MATH3195/5195M EXERCISE SHEET 4

DUE: MARCH 22, 2019

Primary decomposition, Noether normalisation and the Nullstellensatz
Problem 1. (a) Let $I=\left\langle x^{2}, y^{2}, z^{2}\right\rangle \cap\langle x+y\rangle \cap\langle x-y\rangle$ be an ideal in $R=\mathbb{R}[x, y, z]$. Is the given intersection of ideals a (minimal) primary decomposition of I ? Explain!
(b) Let I be a monomial ideal in $\mathrm{Q}\left[x_{1}, \ldots, x_{n}\right]$, that is, I is generated by monomials. Show that if R is generated by pure powers of a subset of the variables, then it is a primary ideal. Further show that if $r=r_{1} r_{2}$ is a minimal generator of I, where r_{1} and r_{2} are relatively prime, then

$$
I=\left(I+\left\langle r_{1}\right\rangle\right) \cap\left(I+\left\langle r_{2}\right\rangle\right) .
$$

Remark: This yields an algorithm to compute primary decomposition of a monomial ideal!

Problem 2. (a) Let $R=\mathbb{R}[x, y] /\left\langle x^{5}-y^{3}\right\rangle$. Show that $t=\frac{y}{x}$ and $u=\frac{x^{2}}{y}$ are integral over R. What are the R-module generators of $R[t]$ and $R[u]$?
(b) Let R be a unique factorisation domain, that is, R is an integral domain and every element in R can be written as a product of irreducible elements, unique up to order and multiplication with units. Show that every integral element of the form $\frac{x}{y}, x, y \in R$ is already contained in R. (Remark: this shows that R is integrally closed in its field of fractions).

Problem 3. Decompose $X:=V\left(\left(x^{2} y-x y^{2}\right)(x+y)\right) \subseteq \mathbb{A}_{\mathbb{R}}^{2}$ into irreducible components, that is, write X as a union of $V\left(f_{i}\right)$, where the f_{i} are irreducible polynomials. Same question for $X \subseteq \mathbb{A}_{\mathbb{F}_{2}}^{2}$, where \mathbb{F}_{2} denotes the field with two elements.

Problem 4. Sketch the following affine algebraic sets (you may use a computer algebra program for this!)
(a) $V\left(y^{2}-x^{5}\right) \subset \mathbb{A}_{\mathbb{R}}^{2}$
(b) $V\left(\left(x^{2}+y^{2}\right)^{2}+4 x\left(x^{2}+y^{2}\right)-4 y^{2}\right) \subset \mathbb{A}_{\mathbb{R}}^{2}$
(c) $V\left(x^{2}+y^{2}-1\right) \subset \mathbb{A}_{\mathbb{R}^{3}}^{3}$,
(d) $V\left(x^{3}+x^{2} z^{2}-y^{2}\right) \subset \mathbb{A}_{\mathbb{R}}^{3}$
(e) $V\left(x^{4} y^{2}-x^{2} y^{4}-x^{4} z^{2}+y^{4} z^{2}+x^{2} z^{4}-y^{2} z^{4}\right) \subset \mathbb{A}_{\mathbb{R}}^{3}$

Problem 5. Let $F=\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}$ be a polynomial in $\mathbb{R}[x, y, z]$.
(1) Sketch $V(F) \subset \mathbb{A}_{\mathbb{R}}^{3}$.
(2) Let $J_{F}=\left\langle\partial_{x}(F), \partial_{y}(F), \partial_{z}(F)\right\rangle$ be the Jacobian ideal of F. Find $V\left(J_{F}\right)$ and sketch it.
(3) Is J_{F} radical?

Problem 6. The image of a non-constant complex polynomial map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{3}$ is a hypersurface. Let $f(s, t)=\left(s^{3} t^{3}, s^{2}, t^{2}\right)$.
(a) Find an irreducible polynomial map $F: \mathbb{C}^{3} \rightarrow \mathbb{C}$ such that $\operatorname{Im}(f) \subset V(F)$. (Use coordinates (x, y, z).)
(b) Let again $J_{F}=\left\langle\partial_{x}(F), \partial_{y}(F), \partial_{z}(F)\right\rangle$ be the Jacobian ideal of F. Find a minimal primary decomposition of J_{F} and its associated primes. (Hint: Ensure J_{F} is simplified as much as possible and try to guess the primary components!)
(c) Hence show that J_{F} has an embedded prime and two isolated primes.

