MATHM5195 EXERCISE SHEET 5 - THE LAST ONE!

DUE: MAY 1, 2020 (ELECTRONICALLY)

Algebraic geometry, Gröbner bases

Problem 1. (a) Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ be two algebraic sets, and let

 $X \times Y = \{(x_1, \dots, x_n, y_1, \dots, y_m) \in \mathbb{A}^{n+m} : (x_1, \dots, x_n) \in X, (y_1, \dots, y_m) \in Y\}$

be their Cartesian product. Show that $X \times Y$ is an algebraic set.

- (b) Show that if both X and Y are irreducible, then also $X \times Y$ is irreducible.
- **Problem 2.** (a) Show (by an example) that an infinite union of algebraic sets is not necessarily an algebraic set.
- (b) Give an example of a maximal ideal *J* in $\mathbb{R}[x_1, ..., x_n]$ such that $V(J) = \emptyset$. Why does this not contradict the Nullstellensatz?

Problem 3. (a) Show that the set $\{(x, 0) : x \neq 0, x \in \mathbb{R}\} \subset \mathbb{A}^2_{\mathbb{R}}$ is not an algebraic set.

- (b) Give an example to show that the set theoretic difference *X**Y* of two affine algebraic sets does not need to be an algebraic set.
- **Problem 4.** (a) Determine the cardinality of V(f) where $f(z) = z^5 z^4 + z^3 1$ is in $\mathbb{C}[z]$ and compare it to dim_{$\mathbb{C}}(<math>\mathbb{C}[z]/\langle z^5 z^4 + z^3 1 \rangle$) (dimension here means vector space dimension).</sub>
- (b) Same question for $V(x-2y, y^2-x^3+x^2+x)$ and $\dim_{\mathbb{C}}(\mathbb{C}[x,y]/\langle x-2y, y^2-x^3+x^2+x\rangle)$. Geometric interpretation?
- (c) Same question for $V(x^3 yz, y^2 xz, z^2 x^2y)$ and $\dim_{\mathbb{C}}(\mathbb{C}[x, y, z]/\langle x^3 yz, y^2 xz, z^2 x^2y\rangle$. (Hint: Recall that $\dim_{\mathbb{C}}(\mathbb{C}[t]) = \infty$ and so also for any \mathbb{C} -module containing $\mathbb{C}[t]$)
- **Problem 5.** (a) Fix a monomial order on \mathbb{N}^3 and let $K = \mathbb{C}$. Are the polynomials $P_1 = x^3 yz$, $P_2 = x^2y z^3$ and $P_3 = y^2 z^2$ a Gröbner basis with respect to this order?
- (b) If not, then complete the polynomials to a Gröbner basis.
- (c) Does the system of equations $P_1(x, y, z) = P_1(x, y, z) = P_2(x, y, z) = 0$ have a solution? (Try to answer this question without actually calculating one!)