MATH3195/M5195 EXERCISE SHEET 2

DUE: FEBRUARY 22, 2019

Problem 1. *Monomial orders:* Show that $<_{lex}$ is a monomial order on $K[x_1, ..., x_n]$ (or equivalently, on \mathbb{N}^n).

- **Problem 2.** (a) Show that $\mathbb{R}[x,y]/(x^3-y^2)$ is isomorphic to $\mathbb{R}[t^2,t^3]$. [Hint: First homomorphism theorem. First show that $f(x,y)=x^3-y^2$ is in the kernel of the map φ as defined in the lecture. In order to see that (f(x,y)) is the full kernel, you may use the fact, that the kernel of φ is generated by elements of the form $x^ay^b-x^{a'}y^{b'}$, where $a,a',b,b'\in\mathbb{N}$. This fact can be proved using Gröbner bases methods]
- (b) Is $(x^3 y^2)$ a prime ideal in $\mathbb{R}[x, y]$? Explain!

Problem 3. (a) Show that the ideal $(x^4 - 5x^3 + 7x^2 - 5x + 6, x^4 + 2x^2 + 1, x^4 - 2x^3 + x^2 - 2x)$ in $\mathbb{R}[x]$ is maximal.

(b) Let R be a ring such that every element satisfies $x^n = x$ for some n > 1 (here the integer n depends on x). Show that every prime ideal in R is maximal.

Problem 4. (a) Consider K[x,y,z] and order all monomials of degree less than or equal to 3 with respect to the following monomial orders: (i) $<_{lex}$, (ii) $<_{deglex}$, (iii) $<_{\lambda}$, where λ is a suitable linear form $\lambda : \mathbb{R}^3 \to \mathbb{R}$.

(b) Determine leading monomial and coefficient of the polynomial $f = x^4 + z^5 + x^3z + yz^4 + x^2y^2$ with respect to the momomial orders from (a).

Problem 5. Let *R* be a ring. Show that *R* is local if and only if the nonunits of *R* form a maximal ideal.

Problem 6. Let *I* be an ideal of *R* and *A* be a multiplicatively-closed subset of *R*. Show that:

- (a) $A^{-1}I$ is an ideal of $A^{-1}R$;
- (b) $\frac{x}{a} \in A^{-1}I$ if and only if there is some $b \in A$ with $xb \in I$;
- (c) $A^{-1}I = A^{-1}R$ if and only if $I \cap A \neq \emptyset$;
- (d) localisation commutes with quotients, that is

$$A^{-1}R/A^{-1}I \cong \overline{A}^{-1}(R/I),$$

where $\overline{A} = \{a + I : a \in A\}.$