MAT 412 HOMEWORK 10

DUE: MARCH 31, 2017 (BEGINNING OF CLASS)

This homework set covers sections 7.1, 7.2, 7.3. References are to Hungerford, 3rd. edition.

Problem 1. Let *G* be the set of all 4-th roots of unity in \mathbb{C} , i.e., $G = \{\zeta \in \mathbb{C} : \zeta^4 = 1\}$.

- (a) Show that *G* forms an abelian group with the natural operation.
- (b) Compare *G* and $(\mathbb{Z}_4, +)$
- (c) Compute the sum of all elements in *G*.

Problem 2. Find an operation * that makes $X = \{(A, b) \in \mathbb{Q}^{n^2} \times \mathbb{Q} : \det(A) \cdot b = 1\}$ into a group. Is (X, *) abelian? Explain!

- **Problem 3.** (a) Show that a subset $H \subseteq G$ of a group G is a subgroup if and only if for all $x, y \in H$: $xy^{-1} \in H$.
- (b) Find three finite and two infinite subgroups of SO₃.
- (c) Find four subgroups of S_4 , the group of permutations on four elements.
- **Problem 4.** (a) Consider a regular pentagon *P*. Write down the operation table for the group of rotational symmetries of *P* [Hint: Ex. 5 in 7.1 in the book].
- (b) List the elements of D_5 , the full group of symmetries of P (that is, also consider reflections) (7.1.22) [Hint: Show that $D_5 = \{e, \sigma, \sigma^2, \sigma^3, \sigma^4, \tau, \tau\sigma, \tau\sigma^2, \tau\sigma^3, \tau\sigma^4\}$ for a suitable rotation σ and a reflection τ .]
- (c) Consider the group D_5 as a subgroup of $GL_3(\mathbb{R})$. Is D_5 also a subgroup of SO_3 ? [Hint: Consider the pentagon in the *xy*-plane and centered in the origin of \mathbb{R}^3 . You have to write elements in D_5 as 3×3 matrices. First find the five matrices describing the rotations in D_5 . Then find the matrix for the reflection and use part (*b*) to find the remaining four matrices.]
- **Problem 5.** (a) Let $G = \{e, a, b\}$. Show that there is only one way to make *G* into a group of order 3. Is this an abelian group?
- (b) Let $K = \{e, a, b, c\}$. Find two different multiplications on *K* that make *K* into a group of order 4. Are both of your groups abelian?

Problem 6. (a) Show that the center of $GL_2(K)$, where K is a field, is

$$Z(\operatorname{GL}_2(K)) = \{A \in \operatorname{GL}_2(K) : A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, a \neq 0\}.$$

(b) Generalize the statement to $GL_n(K)$. [Hint: All elements in $Z(GL_n(K))$ commute with any element M in $GL_n(K)$. Look at the matrices $M = \mathbb{1}_n + E_{ij}$, where E_{ij} is the matrix that has a 1 at the *ij*-th spot and zeros everywhere else.]

Problem 7. Read sections 7.4, 7.5, 8.1 in the book.