MAT 412 HOMEWORK 2

DUE: JANUARY 20, 2016 (BEGINNING OF CLASS)

This is the first regular homework set and covers section 1.1-1.3. References are to Hungerford, 3rd. edition.

Problem 1. Use the division algorithm to show that every odd integer is either of the form $4 k+1$ or of the form $4 k+3$ for some integer k. (Exercise 1.1.B.8)

Problem 2.

(a) Prove that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3 (Exercise 1.2.B.28).
(b) Prove that a positive integer is divisible by 11 if and only if the alternating sums of its digits is a multiple of 11 (e.g., for 1234 the alternating sum of its digits is $1-2+3-4$).

Problem 3. Define the least common multiple $\operatorname{lcm}(m, n)$ of two positive integers m and n to be the smallest positive integer v such that both $m \mid v$ and $n \mid v$.
(a) Compute $1 \mathrm{~cm}(85,65), 1 \mathrm{~cm}(2017,2019)$.
(b) Show that $v=\frac{m n}{(m, n)}$. (Exercise 1.2.C.33)

Problem 4.

Show that if b and c are both relatively prime to a, then $b c$ is also relatively prime to a.

Problem 5.

(a) Express the following numbers as a product of primes: 2002,5040, 40320 .
(b) Which of the following are prime: $2^{5}-1,2^{7}-1,2^{11}-1$? Justify your answer! (Exercise 1.3.A.3)
(c) Let p be a prime and $p>0$. Show that $p \left\lvert\,\binom{ p}{k}\right.$ for any $1 \leq k<p$. [Note that: $\binom{p}{k}=$ $\frac{p!}{k!(p-k)!}$ is an integer ≥ 0.]

Problem 6.

(a) If p is a prime, prove that one cannot find nonzero integers a and b such that $a^{2}=p b^{2}$. [Hint: Fundamental theorem of arithmetic]
(b) Show that $\sqrt{2}$ is irrational. [Hint: You may want to use part (a)] What can you conclude for \sqrt{p}, p prime?

Problem 7. Read ahead sections 2.1-2.3 in the book.

