MAT 412 HOMEWORK 5

DUE: FEBRUARY 10, 2017 (BEGINNING OF CLASS)

This homework set covers sections 3.2, 3.3. References are to Hungerford, 3rd. edition.

- **Problem 1.** (a) Show that $R = \mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} : a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R} . Is R a field?
- (b) Find a unit in *R*, which is $\neq \pm 1$.
- (c) Show that $K = \mathbb{Q}[\sqrt{-5}]$ is a field.

Problem 2. An element *e* in a ring *R* is called *idempotent* if $e^2 = e$.

- (a) Find all idempotents in \mathbb{Z} and \mathbb{Z}_{12} . (3.2.A.3)
- (b) Assume that *R* has an identity and that for every $r \in R$ one has $r^2 = r$, that is, every *r* is idempotent. Show that *R* is a commutative ring.

Problem 3. A *semiring* is a set *S* together with two binary operations \oplus and \odot such that \oplus satisfies (*ASS*), (*COM*), (*NEU*) and \odot satisfies (*ASS*), (*NEU*) and \oplus , \odot satisfy (*DIST*):

 $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$, and $(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c)$ for all $a, b, c \in S$.

Moreover, the multiplication with 0_S annihilates S, that is $0_S \odot s = s \odot 0_S = 0_S$ for all $s \in S$. Let $\mathbb{T} = (\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ with addition defined as $x \oplus y := \min(x, y)$ and multiplication $x \odot y := x + y$ for all $x, y \in \mathbb{R} \cup \{\infty\}$.

- (a) Show that \mathbb{T} is a commutative semiring.
- (b) Calculate $3 \odot (5 \oplus 7)$, $(3 \oplus -3)^2$, and $(1 \oplus 8)^4$.
- (c) Show that for any $x, y \in \mathbb{R} \cup \{\infty\}$, and any $k \in \mathbb{N}$, one has $(x \oplus y)^k = x^k \oplus y^k$.

Problem 4. Let *R* be ring with identity of characteristic n > 0.

- (a) Prove that $nr = 0_R$ for any $r \in R$. (3.2.B.43)
- (b) If *R* is an integral domain, prove that *n* is prime.
- (c) If *R* is a commutative integral domain of characteristic p > 0, then show that for any $a, b \in R$, the freshman's dream holds true, that is: $(a + b)^p = a^p + b^p$.
- (d) For *R* as in (c), show that the *Frobenius map* $F : R \to R, r \mapsto r^p$ is a ring homomorphism.

Problem 5. (a) Let $f : R \to S$ be an epimorphism of rings and assume that *R* has a unit 1_R . Show that $f(1_R)$ is the unit element of *S*.

(b) Let $\alpha : \mathbb{R} \to \mathbb{R}$ be the map $x \mapsto 3x$. Let $\beta : \mathbb{Z} \to \mathbb{Z}^2$ be the map $x \mapsto (x,0)$ (here consider \mathbb{Z}^2 as a ring with componentwise addition and multiplication). Are α, β homomorphisms? If yes, are they mono-, epi-, or isomorphisms?

Problem 6. Let $f : R \to S$ be a ring homomorphism. Show that ker f (as defined in class) is a subring of R. Is ker f also closed under multiplication in R, i.e., is $r \cdot_R x \in \ker f$ for any $r \in R$ and any $x \in \ker f$? Is im f closed under multiplication in S?

Problem 7. Read ahead sections 4.1, 4.2 and 4.3 in the book.