MAT 412 HOMEWORK 8

DUE: MARCH 17, 2017 (BEGINNING OF CLASS)

This homework set covers sections 5.3, 6.1. References are to Hungerford, 3rd. edition.
Problem 1. (a) Show that $\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$ is a field that contains all 3 roots of $x^{3}+x+1$. (5.3.B.9)
(b) Show that the fields $Q[\sqrt{5}]$ and $Q[\sqrt{2}]$ are not isomorphic. [Note: You may find problem 4 from HW 7 useful.]

Problem 2. Let R be a commutative ring with identity and let $I, J \subseteq R$ be ideals.
(a) Let $\sqrt{I}=\left\{r \in R: r^{n} \in I\right.$ for some positive integer $\left.n\right\}$. Show that \sqrt{I} is an ideal that contains I. (6.1.B.38) [Note: \sqrt{I} is called the radical of I.]
(b) Let $I \cap J=\{x \in R: x \in I$ and $x \in J\}$. Show that $I \cap J$ is an ideal. Prove that $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
(c) Let $R=k[x, y]$. Show that $\sqrt{\left(x^{2}, y^{2}\right)}=(x, y)$ and that $\sqrt{\left(x^{2}\right) \cap\left(y^{2}\right)}=(x y)$.

Problem 3. Let R be a commutative ring with identity and let $I, J \subseteq R$ be ideals.
(a) Show that $I J=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: n \geq 1, a_{k} \in I, b_{k} \in J\right\}$,i.e., the set of all possible finite sums of elements of the form $a b, a \in I, b \in J$, is an ideal in R. [6.1.B.36]
(b) Show that $I: J:=\{r \in R: r J \subset I\}$ is an ideal in R and that $I \subseteq I: J$. [Note: the ideal $I: J$ is called colon ideal or sometimes ideal quotient.]
(c) Let $R=K[x, y, z]$. Calculate $(x z: y z):(z),(x, y z):(x, y)$, and $(x, y):(x)$.

Problem 4. (a) Let K be a field. Let $X \subset K^{n}$ be any subset of the affine n-space K^{n}. Describe $I(X)=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right]: f(p)=0\right.$ for all $\left.p \in X\right\}$ as a subset of the polynomial ring, i.e., show that $I(X)$ is an ideal in $K\left[x_{1}, \ldots, x_{n}\right]$.
(b) Let $X=\{(0,0,0)\}$ in \mathbb{R}^{3}. Find $I(X)$.
(c) Let $I=\left(x y-x^{3}\right) \subseteq \mathbb{R}[x, y]$. Find a set $X \in \mathbb{R}^{2}$ such that $I=I(X)$.

Problem 5. (a) Let $X \subset K^{n}$ be as above. Show that $I(X)$ is a radical ideal, i.e., $\sqrt{I(X)}=$ $I(X)$.
(b) Let $X, Y \subset K^{n}$ be any subsets. Show that if $X \subset Y$, then $I(X) \supset I(Y)$.
(c) Let $X, Y \subset K^{n}$ be any subsets. Show that $I(X \cup Y)=I(X) \cap I(Y)$.

Problem 6. Let $I, J \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ be ideals, and denote by $V(I), V(J)$ their zerosets in K^{n} (i.e., $V(I)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in K^{n}: f\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for all $\left.f \in I\right\}$ and similarly $\left.V(J)\right)$.
(a) Prove that $V(I \cdot J)=V(I \cap J)=V(I) \cup V(J)$. [Hint: Prove the inclusions: $V(I) \cup$ $V(J) \subseteq V(I \cap J), V(I \cap J) \subseteq V(I \cdot J), V(I \cdot J) \subseteq V(I) \cup V(J)$.
(b) Let $J=\left(x^{2} y, x^{2} z, x y z, x z^{2}, x y^{2}, y^{2} z, y z^{2}\right) \subseteq \mathbb{R}[x, y, z]$. Show that $V(J)$ is the union of the three coordinate lines in \mathbb{R}^{3}. Is J a radical ideal, i.e., $J=\sqrt{J}$? If not, find an ideal \mathcal{K} such that $\mathcal{K}=I(V(\mathcal{K}))$. [Hint: part (a) of this problem and $2(\mathrm{~b})$]
Problem 7. Read sections 6.2, 6.3, 7.1 in the book.

