

A primal-dual extragradient method for nonsmooth nonlinear inverse problems for PDEs

Christian Clason¹ Tuomo Valkonen²

¹Faculty of Mathematics, Universität Duisburg-Essen ²Department of Applied Mathematics and Theoretical Physics, University of Cambridge

International Conference on Inverse Problems, Imaging, and Applications Zhejiang University, Hangzhou, August 7, 2015

Motivation

Primal-dual extragradient method:

- first-order algorithm for nonsmooth convex problems with linear operators [Chambolle/Pock 2011]
- very popular in imaging (TV denoising, deblurring, ...)
- **acceleration** (Nesterov, $O(1/k^2)$ convergence)
- version for nonlinear operators [Valkonen 2014]

Here:

- in function space
- Approximation of the second state of the se

Difficulty:

 convergence proof requires set-valued analysis in infinite-dimensional spaces

Model problems

L¹-fitting

$$\min_{u} \|S(u) - y^{\delta}\|_{L^{1}} + \frac{\alpha}{2} \|u\|_{L^{2}}^{2}$$

$$L^{\infty}$$
-fitting/Morozov

$$\min_{u} \frac{\alpha}{2} \|u\|_{L^2}^2 \quad \text{s.t.} \quad |S(u)(x) - y^{\delta}(x)| \leq \delta \quad \text{a.e. in } \Omega$$

 $S: U \subset L^2(\Omega) \to L^2(\Omega), \quad S(u) =: y \text{ satisfies}$

$$\begin{cases} -\Delta y + uy = f \\ \partial_v y = 0 \end{cases}$$

1 Overview

- 2 Algorithm
- 3 Set-valued analysis
- Application to parameter identification
 L¹ fitting
 - $\blacksquare L^{\infty}$ fitting
- 5 Numerical examples

- $F: Y \to \overline{\mathbb{R}}, G: X \to \overline{\mathbb{R}}$ convex, lower semicontinuous
- X, Y Hilbert spaces
- $K \in C^2(X, Y)$ (here: $K(u) = S(u) y^{\delta}$)
- saddle point formulation:

 $\min_{u\in X}\sup_{v\in Y^*}G(u)+\left\langle K(u),v\right\rangle -F^*(v)$

•
$$F^*: Y^* \to \overline{\mathbb{R}}$$
 Fenchel conjugate

K linear:

$$\begin{cases} u^{k+1} = \operatorname{prox}_{\tau G}(u^{k} - \tau K^{*}v^{k}) \\ \bar{u}^{k+1} = 2u^{k+1} - u^{k} \\ v^{k+1} = \operatorname{prox}_{\sigma F^{*}}(v^{k} + \sigma K \bar{u}^{k+1}) \end{cases}$$

•
$$\sigma, \tau$$
 step sizes, $\sigma \tau < ||K||^{-2}$
• $\operatorname{prox}_{\sigma F}(v) = \arg\min_{u} \frac{1}{2\sigma} ||u - v||^{2} + F(u)$ proximal mapping

K nonlinear:

$$\begin{cases} u^{k+1} = \operatorname{prox}_{\tau G}(u^{k} - \tau K'(u^{k})^{*}v^{k}) \\ \bar{u}^{k+1} = 2u^{k+1} - u^{k} \\ v^{k+1} = \operatorname{prox}_{\sigma F^{*}}(v^{k} + \sigma K(\bar{u}^{k+1})) \end{cases}$$

•
$$\sigma, \tau$$
 step sizes, $\sigma \tau < \sup_{u \in B_R} ||K'(u)||^{-2}$
• $\operatorname{prox}_{\sigma F}(v) = \arg\min_{u} \frac{1}{2\sigma} ||u - v||^2 + F(u)$ proximal mapping
• $K'(u)$ Fréchet derivative, $K'(u)^*$ adjoint

Algorithm

K nonlinear, accelerated:

$$\begin{cases} u^{k+1} = \operatorname{prox}_{\tau_k G}(u^k - \tau^k K'(u^k)^* v^k) \\ \omega_k = 1/\sqrt{1 + 2c\tau^k} \quad \tau^{k+1} = \omega_k \tau^k \quad \sigma_{k+1} = \sigma_k / \omega_k \\ \bar{u}^{k+1} = u^{k+1} + \omega_k (u^{k+1} - u^k) \\ v^{k+1} = \operatorname{prox}_{\sigma_{k+1} F^*}(v^k + \sigma_{k+1} K(\bar{u}^{k+1})) \end{cases}$$

$$\sigma, \tau$$
 step sizes, $\sigma_0 \tau_0 < \sup_{u \in B_R} \|K'(u)\|^{-2}$

■ prox_{$$\sigma F$$}(v) = arg min $\frac{1}{2\sigma} ||u - v||^2 + F(u)$ proximal mapping

■ K'(u) Fréchet derivative, $K'(u)^*$ adjoint

c \geq 0 acceleration parameter

Theorem

Iterates converge locally to saddle point (\bar{u}, \bar{v}) if

- 1 *G* is c_G -strongly convex (here: $c_G = \alpha$)
- $c \in [0, c_G)$, $c = c_n = 0$ for n > N ∈ IN (finite acceleration)
- 3 metric regularity around saddle point

(cf. [Valkonen 2014])

Difficulty:

- metric regularity in function spaces
- requires infinite-dimensional set-valued analysis
- here: only rough outline, no details!

1 Overview

2 Algorithm

3 Set-valued analysis

- Application to parameter identification
 L¹ fitting
 - L^{∞} fitting

5 Numerical examples

Saddle-point problem

$$\min_{u \in X} \sup_{v \in Y^*} G(u) + \langle K(u), v \rangle - F^*(v)$$

Primal-dual optimality conditions

 $\left\{egin{array}{l} {\cal K}(ar u)\in \partial {\cal F}^*(ar v)\ -{\cal K}'(ar u)^*ar v\in \partial {\cal G}(ar u) \end{array}
ight.$

 $\partial G(u) = \{x^* \in X : \langle x^*, \tilde{x} - x \rangle \leqslant G(\tilde{x}) - G(x)\}$ convex subdifferential

Primal-dual optimality conditions

 $\left\{egin{array}{l} {\cal K}(ar u)\in \partial {\cal F}^*(ar v)\ -{\cal K}'(ar u)^*ar v\in \partial {\cal G}(ar u) \end{array}
ight.$

Set inclusion for $H : L^2(\Omega)^2 \Longrightarrow L^2(\Omega)^2$ $0 \in H_{\bar{u}}(\bar{u}, \bar{v}) \coloneqq \begin{pmatrix} \partial G(\bar{u}) + K'(\bar{u})^* \bar{v} \\ \partial F^*(\bar{v}) - K(\bar{u}) \end{pmatrix}$

Metric regularity

Set inclusion for
$$H: L^2(\Omega)^2 \Longrightarrow L^2(\Omega)^2$$

$$0 \in H_{\bar{u}}(\bar{u},\bar{v}) \coloneqq \begin{pmatrix} \partial G(\bar{u}) + K'(\bar{u})^* \bar{v} \\ \partial F^*(\bar{v}) - K(\bar{u}) \end{pmatrix}$$

Metric regularity at (\bar{u}, \bar{v})

$$\inf_{q: w \in H_{\bar{u}}(q)} \|q - (\bar{u}, \bar{v})\| \leqslant L \|w\| \quad \text{for all } \|w\| \leqslant \rho$$

■ interpretation: small perturbation *w* of 0 ⇒ small perturbation *q* of saddle point (\bar{u}, \bar{v})

Lipschitz property for set-valued $H_{\bar{u}}^{-1}$ at $((\bar{u}, \bar{v}), 0)$

Metric regularity:

- related to graphical derivative of $H : L^2(\Omega)^2 \Longrightarrow L^2(\Omega)^2$
- set-valued analysis in infinite dimensions
- difficulties compared to finite dimensions:
 - 1 multiple non-equivalent concepts (Fréchet, Mordukhovich)
 - 2 calculus not tight

Here:

- set-valued mapping subdifferential of pointwise functionals
- vinfinite-dimensional (Fréchet) derivatives pointwise via nice finite-dimensional (Fréchet, graphical) derivatives
- cf. pointwise Fenchel conjugates, subdifferentials [Ekeland]

$$F(u) = \int_{\Omega} f(u(x)) dx, \qquad f(z) = \frac{1}{2}z^2, \qquad \partial f(z) = \{z\}$$

■ Fréchet derivative of ∂f

~

$$D(\partial f)(z|\zeta)(\Delta z) = \begin{cases} \Delta z & \zeta = z \\ \emptyset & \text{otherwise} \end{cases}$$

• \rightsquigarrow Fréchet derivative of ∂F

 $\left[D(\partial F)(u|\xi)(\Delta u)\right](x) = D\left(\partial f\left(u(x)|\xi(x)\right)\right)(\Delta u(x)) = \Delta u(x)$

Fréchet coderivative of ∂F

 $\widehat{D}^*(\partial F)(u\big|\xi)(\Delta\xi) = [D(\partial F)(u\big|\xi)]^{*+}(\Delta\xi) = \Delta\xi$

$$F(u) = \int_{\Omega} f(u(x)) \, dx, \qquad f(z) = \iota_{[-1,1]}(z) = \begin{cases} 0 & |z| \leq 1 \\ \infty & |z| > 1 \end{cases}$$

■ Fréchet derivative of ∂*f*

$$D(\partial f)(z|\zeta)(\Delta z) = \begin{cases} \{0\} & |z| < 1, \ \zeta = 0\\ [0,\infty)z & |z| = 1, \ \zeta = 0, \ z\Delta z \leqslant 0\\ IR & |z| = 1, \ \zeta \in (0,\infty), \ z\Delta z = 0\\ \emptyset & \text{otherwise} \end{cases}$$

Fréchet derivative of ∂F

$$D[\partial F](v|\eta)(\Delta v) = \begin{cases} V_{\partial F}(v|\eta)^{\perp} & \Delta v \in V_{\partial F}(v|\eta) \text{ and } \eta \in \partial F(v) \\ \emptyset & \text{otherwise} \end{cases}$$

 $V_{\partial F}(v|\eta) = \left\{ z \in L^2(\Omega) \mid z(x) = 0 \text{ if } |v(x)| = 1, \ x \in \Omega \right\}$

$$F(u) = \int_{\Omega} f(u(x)) \, dx, \qquad f(z) = |z|, \qquad \partial f(z) = \operatorname{sign}(z)$$

■ Fréchet derivative of ∂*f*

c

$$D(\partial f)(z|\zeta)(\Delta z) = \begin{cases} \{0\} & z \neq 0, \ \zeta = \operatorname{sign} z \\ \{0\} & z = 0, \ \Delta z \neq 0, \ \zeta |\Delta z| = \Delta z \\ (-\infty, 0]\zeta & z = 0, \ \Delta z = 0, \ |\zeta| = 1 \\ \operatorname{IR} & z = 0, \ \Delta z = 0, \ |\zeta| < 1 \\ \emptyset & \text{otherwise} \end{cases}$$

• \rightsquigarrow Fréchet derivative of ∂F

$$D[\partial F](v|\eta)(\Delta v) = \begin{cases} V_{\partial F}(v|\eta)^{\perp} & \Delta v \in V_{\partial F}(v|\eta) \text{ and } \eta \in \partial F(v) \\ \emptyset & \text{otherwise} \end{cases}$$

 $V_{\partial F}(v|\eta) = \left\{ z \in L^2(\Omega) \mid z(x) = 0 \text{ if } v(x) = 0, \ x \in \Omega \right\}$

1 Overview

- 2 Algorithm
- 3 Set-valued analysis
- Application to parameter identification
 L¹ fitting
 L[∞] fitting
- 5 Numerical examples

Primal-dual optimality conditions

$$\begin{cases} S(\bar{u}) - y^{\delta} \in \partial F^*(\bar{v}) \\ -S'(\bar{u})^* \bar{v} = \alpha \bar{u} \end{cases}$$

Metric regularity around (\bar{u}, \bar{v}) if either

$$\sup_{t>0} \inf \left\{ \frac{\|S'(\bar{u})S'(\bar{u})^* z - v\|}{\|z\|} \ \Big| \ (z,v) \in V^t_{\partial F^*}(\bar{v}|y^{\delta} - S(\bar{u})), \ z \neq 0 \right\} > 0$$

- 2 Moreau–Yosida regularization: $F^* \mapsto F^*_{\gamma} := F^* + \frac{\gamma}{2} \| \cdot \|^2$
- 3 finite-dimensional data: $Y \mapsto Y_h$

In case 1: $||S'(\bar{u})^*z|| \ge c||z||$ for $z \in V_{\partial F^*}^t(\bar{v}|y^{\delta} - S(\bar{u}))$ necessary!

L¹ fitting

$$\min_{u} \|S(u) - y^{\delta}\|_{L^{1}} + \frac{\alpha}{2} \|u\|_{L^{2}}^{2}$$

•
$$F(y) = \int_{\Omega} |y(x)| dx \quad \rightsquigarrow \quad f^* = \delta_{[-1,1]}(z)$$

• $S: U \subset L^2(\Omega) \to L^2(\Omega), \quad S(u) =: y \text{ satisfies}$
 $\int -\Delta y + uy = f$

$$\partial_v y = 0$$

Overview Algorithm Set-valued analysis Application to PDEs Numerical examples

L¹ fitting: algorithm

$$\begin{cases} z^{k+1} = S'(u^{k})^{*}v^{k} \\ u^{k+1} = \frac{1}{1 + \tau_{k}\alpha}(u^{k} - \tau_{k}z^{k+1}) \\ \omega_{k} = 1/\sqrt{1 + 2c\tau_{k}} \quad \tau_{k+1} = \omega_{k}\tau_{k} \quad \sigma_{k+1} = \sigma_{k}/\omega_{k} \\ \bar{u}^{k+1} = u^{k+1} + \omega_{k}(u^{k+1} - u^{k}) \\ v^{k+1} = \operatorname{proj}_{[-1,1]} \left(\frac{1}{1 + \sigma_{k+1}\gamma}(v^{k} + \sigma_{k+1}(S(\bar{u}^{k+1}) - y^{\delta})) \right) \end{cases}$$

- $S'(u^k)^*v^k$ solution of adjoint equation
- proj_C pointwise projection on convex set $C \subset \mathbb{R}$
- **•** Moreau–Yosida parameter $\gamma \ge 0$
- local convergence if $\gamma > 0$ or finite-dimensional

Here: $z \in V_{\partial F^*}^t(v|\eta)$ if

$$z(x) \in \begin{cases} \{0\} & |v'(x)| = 1 \text{ and } \eta'(x) \neq 0 \\ -\operatorname{sign} v'(x)[0,\infty) & |v'(x)| = 1 \text{ and } \eta'(x) = 0 \\ |\mathbb{R} & |v'(x)| < 1 \text{ and } \eta'(x) = 0 \end{cases}$$

for some $\|v' - \bar{v}\| \leqslant t$, $\|\eta' - \bar{\eta}\| \leqslant t$

■ S compact operator: $||S'(\bar{u})^*z|| \ge c||z||$ only holds for z = 0

$$\quad \ \ \, \bar{\eta}=S(\bar{u})-y^{\delta}, \quad \bar{v}\in \operatorname{sign}\bar{\eta}$$

··· in general not satisfied!

$$\min_{u} \frac{\alpha}{2} \|u\|_{L^2}^2 \quad \text{s.t.} \quad |S(u)(x) - y^{\delta}(x)| \leq \delta \quad \text{a.e. in } \Omega$$

$$\bullet F(y) = \delta_{\{|y(x)| \leq \delta\}}(y) \quad \rightsquigarrow \quad f^* = \delta |z|$$

S:
$$U \subset L^2(\Omega) \rightarrow L^2(\Omega)$$
, $S(u) =: y$ satisfies

$$\begin{cases} -\Delta y + uy = f \\ \partial_v y = 0 \end{cases}$$

L^{∞} fitting: algorithm

$$\begin{cases} z^{k+1} = S'(u^k)^* v^k \\ u^{k+1} = \frac{1}{1 + \tau_k \alpha} (u^k - \tau_k z^{k+1}) \\ \omega_k = 1/\sqrt{1 + 2c\tau_k} \quad \tau_{k+1} = \omega_k \tau_k \quad \sigma_{k+1} = \sigma_k / \omega_k \\ \bar{u}^{k+1} = u^{k+1} + \omega_k (u^{k+1} - u^k) \\ \bar{v}^{k+1} = v^k + \sigma_{k+1} (S(\bar{u}^{k+1}) - y^{\delta}) \\ v^{k+1} = \frac{1}{1 + \sigma_{k+1} \gamma} (|\bar{v}^{k+1}| - \delta \sigma)^+ \operatorname{sign}(\bar{v}^{k+1}) \end{cases}$$

local convergence if γ > 0 or finite-dimensional
 for t = 0: z(x) = 0 if |S(ū)(x) - y^δ(x)| < δ → estimate unlikely

1 Overview

- 2 Algorithm
- 3 Set-valued analysis
- Application to parameter identification
 L¹ fitting
 - L^{∞} fitting

5 Numerical examples

L¹ fitting

- $\Omega = [-1, 1]$, FE ($P_1 P_0$) discretization, N = 1000 nodes
- random impulsive noise:

$$y^{\delta}(x) = \begin{cases} y^{\dagger}(x) + \|y^{\dagger}\|_{\infty}\xi(x) & \text{with probability 0.3} \\ y^{\dagger}(x) & \text{else} \end{cases}$$

$$y^{\dagger}=S(u^{\dagger}), \quad \xi(x)\in \mathcal{N}(0,0.1)$$

•
$$\gamma = 10^{-12}, c = a = 10^{-2}, \sigma = 2, \tau = 3.5$$

• $u^0 \equiv 1, v^0 = 0$ (no warmstart!)

1000 iterations

L¹ fitting: data

UNIVERSITAT D_U I S_B_U R_G E S S E N Open-Minded

L¹ fitting: reconstruction

UNIVERSITÄT D_U I S_B_U R G E S S E N Open-Minded

L¹ fitting: functional value

•
$$\Omega = [-1, 1]$$
, FE ($P_1 - P_0$) discretization, $N = 1000$ nodes

quantization noise:

round y^{\dagger} to $n_b = 11$ equidistant values

•
$$\gamma = 10^{-12}, c = a = 10^{-3}, \sigma = 2, \tau = 3$$

•
$$u^0 \equiv 1, v^0 = 0$$
 (no warmstart!)

1000 iterations

L^{∞} fitting: reconstruction

UNIVERSITAT D_U I_S_B_U R G E_S_S_E_N

L^{∞} fitting: functional value

UNIVERSITÄT

- can be accelerated
- analyzed using pointwise set-valued analysis
- requires Moreau–Yosida regularization
- does not require norm gap, continuation

Outlook:

- full acceleration
- partial stability (w.r.t. primal variable only)
- other PDE-constrained optimization problems
- pointwise set-valued analysis for bilevel problems