MAT 412 HOMEWORK 8

DUE: MARCH 17, 2017 (BEGINNING OF CLASS)

This homework set covers sections 5.3, 6.1. References are to Hungerford, 3rd. edition.

- **Problem 1.** (a) Show that $\mathbb{Z}_2[x]/(x^3 + x + 1)$ is a field that contains all 3 roots of $x^3 + x + 1$. (5.3.B.9)
- (b) Show that the fields $\mathbb{Q}[\sqrt{5}]$ and $\mathbb{Q}[\sqrt{2}]$ are not isomorphic. [Note: You may find problem 4 from HW 7 useful.]

Problem 2. Let *R* be a commutative ring with identity and let $I, J \subseteq R$ be ideals.

- (a) Let $\sqrt{I} = \{r \in R : r^n \in I \text{ for some positive integer } n\}$. Show that \sqrt{I} is an ideal that contains *I*. (6.1.B.38) [Note: \sqrt{I} is called the *radical of I*.]
- (b) Let $I \cap J = \{x \in R : x \in I \text{ and } x \in J\}$. Show that $I \cap J$ is an ideal. Prove that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- (c) Let R = k[x, y]. Show that $\sqrt{(x^2, y^2)} = (x, y)$ and that $\sqrt{(x^2) \cap (y^2)} = (xy)$.

Problem 3. Let *R* be a commutative ring with identity and let *I*, $J \subseteq R$ be ideals.

- (a) Show that $IJ = \{a_1b_1 + \cdots + a_nb_n : n \ge 1, a_k \in I, b_k \in J\}$, i.e., the set of all possible finite sums of elements of the form ab, $a \in I$, $b \in J$, is an ideal in R. [6.1.B.36]
- (b) Show that $I : J := \{r \in R : rJ \subset I\}$ is an ideal in R and that $I \subseteq I : J$. [Note: the ideal I : J is called *colon ideal* or sometimes *ideal quotient*.]
- (c) Let R = K[x, y, z]. Calculate (xz : yz) : (z), (x, yz) : (x, y), and (x, y) : (x).
- **Problem 4.** (a) Let *K* be a field. Let $X \subset K^n$ be any subset of the affine *n*-space K^n . Describe $I(X) = \{f \in K[x_1, ..., x_n] : f(p) = 0 \text{ for all } p \in X\}$ as a subset of the polynomial ring, i.e., show that I(X) is an ideal in $K[x_1, ..., x_n]$.
- (b) Let $X = \{(0, 0, 0)\}$ in \mathbb{R}^3 . Find I(X).
- (c) Let $I = (xy x^3) \subseteq \mathbb{R}[x, y]$. Find a set $X \in \mathbb{R}^2$ such that I = I(X).
- **Problem 5.** (a) Let $X \subset K^n$ be as above. Show that I(X) is a radical ideal, i.e., $\sqrt{I(X)} = I(X)$.
- (b) Let $X, Y \subset K^n$ be any subsets. Show that if $X \subset Y$, then $I(X) \supset I(Y)$.
- (c) Let $X, Y \subset K^n$ be any subsets. Show that $I(X \cup Y) = I(X) \cap I(Y)$.

Problem 6. Let $I, J \subseteq K[x_1, ..., x_n]$ be ideals, and denote by V(I), V(J) their zerosets in K^n (i.e., $V(I) = \{(a_1, ..., a_n) \in K^n : f(a_1, ..., a_n) = 0 \text{ for all } f \in I\}$ and similarly V(J)).

- (a) Prove that $V(I \cdot J) = V(I \cap J) = V(I) \cup V(J)$. [Hint: Prove the inclusions: $V(I) \cup V(J) \subseteq V(I \cap J), V(I \cap J) \subseteq V(I \cdot J), V(I \cdot J) \subseteq V(I) \cup V(J)$.]
- (b) Let $J = (x^2y, x^2z, xyz, xz^2, xy^2, y^2z, yz^2) \subseteq \mathbb{R}[x, y, z]$. Show that V(J) is the union of the three coordinate lines in \mathbb{R}^3 . Is *J* a radical ideal, i.e., $J = \sqrt{J}$? If not, find an ideal \mathcal{K} such that $\mathcal{K} = I(V(\mathcal{K}))$. [Hint: part (a) of this problem and 2 (b)]

Problem 7. Read sections 6.2, 6.3, 7.1 in the book.