MATHM5253 EXERCISE SHEET 1

DUE: FEBRUARY 5, 2018

Warm-up exercises

Problem 1. Work out the example from the first lecture: What are the integer solutions of $x^{2}+y^{2}=z^{2}$?
(1) First show that the rational solutions of $X^{2}+Y^{2}=1$ are of the form

$$
(X, Y)=\left(\frac{-2 m}{1+m^{2}}, \frac{1-m^{2}}{1+m^{2}}\right), m \in \mathbb{Q}, \quad \text { and }(X, Y)=(0,0) .
$$

(2) From this find the integer solutions of the original equation.

Problem 2. Let $\mathbb{T}=(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ with addition defined as $x \oplus y:=\min (x, y)$ and multiplication $x \odot y:=x+y$ for all $x, y \in \mathbb{R} \cup\{\infty\}$.
(a) Is \mathbb{T} a commutative ring? If yes, then show that all axioms hold, if no, then explain which axiom fails.
(b) Calculate $3 \odot(5 \oplus 7),(3 \oplus-3)^{2}$, and $(1 \oplus 8)^{4}$.
(c) Show that for any $x, y \in \mathbb{R} \cup\{\infty\}$, and any $k \in \mathbb{N}$, one has $(x \oplus y)^{k}=x^{k} \oplus y^{k}$.

Problem 3. (a) Prove that if $\varphi: R \rightarrow S$ is a ring isomorphism then $\varphi^{-1}: S \rightarrow R$ is a ring homomorphism, and hence also an isomorphism.
(b) Let R be a ring and $I \subseteq R$ be an ideal and let $\varphi: R \rightarrow R / I$ be the canonical projection. Show that $\operatorname{ker} \varphi=I$ and φ is a ring homomorphism.

Problem 4. Let I, J and K be ideals of a ring R. Show that
(a) $I \cap J$ and $I J$ are ideals
(b) $I J \neq I \cap J$,
(c) $I(J+K)=I J+I K$,

Problem 5. Let I, J and K be ideals of a ring R. Recall that $(I: J)=\{r \in R: r J \subset I\}$. Show that
(a) $(I: J)$ is an ideal of R and $I \subset(I: J)$,
(b) $J \subset I$ implies that $(I: J)=R$,
(c) $I J \subset K$ if and only if $I \subset(K: J)$.

Problem 6. Let R be a commutative ring and let $I, J \subseteq R$ be ideals.
(a) Let $\sqrt{I}=\left\{r \in R: r^{n} \in I\right.$ for some positive integer $\left.n\right\}$. Show that \sqrt{I} is an ideal that contains I. [Note: \sqrt{I} is called the radical of I.]
(b) Prove that $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
(c) Let $R=k[x, y]$. Show that $\sqrt{\left(x^{2}, y^{2}\right)}=(x, y)$ and that $\sqrt{\left(x^{2}\right) \cap\left(y^{2}\right)}=(x y)$.

