MAT 412 HOMEWORK 5

DUE: FEBRUARY 10, 2017 (BEGINNING OF CLASS)

This homework set covers sections 3.2,3.3. References are to Hungerford, 3rd. edition.
Problem 1. (a) Show that $R=\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5}: a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R}. Is R a field?
(b) Find a unit in R, which is $\neq \pm 1$.
(c) Show that $K=\mathbb{Q}[\sqrt{-5}]$ is a field.

Problem 2. An element e in a ring R is called idempotent if $e^{2}=e$.
(a) Find all idempotents in \mathbb{Z} and \mathbb{Z}_{12}. (3.2.A.3)
(b) Assume that R has an identity and that for every $r \in R$ one has $r^{2}=r$, that is, every r is idempotent. Show that R is a commutative ring.

Problem 3. A semiring is a set S together with two binary operations \oplus and \odot such that \oplus satisfies $(A S S),(C O M),(N E U)$ and \odot satisfies $(A S S),(N E U)$ and \oplus, \odot satisfy (DIST):

$$
a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c), \text { and }(a \oplus b) \odot c=(a \odot c) \oplus(b \odot c) \text { for all } a, b, c \in S
$$

Moreover, the multiplication with 0_{S} annihilates S, that is $0_{S} \odot s=s \odot 0_{S}=0_{S}$ for all $s \in S$. Let $\mathbb{T}=(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ with addition defined as $x \oplus y:=\min (x, y)$ and multiplication $x \odot y:=x+y$ for all $x, y \in \mathbb{R} \cup\{\infty\}$.
(a) Show that \mathbb{T} is a commutative semiring.
(b) Calculate $3 \odot(5 \oplus 7),(3 \oplus-3)^{2}$, and $(1 \oplus 8)^{4}$.
(c) Show that for any $x, y \in \mathbb{R} \cup\{\infty\}$, and any $k \in \mathbb{N}$, one has $(x \oplus y)^{k}=x^{k} \oplus y^{k}$.

Problem 4. Let R be ring with identity of characteristic $n>0$.
(a) Prove that $n r=0_{R}$ for any $r \in R$. (3.2.B.43)
(b) If R is an integral domain, prove that n is prime.
(c) If R is a commutative integral domain of characteristic $p>0$, then show that for any $a, b \in R$, the freshman's dream holds true, that is: $(a+b)^{p}=a^{p}+b^{p}$.
(d) For R as in (c), show that the Frobenius map $F: R \rightarrow R, r \mapsto r^{p}$ is a ring homomorphism.

Problem 5. (a) Let $f: R \rightarrow S$ be an epimorphism of rings and assume that R has a unit 1_{R}. Show that $f\left(1_{R}\right)$ is the unit element of S.
(b) Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ be the map $x \mapsto 3 x$. Let $\beta: \mathbb{Z} \rightarrow \mathbb{Z}^{2}$ be the map $x \mapsto(x, 0)$ (here consider \mathbb{Z}^{2} as a ring with componentwise addition and multiplication). Are α, β homomorphisms? If yes, are they mono-, epi-, or isomorphisms?

Problem 6. Let $f: R \rightarrow S$ be a ring homomorphism. Show that $\operatorname{ker} f$ (as defined in class) is a subring of R. Is $\operatorname{ker} f$ also closed under multiplication in R, i.e., is $r \cdot R x \in \operatorname{ker} f$ for any $r \in R$ and any $x \in \operatorname{ker} f$? $\operatorname{Is} \operatorname{im} f$ closed under multiplication in S ?

Problem 7. Read ahead sections 4.1, 4.2 and 4.3 in the book.

