MAT 412 HOMEWORK 11

DUE: APRIL 7, 2017 (BEGINNING OF CLASS)

This homework set covers sections 7.3, 7.4, 7.5. References are to Hungerford, 3rd. edition.

Problem 1. Let *G* be a group and let $\Delta = \{(g,g) : g \in G\}$ be the "diagonal". Prove that Δ is a subgroup of $G \times G$ and that this group is isomorphic to *G*.

- **Problem 2.** (a) Find a group isomorphism between an additive and a multiplicative group, and then find another group homomorphism between such groups that is not an isomorphism.
- (b) In the first case, determine the inverse map, and in the second case the kernel and image.
- **Problem 3.** (a) Find the order of the smallest subgroup of A_5 that contains the permutation (12)(34).
- (b) Write (12534) as a product of transpositions.

Problem 4. (a) Compute the sign of the permutations $\sigma = (143)$ and $\tau = (23)(412)$ in S_4 .

(b) If σ , τ are elements of S_n , check that $\sigma\tau\sigma^{-1}\tau^{-1}$ always lies in A_n , and that $\tau\sigma\tau^{-1}$ belongs to A_n whenever σ is an even permutation.

Problem 5. Let *G* be a group and *X* be a set. A map $h : G \times X \to X$ is called a (left) *group action* if it satisfies the two conditions:

(GA1) $h(e_G, x) = x$ for all $x \in X$, (GA2) h(ab, x) = h(a, h(b, x)) for all $a, b \in G$ and for all $x \in X$ (written for short as: (ab)x = a(bx)).

- (a) Show that $h : G \times X \to X$ is a group action if and only if the induced map $\tilde{h} : G \to Bij(X, X), a \mapsto (x \mapsto h(a, x))$ is a group homomorphism. (Here Bij(X, X) denotes the set of bijections $X \to X$).
- (b) Show that for $X = \mathbb{R}^n$, $G = GL_n(\mathbb{R})$, the map $h : GL_n(\mathbb{R}) \times \mathbb{R}^n \to \mathbb{R}^n$, $(A, v) \mapsto A \cdot v$ is a left action.

Problem 6. Let $G \times X \to X$ be a left group action. Then for any $x \in X$, the set $G \cdot x = \{gx, g \in G\} \subseteq X$ is called the *orbit of* x and $G_x = \{g \in G : gx = x\} \subseteq G$ is called the *stabilizer* of x.

- (a) Show that G_x is a subgroup of G.
- (b) Show that $(\mathbb{R}^*, \cdot) \times \mathbb{R}^2 \to \mathbb{R}^2, (t, x, y) \mapsto (tx, t^{-1}y)$ is a left group action and describe the orbits and stabilizers. [There are essentially three types of orbits and stabilizers: for points (x, y) with $x \neq 0$ and $y \neq 0$; one of the coordinates is 0; and (x, y) = (0, 0)!]
- (c) Show that $\rho : S_n \times \mathbb{R}^n \to \mathbb{R}^n$ acts by permuting coordinates of a vector $v \in \mathbb{R}^n$. Find two non-trivial subspaces that stay invariant under the action of S_n (a subspace $W \subseteq \mathbb{R}^n$ is invariant under the action if for any $w \in W : \rho(\sigma, w) \in W$ for all $\sigma \in S_n$).

Problem 7. Read sections 8.1, 8.2, 8.3, 8.4 in the book.