

Convex relaxation of hybrid discrete-continuous penalties

Christian Clason¹ Karl Kunisch²

¹Faculty of Mathematics, Universität Duisburg-Essen ²Institute of Mathematics and Scientific Computing, Karl-Franzens-Universität Graz

> Inverse Problems – from Theory to Application Bristol, August 28, 2014

L⁰ penalty

$$||u||_{0} := \int_{\Omega} |u(x)|_{0} dx \qquad |t|_{0} := \begin{cases} 0 & \text{if } t = 0 \\ 1 & \text{if } t \neq 0 \end{cases}$$

- Lebesgue measure of support of *u*
- popular in sparse optimization
- binary penalty ~→ combinatorial optimization
- difficulty: non-smooth, non-convex, not lower-semicontinuous
- not coercive ~> no regularization

$$\min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

- $\mathcal{F}(u)$ discrepancy term (here: linear-quadratic)
- **1** $\mathcal{G}(u)$ sparsity penalty [Ito, Kunisch 2012]

$$\mathcal{G}(\boldsymbol{u}) = \frac{\alpha}{2} \|\boldsymbol{u}\|_{L^2}^2 + \beta \|\boldsymbol{u}\|_0$$

- $\rightsquigarrow u(x) = 0$ almost everywhere
- separate penalization of support (β), magnitude (α)
- $\rightsquigarrow \alpha > 0$ necessary!

$$\min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

2 G(u) multi-bang penalty [Clason, Kunisch 2013]

$$\mathcal{G}(u) = \int_{\Omega} \frac{\alpha}{2} |u(x)|^2 + \beta \prod_{i=1}^d |u(x) - u_i|_0 dx$$

- $\rightsquigarrow u(x) \in \{u_1, \ldots, u_d\}$ almost everywhere
- motivation: discrete parameters (e.g., tissue types)
- $\beta > 0$ large penalizes free arc $u(x) \neq u_i$
- $\alpha > 0$ penalizes magnitude of $u(x) = u_i$

$$\min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

3 $\mathcal{G}(u)$ switching penalty, $u = (u_1, u_2)$ [Clason, Ito, Kunisch 2014]

$$\mathcal{G}(u) = \int_0^T \frac{\alpha}{2} |u(t)|_2^2 + \beta |u_1(t)u_2(t)|_0 dt$$

- $\rightarrow u_1(t)u_2(t) = 0$ almost everywhere
- $\beta > 0$ large penalizes free arc $u_1u_2 \neq 0$
- $\alpha > 0$ penalizes magnitude of active u_i

1 Overview

- 2 Convex analysis approach
- 3 Multi-bang penalty
 - Optimality system
 - Structure of solution
 - Numerical solution
 - Examples

Convex analysis approach

UNIVERSITÄT D.U.I.S.B.U.R.G E.S.S.E.N

Consider \mathcal{F} convex, \mathcal{G} convex

$$\mathcal{J}(\bar{u}) := \mathcal{F}(\bar{u}) + \mathcal{G}(\bar{u}) = \min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

Primal-dual optimality system

$$\left\{egin{array}{ll} -ar{p}\in\partial\mathcal{F}(ar{u})\ ar{p}\in\partial\mathcal{G}(ar{u}) \end{array}
ight.$$

Fermat, sum rule for subdifferentials (under regularity condition)

Convex analysis approach

Consider \mathcal{F} convex, \mathcal{G} convex

$$\mathcal{J}(\bar{u}) := \mathcal{F}(\bar{u}) + \mathcal{G}(\bar{u}) = \min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

Primal-dual optimality system

$$\left\{egin{array}{l} -ar{m{p}}\in\partial\mathcal{F}(ar{m{u}})\ ar{m{u}}\in\partial\mathcal{G}^*(ar{m{p}}) \end{array}
ight.$$

• $\mathcal{G}^*(p) = \sup_u \langle u, p \rangle - \mathcal{G}(u)$ Fenchel conjugate

subdifferential inversion, "convex inverse function theorem"

Consider \mathcal{F} convex, \mathcal{G} non-convex

$$\min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

1

Primal-dual optimality(?) system

 $\left\{egin{array}{ll} -ar{m{p}}\in\partial\mathcal{F}(ar{u})\ ar{u}\in\partial\mathcal{G}^*(ar{m{p}}) \end{array}
ight.$

■ *G*^{*} Fenchel conjugate: always convex, lower semi-continuous

• well-defined, unique solution \bar{u} (minimizes $\mathcal{F}(u) + \mathcal{G}^{**}(u)$)

but: \bar{u} in general not minimizer of $\mathcal{J} \rightsquigarrow$ sub-optimal

 ${\mathcal G}$ non-convex: subdifferential $\partial {\mathcal G}^*$ set-valued

 \rightsquigarrow reformulation: consider for $\gamma > 0$

Proximal mapping

$$\operatorname{prox}_{\gamma \mathcal{G}^*}(p) = \arg\min_{w} \mathcal{G}^*(w) + \frac{1}{2\gamma} \|w - p\|^2$$

single-valued, Lipschitz continuous

■ Hilbert space: coincides with resolvent $(Id + \gamma \partial \mathcal{G}^*)^{-1}(p)$

Proximal mapping

$$ext{prox}_{\gamma\mathcal{G}^*}(p) = rg\min_w \mathcal{G}^*(w) + rac{1}{2\gamma} \|w-p\|^2$$

Complementarity formulation of $u \in \partial \mathcal{G}^*(p)$

$$u = \frac{1}{\gamma} \left((p + \gamma u) - \operatorname{prox}_{\gamma \mathcal{G}^*} (p + \gamma u) \right)$$

• equivalent for every $\gamma > 0$

single-valued, Lipschitz continuous, implicit, not semismooth

Proximal mapping

$$ext{prox}_{\gamma\mathcal{G}^*}(p) = rg\min_w \mathcal{G}^*(w) + rac{1}{2\gamma} \|w-p\|^2$$

Moreau–Yosida regularization of $u \in \partial \mathcal{G}^*(p)$

$$u = \frac{1}{\gamma} \left(p - \operatorname{prox}_{\gamma \mathcal{G}^*}(p) \right) =: \partial \mathcal{G}^*_{\gamma}(p)$$

■ single-valued, Lipschitz continuous, explicit ~→ semismooth

•
$$\partial \mathcal{G}^*_{\gamma}(p) o \partial \mathcal{G}^*(p)$$
 as $\gamma o 0$

For
$$\mathcal{G}: L^2(\Omega) \to \mathbb{R}$$
, $\mathcal{G}(u) = \int_{\Omega} g(u(x)) \, dx$

Approach:

- 1 compute Fenchel conjugate $g^*(q)$
- 2 compute subdifferential $\partial g^*(q)$
- 3 compute proximal mapping $extsf{prox}_{\gamma\partial g^*}(q)$
- 4 compute Moreau–Yosida regularization $\partial g^*_\gamma(q)$
- 5 \rightsquigarrow semismooth Newton method, continuation in γ for superposition operator $[\partial \mathcal{G}^*_{\gamma}(p)](x) = \partial g^*_{\gamma}(p(x))$

1 Overview

2 Convex analysis approach

3 Multi-bang penalty

- Optimality system
- Structure of solution
- Numerical solution
- Examples

Formulation

$$\begin{cases} \min_{u \in L^{2}(\Omega)} \frac{1}{2} \| \mathcal{K}u - y^{\delta} \|_{L^{2}}^{2} + \frac{\alpha}{2} \| u \|_{L^{2}}^{2} + \beta \int_{\Omega} \prod_{i=1}^{d} |u(x) - u_{i}|_{0} \, dx \\ \text{s.t. } u_{1} \leq u(x) \leq u_{d} \end{cases}$$

- $u_1 < \cdots < u_d$ given parameter values (d > 2)
- $y^{\delta} \in Y$ noisy data, Y Hilbert space
- $K: Y \rightarrow Y^* \equiv Y$ linear, bounded
- **assumption:** $K^* : Y \to V \hookrightarrow L^2(\Omega)$
- e.g., $K = A^{-1}$ for elliptic operator $A : V \to V^*$

Fenchel conjugate

$$g: \mathbb{IR} \to \overline{\mathbb{IR}}, \qquad \mathbf{v} \mapsto \frac{\alpha}{2} \mathbf{v}^2 + \beta \prod_{i=1}^d |\mathbf{v} - u_i|_0 + \delta_{[u_1, u_d]}(\mathbf{v})$$
$$g^*: \mathbb{IR} \to \overline{\mathbb{IR}}, \qquad q \mapsto \sup_{\mathbf{v}} q \, \mathbf{v} - g(\mathbf{v})$$

Case differentiation: sup attained at \bar{v} ,

$$g^*(q) = \begin{cases} qu_i - \frac{\alpha}{2}u_i^2 & \bar{\mathbf{v}} = u_i, & 1 \le i \le d\\ \frac{1}{2\alpha}q^2 - \beta & \bar{\mathbf{v}} \ne u_i, & 1 \le i \le d \end{cases}$$

Fenchel conjugate

$$g^*(q) = \begin{cases} qu_i - \frac{\alpha}{2}u_i^2 & q \in \overline{Q}_i, \quad 1 \le i \le d \\ \frac{1}{2\alpha}q^2 - \beta & q \in \overline{Q}_0 \end{cases}$$

$$Q_{1} := \left\{ q : q - \alpha u_{1} < \sqrt{2\alpha\beta} \land q < \frac{\alpha}{2}(u_{1} + u_{2}) \right\}$$

$$Q_{i} := \left\{ q : |q - \alpha u_{i}| < \sqrt{2\alpha\beta} \land \frac{\alpha}{2}(u_{i-1} + u_{i}) < q < \frac{\alpha}{2}(u_{i} + u_{i+1}) \right\}$$

$$Q_{d} := \left\{ q : q - \alpha u_{d} > \sqrt{2\alpha\beta} \land \frac{\alpha}{2}(u_{d} + u_{d-1}) < q \right\}$$

$$Q_{0} := \left\{ q : |q - \alpha u_{j}| > \sqrt{2\alpha\beta} \text{ for all } j \land \alpha u_{1} < q < \alpha u_{d} \right\}$$

$$g^*(q) = \begin{cases} qu_i - \frac{\alpha}{2}u_i^2 & q \in \overline{Q}_i, \quad 1 \le i \le d \\ \frac{1}{2\alpha}q^2 - \beta & q \in \overline{Q}_0 \end{cases}$$

continuous, piecewise differentiable:

$$\partial g^*(q) = \begin{cases} \{u_i\} & q \in Q_i, \ 1 \le i < d \\ \{\frac{1}{\alpha}q\} & q \in Q_0 \\ [u_i, u_{i+1}] & q \in \overline{Q}_i \cap \overline{Q}_{i+1}, \ 1 \le i < d \\ [\min\{u_i, \frac{1}{\alpha}q\}, \max\{u_i, \frac{1}{\alpha}q\}] & q \in \overline{Q}_i \cap \overline{Q}_0, \ 1 \le i \le d \end{cases}$$

(no explicit dependence on β !)

Fenchel conjugate: sketch

$$\begin{split} \bar{p} &= \mathcal{K}^*(y^{\delta} - \mathcal{K}\bar{u}) \\ \bar{u} &\in \partial \mathcal{G}^*(\bar{p}) \\ &= \begin{cases} \{u_i\} & \bar{p}(x) \in Q_i \\ \{\frac{1}{\alpha}\bar{p}(x)\} & \bar{p}(x) \in Q_0 \\ [u_i, u_{i+1}] & \bar{p}(x) \in \overline{Q}_i \cap \overline{Q}_{i+1} \\ [\min(u_i, \frac{1}{\alpha}\bar{p}(x)), \max\{u_i, \frac{1}{\alpha}\bar{p}(x)\}] & \bar{p}(x) \in \overline{Q}_i \cap \overline{Q}_0 \end{cases} \end{split}$$

necessary conditions for min_u F(u) + G^{**}(u) (convex, l.s.c.)
 → unique solution (ū, p) ∈ L²(Ω) × L²(Ω)

$\Omega = \mathcal{A} \cup \mathcal{F} \cup \mathcal{S}$

• if β sufficiently large: $Q_0 = \emptyset$, free arc

$$\mathcal{F} \subset \{\bar{p}(x) \in Q_0\} = \emptyset$$

singular arc corresponds to set-valued subdifferential:

$$S = \{ \bar{p}(x) \in \bigcup_{i=1}^{d-1} (\overline{Q}_i \cap \overline{Q}_{i+1}) \cup \bigcup_{i=1}^{d} (\overline{Q}_i \cap \overline{Q}_0) \}$$
$$\subset \{ \bar{p}(x) \in \{ \frac{\alpha}{2} (u_i + u_{i+1}), \alpha u_i - \sqrt{2\alpha\beta}, \alpha u_i + \sqrt{2\alpha\beta} \} \}$$

• for suitable A, $\bar{p}(x)$ constant implies $[A^*\bar{p}](x) = [y^{\delta} - \bar{y}](x) = 0$,

$$\rightsquigarrow |\{x: \bar{y}(x) = y^{\delta}(x)\}| = 0 \ \Rightarrow \ \bar{u} \in \{u_1, \dots, u_d\}$$
 a. e., true multi-bang

■ duality gap for non-convex *G*:

$$|\mathcal{G}(ar{u}) + \mathcal{G}^*(ar{p}) - \langle ar{p}, ar{u}
angle \leq eta |\mathcal{S}|$$

(pointwise gap of β where $\partial g^*(\bar{p}(x))$ set-valued)

• \rightarrow in general: \bar{u} sub-optimal:

 $J(\bar{u}) \leq J(u) + \beta |S|$ for all u

• but: \bar{u} true multi-bang $\rightsquigarrow |\mathcal{S}| = 0 \rightsquigarrow \bar{u}$ optimal

Moreau-Yosida regularization

$$\partial g^*_\gamma(q) = egin{cases} u_i & q \in \mathcal{Q}^\gamma_i \ rac{1}{lpha+\gamma}q & q \in \mathcal{Q}^\gamma_0 \ rac{1}{\gamma}\left(q-(lpha u_i+\sqrt{2lphaeta})
ight) & q \in \mathcal{Q}^\gamma_0 \ rac{1}{\gamma}\left(q-rac{lpha}{2}(u_i+u_{i+1})
ight) & q \in \mathcal{Q}^\gamma_{i,i+1} \end{cases}$$

UNIVERSITÄT

Regularized optimality system

$$\left\{egin{array}{l} {m p}_\gamma = {m K}^*({m y}^\delta - {m K}{m u}_\gamma) \ {m u}_\gamma = \partial {m {\cal G}}^*_\gamma({m p}_\gamma) \end{array}
ight.$$

■ $\partial \mathcal{G}^*_{\gamma}$ maximal monotone \rightsquigarrow unique solution (u_{γ}, p_{γ})

•
$$(u_{\gamma}, p_{\gamma})
ightarrow (\bar{u}, \bar{p})$$
 as $\gamma
ightarrow 0$

- $\partial \mathcal{G}^*_{\gamma}$ Lipschitz continuous, piecewise C^1 , norm gap $V \hookrightarrow L^2(\Omega)$
 - \rightsquigarrow semismooth Newton method, continuation in $\gamma \rightarrow 0$
- globalization: backtracking line search based on residual norm
- only number of sets Q_i depends on $d \rightarrow$ linear complexity

•
$$\Omega = [0, 1]^2$$
, $K = (-\Delta)^{-1}$

$$u^{\dagger}(x) = u_2 \chi_{\{x:(x_1-0.45)^2+(x_2-0.55)^2<0.1\}}(x) + (u_3 - u_2) \chi_{\{x:(x_1-0.4)^2+(x_2-0.6)^2<0.02\}}(x)$$

$$d = 3, \quad u_1 = 0, \quad u_2 = 0.1, \quad u_3 \in \{0.2, 0.12\}$$

•
$$\mathbf{y}^{\delta} \in \mathcal{N}\left(\mathbf{K}\mathbf{u}^{\dagger}, \delta \|\mathbf{K}\mathbf{u}^{\dagger}\|_{\infty}\right)$$

■ finite element discretization: uniform grid, 256 × 256 nodes

•
$$\alpha = 5 \cdot 10^{-5}$$
, $\beta = 10^{-1}$ (no free arc)

• terminate at $\gamma < 10^{-12}$

exact parameter u^{\dagger}

reconstruction u^{δ} , $\delta = 0.1$

reconstruction u^{δ} , $\delta = 0.5$

Overview Convex analysis approach Multi-bang penalty

exact parameter u^{\dagger}

reconstruction u^{δ} , $\delta = 0.1$

reconstruction u^{δ} , $\delta = 0.5$

Overview Convex analysis approach Multi-bang penalty

Conclusion

Convex relaxation of discrete problem:

- well-posed primal-dual optimality system
- solution optimal under general assumptions
- linear complexity in number of parameter values
- efficient numerical solution (superlinear convergence)

Outlook:

- regularization properties, parameter choice
- nonlinear inverse problems
- other hybrid discrete-continuous problems

Preprint, MATLAB/Python codes:

http://www.uni-due.de/mathematik/agclason/clason_pub.php