

A convex analysis approach to switching control of PDEs

Christian Clason¹ Kazufumi Ito² Karl Kunisch³

¹Faculty of Mathematics, University of Duisburg-Essen ²Department of Mathematics, North Carolina State University, Raleigh ³Institute of Mathematics and Scientific Computing, University of Graz

> International Conference on Inverse Problems and Optimal Control Hong Kong, December 6, 2014

L⁰ penalty

$$||u||_{0} := \int_{\Omega} |u(x)|_{0} dx \qquad |t|_{0} := \begin{cases} 0 & \text{if } t = 0 \\ 1 & \text{if } t \neq 0 \end{cases}$$

- Lebesgue measure of support of *u*
- popular in sparse optimization
- binary penalty ~> combinatorial optimization
- difficulty: non-smooth, non-convex, not lower-semicontinuous
- not a norm ~> no regularization

- *f*(*u*) tracking or discrepancy term (here: linear–quadratic)
- **1** $\mathcal{G}(u)$ sparsity penalty [Ito, Kunisch 2012]

$$\mathcal{G}(u) = \frac{\alpha}{2} \|u\|_{L^2}^2 + \beta \|u\|_0$$

• $\rightarrow u(x) = 0$ almost everywhere

- separate penalization of support (β), magnitude (a)
- $\sim a > 0$ necessary!

$$\min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

2 $\mathcal{G}(u)$ multi-bang penalty [Clason, Kunisch 2013]

$$\mathcal{G}(u) = \int_{\Omega} \frac{\alpha}{2} |u(x)|^2 + \beta \prod_{i=1}^{d} |u(x) - u_i|_0 \, dx$$

- $\rightsquigarrow u(x) \in \{u_1, \ldots, u_d\}$ almost everywhere
- motivation: discrete control (voltages, velocities)
- β > 0 large penalizes *free arc* $u(x) \neq u_i$
- a > 0 penalizes magnitude of $u(x) = u_i$

 $\min_{u} \mathcal{F}(u) + \mathcal{G}(u)$

3 G(u) switching penalty, $u = (u_1, u_2)$ [Clason, Ito, Kunisch 2014]

$$\mathcal{G}(u) = \int_0^T \frac{\alpha}{2} |u(t)|_2^2 + \beta |u_1(t)u_2(t)|_0 dt$$

- $\rightarrow u_1(t)u_2(t) = 0$ almost everywhere
- β > 0 large penalizes free arc $u_1u_2 \neq 0$
- a > 0 penalizes magnitude of active u_i

1 Overview

- 2 Approach
- 3 Switching control
 - Optimality system
 - Numerical solution
 - Examples

Convex analysis approach

UNIVERSITÄT D_U I_S_B_U R_G E_S_S_E_N Open-Minded

Consider \mathfrak{F} convex, \mathfrak{G} convex

$$\mathcal{J}(\bar{u}) := \mathcal{F}(\bar{u}) + \mathcal{G}(\bar{u}) = \min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

Necessary optimality conditions

 $\begin{cases} -\bar{p} \in \partial \mathcal{F}(\bar{u}) \\ \bar{p} \in \partial \mathcal{G}(\bar{u}) \end{cases}$

Fermat, sum rule for subdifferentials (under regularity condition)

Convex analysis approach

Consider \mathfrak{F} convex, \mathfrak{G} convex

$$\mathcal{J}(\bar{u}) := \mathcal{F}(\bar{u}) + \mathcal{G}(\bar{u}) = \min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

Necessary optimality conditions

 $\begin{cases} -\bar{p} \in \partial \mathcal{F}(\bar{u}) \\ \bar{u} \in \partial \mathcal{G}^*(\bar{p}) \end{cases}$

■ $\mathfrak{G}^*(p) = \sup_u \langle u, p \rangle - \mathfrak{G}(u)$ Fenchel conjugate

subdifferential inversion, "inverse convex function theorem"

Consider \mathcal{F} convex, \mathcal{G} non-convex

 $\min_u \mathcal{F}(u) + \mathcal{G}(u)$

Sufficient(?) optimality conditions

 $\begin{cases} -\bar{p} \in \partial \mathcal{F}(\bar{u}) \\ \bar{u} \in \partial \mathcal{G}^*(\bar{p}) \end{cases}$

■ 𝔅* Fenchel conjugate: always convex, lower semi-continuous

- \rightsquigarrow well-defined, unique solution \bar{u} (minimizes $\mathcal{F}(u) + \mathcal{G}^{**}(u)$)
- **b**ut: \bar{u} in general not minimizer of $\mathcal{J} \rightsquigarrow$ sub-optimal

 ${\mathcal G}$ non-convex: subdifferential $\partial {\mathcal G}^*$ set-valued

 \rightsquigarrow regularize: consider for $\gamma > 0$

Proximal mapping

$$\operatorname{prox}_{\gamma \mathfrak{S}^*}(p) = \arg\min_{w} \mathfrak{S}^*(w) + \frac{1}{2\gamma} ||w - p||^2$$

single-valued, Lipschitz continuous

■ Hilbert space: concides with resolvent $(Id + \gamma \partial \mathcal{G}^*)^{-1}(p)$

Proximal mapping

$$\operatorname{prox}_{\gamma \mathfrak{S}^*}(p) = \arg\min_{w} \mathfrak{S}^*(w) + \frac{1}{2\gamma} \|w - p\|^2$$

Complementarity formulation of $u \in \partial \mathfrak{G}^*(p)$

$$u = \frac{1}{\gamma} \left((p + \gamma u) - \operatorname{prox}_{\gamma \mathfrak{S}^*} (p + \gamma u) \right)$$

- equivalent for every $\gamma > 0$
- single-valued, Lipschitz continuous, implicit, not semismooth

Proximal mapping

$$\operatorname{prox}_{\gamma \mathfrak{S}^*}(p) = \arg\min_{w} \mathfrak{S}^*(w) + \frac{1}{2\gamma} \|w - p\|^2$$

Moreau–Yosida regularization of $u \in \partial \mathfrak{G}^*(p)$

$$u = \frac{1}{\gamma} \left(p - \operatorname{prox}_{\gamma \mathfrak{S}^*}(p) \right) =: \partial \mathfrak{S}^*_{\gamma}(p)$$

■ single-valued, Lipschitz continuous, explicit ~→ semismooth

•
$$\partial \mathfrak{G}^*_{\gamma}(p) o \partial \mathfrak{G}^*(p)$$
 as $\gamma o 0$

For
$$\mathfrak{G}: L^2 \to \mathbb{IR}$$
, $\mathfrak{G}(u) = \int_{\Omega} g(u(x)) dx$

Approach:

- 1 compute Fenchel conjugate $g^*(q)$
- 2 compute subdifferential $\partial g^*(q)$
- 3 compute proximal mapping $\operatorname{prox}_{\gamma \partial q^*}(q)$
- 4 compute Moreau–Yosida regularization $\partial g_{\gamma}^{*}(q)$
- 5 \rightsquigarrow semismooth Newton method, continuation in γ for superposition operator $\partial \mathcal{G}_{v}^{*}(p)(x) = \partial g_{v}^{*}(p(x))$

1 Overview

- 2 Approach
- 3 Switching control
 - Optimality system
 - Numerical solution
 - Examples

$$\min_{u \in L^2(D; \mathbb{R}^2)} \frac{1}{2} \|Su - z\|_Y^2 + \int_D \frac{\alpha}{2} (u_1(t)^2 + u_2(t)^2) + \beta |u_1(t)u_2(t)|_0 dt,$$

■ $S: L^2(D; \mathbb{R}^2) \to Y$, $Y = Y^*$ Hilbert space, $z \in Y$ target

• $\mathcal{F}(u) = \frac{1}{2} ||Su - z||_Y^2$ strictly convex, smooth, coercive

• Assumption: $S^*(Y) \hookrightarrow L^r(D; \mathbb{R}^2)$ with r > 2

• e.g., D = (0, T), $Y = L^2([0, T] \times \Omega)$, S(u) = y solution to $\partial_t y - Ay = \chi_{\omega_1}(x)u_1(t) + \chi_{\omega_2}(x)u_2(t)$

$$g: \mathbb{R}^2 \to \overline{\mathbb{R}}, \qquad v \mapsto rac{a}{2} \left(v_1^2 + v_2^2\right) + \beta |v_1 v_2|_0$$

 $g^*: \mathbb{R}^2 \to \overline{\mathbb{R}}, \qquad q \mapsto \sup_v q \cdot v - g(v)$

Case differentiation: sup attained at \bar{v} ,

$$g^*(q) = \begin{cases} g_1^*(q) \coloneqq \frac{1}{2a}q_1^2 & \text{if } \bar{v}_2 = 0\\ g_2^*(q) \coloneqq \frac{1}{2a}q_2^2 & \text{if } \bar{v}_1 = 0\\ g_0^*(q) \coloneqq \frac{1}{2a}\left(q_1^2 + q_2^2\right) - \beta & \text{if } \bar{v}_1, \bar{v}_2 \neq 0 \end{cases}$$

$$g: \mathbb{R}^2 o \overline{\mathbb{R}}, \qquad v \mapsto rac{lpha}{2} \left(v_1^2 + v_2^2\right) + eta |v_1 v_2|_0$$
 $g^*: \mathbb{R}^2 o \overline{\mathbb{R}}, \qquad q \mapsto \sup_v q \cdot v - g(v)$

Case differentiation: sup attained at \bar{v} ,

$$g^{*}(q) = \begin{cases} \frac{1}{2\alpha}q_{1}^{2} & \text{if } |q_{1}| \ge |q_{2}| \text{ and } |q_{2}| \le \sqrt{2\alpha\beta} \\ \frac{1}{2\alpha}q_{2}^{2} & \text{if } |q_{2}| \ge |q_{1}| \text{ and } |q_{1}| \le \sqrt{2\alpha\beta} \\ \frac{1}{2\alpha}(q_{1}^{2} + q_{2}^{2}) - \beta & \text{if } |q_{1}|, |q_{2}| \ge \sqrt{2\alpha\beta} \end{cases}$$

$$\partial g^*(q) = \overline{\operatorname{co}}\left(\bigcup_{\{i:g^*(q)=g^*_i(q)\}}\left\{(g^*_i)'(q)\right\}\right)$$

Six possible cases for $g^*(q) = g_i^*(q), i \in \{1, 2, 0\}$:

$$\partial g^{*}(q) = \begin{cases} \left(\left\{\frac{1}{a}q_{1}\right\}, \{0\}\right) & \text{if } q \in Q_{1} \\ \left(\left\{0\right\}, \left\{\frac{1}{a}q_{2}\right\}\right) & \text{if } q \in Q_{2} \\ \left(\left\{\frac{1}{a}q_{1}\right\}, \left\{\frac{1}{a}q_{2}\right\}\right) & \text{if } q \in Q_{0} \\ \left(\left\{\frac{1}{a}q_{1}\right\}, \left[0, \frac{1}{a}q_{2}\right]\right) & \text{if } q \in Q_{10} \\ \left(\left[0, \frac{1}{a}q_{1}\right], \left\{\frac{1}{a}q_{2}\right\}\right) & \text{if } q \in Q_{20} \\ \left\{\left(\frac{t}{a}q_{1}, \frac{1-t}{a}q_{2}\right): t \in [0, 1]\right\} & \text{if } q \in Q_{12} \end{cases}$$

$$\begin{cases} -\bar{p} = S^*(S\bar{u} - z) \\ \bar{u}(x) \in \partial g^*(\bar{p}(x)) & \text{a.e. in } D \end{cases}$$

Structure of solution: $D = A \cup J \cup S$,

- switching arc $\mathcal{A} = \left\{ x \in D : \bar{p}(x) \in Q_1 \cup Q_2 \cup \{(0,0)\} \right\}$
- free arc $J = \left\{ x \in D : \bar{p}(x) \in Q_0 \cup Q_{10} \cup Q_{20} \right\}, \\
 \partial J = \left\{ x \in D : \bar{p}(x) \in Q_{10} \cup Q_{20} \right\} \\
 singular arc
 <math display="block">
 S = \left\{ x \in D : \bar{p}(x) \in Q_{12} \setminus \{(0,0)\} \right\}$

Structure of solution: $D = A \cup J \cup S$,

- switching arc $\mathcal{A} = \left\{ x \in D : \bar{p}(x) \in Q_1 \cup Q_2 \cup \{(0,0)\} \right\}$
- free arc $\mathcal{I} = \{ x \in D : \bar{p}(x) \in Q_0 \cup Q_{10} \cup Q_{20} \}, \\ \partial \mathcal{I} = \{ x \in D : \bar{p}(x) \in Q_{10} \cup Q_{20} \}$
- singular arc $S = \left\{ x \in D : \bar{p}(x) \in Q_{12} \setminus \{(0,0)\} \right\}$

Suboptimality

$$\mathcal{J}(\bar{u}) \leq \mathcal{J}(u) + \beta \left(|\partial \mathcal{I}| + 2|S| \right)$$
 for all u

Suboptimality

$$\mathcal{J}(\bar{u}) \leq \mathcal{J}(u) + \beta \left(|\partial \mathcal{I}| + 2|\mathcal{S}| \right)$$
 for all u

• free arc
$$\mathbb{J}_{\beta} = \left\{ x \in D : |\bar{p}_1(x)|, |\bar{p}_2(x)| \ge \sqrt{2\alpha\beta} \right\}$$

•
$$|\partial \mathfrak{I}_{\beta}| < |\mathfrak{I}_{\beta}| \rightarrow 0 \text{ as } \beta \rightarrow \infty$$

If \bar{p} bounded, $|\mathcal{I}_{\beta}| = 0$ for β sufficiently large

singular arc $S_{\beta} = \{x \in D : |\bar{p}_1(x)| = |\bar{p}_2(x)| > 0\}$

• \rightarrow switching control $\bar{u}_1(x)\bar{u}_2(x) = 0$ a. e. optimal

Replace set-valued ∂g^* by Moreau–Yosida regularization

$$\begin{cases} p_{\gamma} = S^*(z - Su_{\gamma}) \\ u_{\gamma}(x) \in (\partial g^*)_{\gamma}(p_{\gamma}(x)) = \frac{1}{\gamma} \left(p_{\gamma}(x) - \operatorname{prox}_{\gamma g^*}(p_{\gamma}(x)) \right) \end{cases}$$

Proximal point mapping / resolvent

$$w := \operatorname{prox}_{\gamma q^*}(q) = (\operatorname{Id} + \gamma \partial g^*)^{-1}(q)$$

Solve for *w* in $v \in w + \gamma \partial g^*(w)$, case distinction

Moreau-Yosida regularization

$$(\partial g^{*})_{\gamma}(q) = \begin{cases} \left(\frac{1}{a+\gamma}q_{1},0\right) & \text{if } q \in Q_{1}^{\gamma} \\ \left(0,\frac{1}{a+\gamma}q_{2}\right) & \text{if } q \in Q_{2}^{\gamma} \\ \left(\frac{1}{a+\gamma}q_{1},\frac{1}{a+\gamma}q_{2}\right) & \text{if } q \in Q_{0}^{\gamma} \\ \left(\frac{1}{a+\gamma}q_{1},\frac{1}{\gamma}\left(q_{2}-\operatorname{sign}(q_{2})\sqrt{2a\beta}\right)\right) & \text{if } q \in Q_{10}^{\gamma} \\ \left(\frac{1}{\gamma}\left(q_{1}-\operatorname{sign}(q_{1})\sqrt{2a\beta}\right),\frac{1}{a+\gamma}q_{2}\right) & \text{if } q \in Q_{20}^{\gamma} \\ \left(\frac{1}{\gamma}\left(q_{2}-\operatorname{sign}(q_{2})\sqrt{2a\beta}\right)\right) & \text{if } q \in Q_{20}^{\gamma} \\ \left(\frac{1}{\gamma}\left(q_{2}-\operatorname{sign}(q_{2})\sqrt{2a\beta}\right)\right) & \text{if } q \in Q_{00}^{\gamma} \\ \left(\frac{1}{\gamma}\left(\frac{a+\gamma}{2a+\gamma}q_{1}-\operatorname{sign}(q_{1})\frac{a}{2a+\gamma}|q_{2}|\right), \\ \frac{1}{\gamma}\left(\frac{a+\gamma}{2a+\gamma}q_{2}-\operatorname{sign}(q_{2})\frac{a}{2a+\gamma}|q_{1}|\right)\right) & \text{if } q \in Q_{12}^{\gamma} \end{cases}$$

UNIVERSITÄT

D U I S B U R G E S S E N

Moreau-Yosida regularization: sketch

$$\begin{cases} p_{\gamma} = S^*(z - Su_{\gamma}) \\ u_{\gamma} \in (\partial \mathcal{G}^*)_{\gamma}(p_{\gamma}) \end{cases}$$

■ $(\partial \mathcal{G}^*)_{\gamma}$ maximal monotone \rightsquigarrow unique solution (u_{γ}, p_{γ})

- weak convergence $(u_{\gamma}, p_{\gamma}) \rightarrow (\bar{u}, \bar{p})$ as $\gamma \rightarrow 0$
- $(\partial \mathcal{G}^*)_{\gamma}$ Lipschitz continuous, piecewise C^1 , norm gap
- \rightsquigarrow semismooth Newton method, continuation in $\gamma \rightarrow 0$
- vector penalty (Q_{12}^{γ}) : needs line search (based on residual norm)

Numerical example

Domain
$$\Omega = [0, 1]^2$$
, $D = [0, 1]$,

$$\omega_1 = \left\{ (x_1, x_2) \in \Omega : x_2 < \frac{1}{4} \right\}$$
$$\omega_2 = \left\{ (x_1, x_2) \in \Omega : x_2 > \frac{3}{4} \right\}$$

Elliptic example: S(u) = y solves

$$-\Delta y = \chi_{\omega_1}(x_1, x_2)u_1(x_1) + \chi_{\omega_2}(x_1, x_2)u_2(x_1).$$

Target

$$z(x) = x_1 \sin(2\pi x_1) \sin(2\pi x_2),$$

Numerical example: target

(d) $\alpha = 10^{-5}, \beta = 10^{-8}$

(Non)convex relaxation of discrete control problem:

- well-posed primal-dual optimality system
- amenable to semismooth Newton method
- efficient numerical solution of switching problems

Outlook:

- generalized switching (at most *d* out of *m* active)
- nonlinear control-to-state mapping
- other hybrid discrete-continuous problems

Preprint, MATLAB codes:

http://www.uni-due.de/mathematik/agclason/clason_pub.php