MATH3195/5195M EXERCISE SHEET 4

DUE: MARCH 22, 2019

Primary decomposition, Noether normalisation and the Nullstellensatz

Problem 1. (a) Let $I = \langle x^2, y^2, z^2 \rangle \cap \langle x + y \rangle \cap \langle x - y \rangle$ be an ideal in $R = \mathbb{R}[x, y, z]$. Is the given intersection of ideals a (minimal) primary decomposition of *I*? Explain!

(b) Let *I* be a *monomial ideal* in $\mathbb{Q}[x_1, \ldots, x_n]$, that is, *I* is generated by monomials. Show that if *R* is generated by pure powers of a subset of the variables, then it is a primary ideal. Further show that if $r = r_1r_2$ is a minimal generator of *I*, where r_1 and r_2 are relatively prime, then

$$I = (I + \langle r_1 \rangle) \cap (I + \langle r_2 \rangle).$$

Remark: This yields an algorithm to compute primary decomposition of a monomial ideal!

- **Problem 2.** (a) Let $R = \mathbb{R}[x, y] / \langle x^5 y^3 \rangle$. Show that $t = \frac{y}{x}$ and $u = \frac{x^2}{y}$ are integral over *R*. What are the *R*-module generators of *R*[*t*] and *R*[*u*]?
- (b) Let *R* be a unique factorisation domain, that is, *R* is an integral domain and every element in *R* can be written as a product of irreducible elements, unique up to order and multiplication with units. Show that every integral element of the form $\frac{x}{y}$, $x, y \in R$ is already contained in *R*. (*Remark*: this shows that *R* is *integrally closed* in its field of fractions).

Problem 3. Decompose $X := V((x^2y - xy^2)(x + y)) \subseteq \mathbb{A}^2_{\mathbb{R}}$ into irreducible components, that is, write *X* as a union of $V(f_i)$, where the f_i are irreducible polynomials. Same question for $X \subseteq \mathbb{A}^2_{\mathbb{F}_2}$, where \mathbb{F}_2 denotes the field with two elements.

Problem 4. Sketch the following affine algebraic sets (you may use a computer algebra program for this!)

(a) $V(y^2 - x^5) \subset \mathbb{A}^2_{\mathbb{R}}$ (b) $V((x^2 + y^2)^2 + 4x(x^2 + y^2) - 4y^2) \subset \mathbb{A}^2_{\mathbb{R}}$ (c) $V(x^2 + y^2 - 1) \subset \mathbb{A}^3_{\mathbb{R}}$, (d) $V(x^3 + x^2z^2 - y^2) \subset \mathbb{A}^3_{\mathbb{R}}$ (e) $V(x^4y^2 - x^2y^4 - x^4z^2 + y^4z^2 + x^2z^4 - y^2z^4) \subset \mathbb{A}^3_{\mathbb{R}}$

Problem 5. Let $F = (x^2 - y^3)^2 - (z^2 - y^2)^3$ be a polynomial in $\mathbb{R}[x, y, z]$.

- (1) Sketch $V(F) \subset \mathbb{A}^3_{\mathbb{R}}$.
- (2) Let $J_F = \langle \partial_x(F), \partial_y(F), \partial_z(F) \rangle$ be the Jacobian ideal of *F*. Find $V(J_F)$ and sketch it. (3) Is J_F radical?

Problem 6. The image of a non-constant complex polynomial map $f : \mathbb{C}^2 \to \mathbb{C}^3$ is a hypersurface. Let $f(s,t) = (s^3t^3, s^2, t^2)$.

- (a) Find an irreducible polynomial map $F : \mathbb{C}^3 \to \mathbb{C}$ such that $\text{Im}(f) \subset V(F)$. (Use coordinates (x, y, z).)
- (b) Let again $J_F = \langle \partial_x(F), \partial_y(F), \partial_z(F) \rangle$ be the Jacobian ideal of *F*. Find a minimal primary decomposition of J_F and its associated primes. (Hint: Ensure J_F is simplified as much as possible and try to guess the primary components!)
- (c) Hence show that J_F has an embedded prime and two isolated primes.