MAT 412 HOMEWORK 7

DUE: MARCH 10, 2017 (BEGINNING OF CLASS)

This homework set covers sections 4.6, 5.1 and 5.2. References are to Hungerford, 3rd. edition.

Problem 1. (a) Factor the polynomials $x^{2}+x-2$ and $x^{3}-x^{2}+2 x-2$ in $\mathbb{R}[x]$.
(b) Find two polynomials $f(x), g(x) \in \mathbb{R}[x]$ such that $[f(x)],[g(x)] \neq[0]$ but $[f(x)][g(x)]=$ $[0]$ in $\mathbb{R}[x] /\left(x^{3}-x^{2}+2 x-2\right)$.
(c) Show that $\mathbb{R}[x] /\left(x^{2}+x-2\right)$ is not a field. [Hint: it is enough to show that there are zerodivisors in this ring!]

Problem 2. Let K be a field, and let $p(x)$ be a nonconstant polynomial in $K[x]$. Show that $K[x] /\left(p(x)^{n}\right)$ for $n \geq 2$ is not an integral domain.

Problem 3. Let K be a field and $p(x, y) \in K[x, y]$, where $K[x, y]$ is the polynomial ring in 2 variables and assume that $p(x, y)$ is not a constant polynomial. Define a relation \equiv $(\bmod p(x, y))$ on $K[x, y]$ similar as for the polynomial ring in one variable.
(a) Show that your $\equiv(\bmod p(x, y))$ on $K[x, y]$ is an equivalence relation.
(b) Describe the elements of $K[x, y] /(y)$.
(c) Consider $\mathbb{R}[x, y] /(x y)$. First describe the elements in this set [Note: later we will see that $\mathbb{R}[x, y] /(x y)$ is a ring!] and then find a bijection to $(\mathbb{R}[x] \times \mathbb{R}[y]) \backslash\{(f(x), g(y)) \mid f(0) \neq$ $g(0)\}$.

Problem 4. (a) Show that the ring $\mathrm{Q}[\sqrt{2}]$ consisting of all elements of the form $a+b \sqrt{2}$, $a, b \in \mathbb{Q}$ is isomorphic to $\mathbb{Q}[x] /\left(x^{2}-2\right)$.
(b) Show that $\mathbb{Q}[\sqrt{2}]$ is a field. Is $\mathbb{Q}[\pi]$ also a field? [Hint: You may find it useful to consult Problems 5,6 from Homework 6.]

Problem 5. (a) Show that, under congruence modulo $p(x)=x^{3}+2 x+1$ in $\mathbb{Z}_{3}[x]$ there are exactly 27 distinct congruence classes. (5.1.A.4)
(b) In general, for $f(x) \in \mathbb{Z}_{p}[x], p$ prime and $\operatorname{deg} f(x)=n \geq 1$, how many distinct congruence calsses are there modulo $f(x)$? Explain your answer!

Problem 6. (a) Write out the addition and multiplication tables for $R=\mathbb{Z}_{2}[x] /\left(x^{3}+x+\right.$ $1)$. Is R an integral domain or even a field?
(b) Write out the addition and multiplication tables for $R=\mathbb{Z}_{2}[x] /\left(x^{3}+1\right)$. Is R an integral domain or even a field?
Problem 7. Read sections 5.3, 6.1 and 6.2 in the book.

