A^{-1} R$ if and only if $I \cap A \neq \varnothing$;
(d) localisation commutes with quotients, that is

$$
A^{-1} R / A^{-1} I \cong \bar{A}^{-1}(R / I)
$$

where $\bar{A}=\{a+I: a \in A\}$.

