# MAT 412 HOMEWORK 10 

DUE: MARCH 31, 2017 (BEGINNING OF CLASS)

This homework set covers sections 7.1, 7.2, 7.3. References are to Hungerford, 3rd. edition.
Problem 1. Let $G$ be the set of all 4-th roots of unity in $\mathbb{C}$, i.e., $G=\left\{\zeta \in \mathbb{C}: \zeta^{4}=1\right\}$.
(a) Show that $G$ forms an abelian group with the natural operation.
(b) Compare $G$ and $\left(\mathbb{Z}_{4},+\right)$
(c) Compute the sum of all elements in $G$.

Problem 2. Find an operation $*$ that makes $X=\left\{(A, b) \in \mathbb{Q}^{n^{2}} \times \mathbb{Q}: \operatorname{det}(A) \cdot b=1\right\}$ into a group. Is $(X, *)$ abelian? Explain!

Problem 3. (a) Show that a subset $H \subseteq G$ of a group $G$ is a subgroup if and only if for all $x, y \in H: x y^{-1} \in H$.
(b) Find three finite and two infinite subgroups of $\mathrm{SO}_{3}$.
(c) Find four subgroups of $S_{4}$, the group of permutations on four elements.

Problem 4. (a) Consider a regular pentagon $P$. Write down the operation table for the group of rotational symmetries of $P$ [Hint: Ex. 5 in 7.1 in the book].
(b) List the elements of $D_{5}$, the full group of symmetries of $P$ (that is, also consider reflections) (7.1.22) [Hint: Show that $D_{5}=\left\{e, \sigma, \sigma^{2}, \sigma^{3}, \sigma^{4}, \tau, \tau \sigma, \tau \sigma^{2}, \tau \sigma^{3}, \tau \sigma^{4}\right\}$ for a suitable rotation $\sigma$ and a reflection $\tau$.]
(c) Consider the group $D_{5}$ as a subgroup of $\mathrm{GL}_{3}(\mathbb{R})$. Is $\mathrm{D}_{5}$ also a subgroup of $\mathrm{SO}_{3}$ ? [Hint: Consider the pentagon in the $x y$-plane and centered in the origin of $\mathbb{R}^{3}$. You have to write elements in $D_{5}$ as $3 \times 3$ matrices. First find the five matrices describing the rotations in $D_{5}$. Then find the matrix for the reflection and use part (b) to find the remaining four matrices.]

Problem 5. (a) Let $G=\{e, a, b\}$. Show that there is only one way to make $G$ into a group of order 3. Is this an abelian group?
(b) Let $K=\{e, a, b, c\}$. Find two different multiplications on $K$ that make $K$ into a group of order 4 . Are both of your groups abelian?

Problem 6. (a) Show that the center of $\mathrm{GL}_{2}(K)$, where $K$ is a field, is

$$
Z\left(\mathrm{GL}_{2}(K)\right)=\left\{A \in \mathrm{GL}_{2}(K): A=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right), a \neq 0\right\}
$$

(b) Generalize the statement to $\mathrm{GL}_{n}(K)$. [Hint: All elements in $\mathrm{Z}\left(\mathrm{GL}_{n}(K)\right)$ commute with any element $M$ in $\mathrm{GL}_{n}(K)$. Look at the matrices $M=\mathbb{1}_{n}+E_{i j}$, where $E_{i j}$ is the matrix that has a 1 at the $i j$-th spot and zeros everywhere else.]

Problem 7. Read sections 7.4, 7.5, 8.1 in the book.

