MAT 412 HOMEWORK 12 – LAST HOMEWORK!

DUE: APRIL 14, 2017 (BEGINNING OF CLASS)

This homework set covers sections 8.1, 8.2, 8.3. References are to Hungerford, 3rd. edition.

Problem 1. This is a continuation of problem 5 and 6 from last homework. Let $G \subseteq$ GL_n(\mathbb{R}) be a group acting on \mathbb{R}^n via $(A, v) \mapsto Av$.

- (a) Show that *G* also acts on $\mathbb{R}[x_1, \dots, x_n]$ via $(g, f) \mapsto g \cdot f := f(g^{-1}(x_1, \dots, x_n))$.
- (b) In the case $G = S_3$ acting on \mathbb{R}^3 , find three polynomials of degree 1, 2, 3 that stay invariant under the group action, that is $\sigma \cdot f = f$ for any $\sigma \in S_3$.

Problem 2. The orbit-stabilizer theorem: Let *G* be a group acting on a set *X*. If |G| is finite, then show that $|G| = |G \cdot x||G_x|$ for any $x \in X$. Here $G \cdot x$ denotes the orbit of *x* and G_x the stabilizer subgroup of *G*.

Problem 3. (a) Show that a subgroup $H \subseteq G$ with [G : H] = 2 is normal in *G*. (Note: Do not assume that the groups are finite)

(b) Can you generalize the statement of (a) to subroups *H* of index *p*, where *p* is prime? If yes, provide a proof, if no, give a counterexample.

Problem 4. Let *G* be a group and let *S* be the set of all elements $aba^{-1}b^{-1}$ for $a, b \in G$. The subgroup [G, G] generated by all elements in *S* is called the *commutator subgroup of G*.

- (a) Show that [G, G] is normal in *G* and that G/[G, G] is abelian. (8.3.33)
- (b) Show that A_n is the commutator subgroup of S_n for $n \ge 3$. [*Hint:* You can use here that A_n is generated by 3-cycles.]