MAT 412 HOMEWORK 3

DUE: JANUARY 27, 2017 (BEGINNING OF CLASS)

This homework set covers section 2.1 and 14.1 (the Chinese Remainder Theorem). References are to Hungerford, 3rd. edition.

Problem 1. Consider the following relation \sim on \mathbb{R}^{2} : two points $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ are related, that is, $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$, if there exists a $c \in \mathbb{R} \backslash\{0\}$ such that $x_{1}=c y_{1}$ and $x_{2}=c y_{2}$.
(a) Show that \sim is an equivalence relation and describe its equivalence classes.
(b) What happens if we consider the relation \sim^{\prime} with $\left(x_{1}, x_{2}\right) \sim^{\prime}\left(y_{1}, y_{2}\right)$ if there exists a $c \in \mathbb{R}$ such that $x_{1}=c y_{1}$ and $x_{2}=c y_{2}$? Is \sim^{\prime} still an equivalence relation? If not, which property fails?

Problem 2. Let k be any integer.
(a) If $[k]=[1]$ in \mathbb{Z}_{n}, prove that $(k, n)=1$. Is the converse true as well? (2.1.B.16)
(b) What is the congruence class of $(2 k+1)^{2}$ modulo 8 ? What is the congruence class of $(2 k)^{2}$ modulo 8 ?
(c) Use (b) to prove or disprove the following statement: There exist integers u and v such that $u^{2}+v^{2}=2019$.
Problem 3. Let $n \in \mathbb{N}$ be any natural number and $p \in \mathbb{N}$ be prime.
(a) Show that $n^{p-1} \equiv 1(\bmod p)$ for the two following pairs: $n=2, p=5 ; n=4, p=7$; (cf. 2.1.A.1)
(b) Show that this holds in general, i.e., show that $n^{p} \equiv n(\bmod p)$. [Hint: Use induction on n. You may also find Problem 5 (c) from HW sheet 2 useful.]
(c) The result in (b) is well-known under which name?

Problem 4. (a) If $u \equiv v(\bmod n)$ and u is a solution of $6 x+5 \equiv 7(\bmod n)$, then show that v is also a solution. (14.1.A.1)
(b) If $6 x+5 \equiv 7(\bmod n)$ has a solution, show that one of the numbers $1,2,3, \ldots, n-1$ is also a solution. (14.2.A.1)

Problem 5. Use the Chinese remainder theorem to solve the following systems of congruences: (14.1.A.8\&10)
(a) $x \equiv 5(\bmod 6), x \equiv 7(\bmod 11)$.
(b) $x \equiv 1(\bmod 2), x \equiv 2(\bmod 3), x \equiv 3(\bmod 5)$.

Problem 6.

Do there exist 1000 consecutive integers that are not square-free? (Here n is square-free if there does not exist a $k \neq \pm 1 \in \mathbb{Z}$ such that $\left.k^{2} \mid n\right)$ [Hint: Chinese Remainder Theorem]

Problem 7. Read ahead sections 2.2, 2.3 and 3.1 in the book.

