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Motivation: robust optimization

optimal control problem




min
𝑢∈𝑈ad

1
2
∥ 𝑦 − 𝑦𝑑∥2 + 𝛾

2
∥𝑢∥2

−div(𝑎grad 𝑦) = 𝑢 + 𝑓 in Ω

𝑦 = 𝑔 in 𝜕Ω

uncertain data, target{ parametrized optimal control problem

objective value random{ minimize expectation

expectation undervalues expensive but rare events

{ replace expectation with risk-averse measure
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Motivation: robust optimization

random optimal control problem




min
𝑢∈𝑈ad

1
2
∥ 𝑦(𝜉) − 𝑦𝑑(𝜉)∥2 + 𝛾

2
∥𝑢∥2

−div(𝑎(𝜉) grad 𝑦) = 𝑢 + 𝑓 (𝜉) in Ω

𝑦 = 𝑔(𝜉) in 𝜕Ω

uncertain data, target{ parametrized optimal control problem

objective value random{ minimize expectation

expectation undervalues expensive but rare events

{ replace expectation with risk-averse measure
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Motivation: robust optimization

random optimal control problem



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𝔼

[
1
2
∥ 𝑦(𝜉) − 𝑦𝑑(𝜉)∥2

]
+ 𝛾

2
∥𝑢∥2

−div(𝑎(𝜉) grad 𝑦) = 𝑢 + 𝑓 (𝜉) in Ω

𝑦 = 𝑔(𝜉) in 𝜕Ω

uncertain data, target{ parametrized optimal control problem

objective value random{ minimize expectation

expectation undervalues expensive but rare events

{ replace expectation with risk-averse measure
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Motivation: robust optimization

risk-averse optimal control problem




min
𝑢∈𝑈ad

R
[

1
2
∥ 𝑦(𝜉) − 𝑦𝑑(𝜉)∥2

]
+ 𝛾

2
∥𝑢∥2

−div(𝑎(𝜉) grad 𝑦) = 𝑢 + 𝑓 (𝜉) in Ω

𝑦 = 𝑔(𝜉) in 𝜕Ω

uncertain data, target{ parametrized optimal control problem

objective value random{ minimize expectation

expectation undervalues expensive but rare events

{ replace expectation with risk-averse measure
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Motivation: risk measure

risk-averse control problem

min
𝑢∈𝑈ad

R[ 𝐽 (𝑢, 𝜉)]

Goal:

minimize 𝐽 (𝑢, 𝜉) for almost all 𝜉

w.l.o.g. 𝐽 (𝑢, 𝜉) ≤ 0 for almost all 𝜉 (almost sure constraints)

infeasible{ ℙ[ 𝐽 (𝑢, 𝜉) > 0] ≤ 𝛼 (probabilistic constraints)

nonconvex{ find convex dominating risk measure
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Motivation: risk measure

Goal: convex majorant for ℙ[𝑍 > 0] ≤ 𝛼

Idea:

VaR𝛼 [𝑍] := inf {𝑡 > 0 : ℙ[𝑍 ≤ 𝑡] ≥ 1 − 𝛼} = inf {𝑡 > 0 : ℙ[𝑍 > 𝑡] ≤ 𝛼}

Value-at-Risk: largest objective that can occur with probability 1 − 𝛼

{ ℙ[𝑍 > 0] ≤ 𝛼 iff VaR𝛼 [𝑍] ≤ 0

ℙ[𝑍 > 0] = 𝔼[𝟙(0,∞) (𝑍)] (expectation of characteristic function)

still not convex. . .

{ replace characteristic function by piecewise linear function
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Motivation: risk measure

Goal: convex majorant for ℙ[𝑍 > 0] ≤ 𝛼

For any 𝛾 > 0,

ℙ[𝑍 > 0] = 𝔼
[
𝟙(0,∞) (𝑍)

] ≤ 𝔼 [max{0, 1 + 𝛾𝑍}] = 𝛾𝔼
[
max{0, 𝛾−1 + 𝑍}]

Then:
inf
𝛾>0

𝛾𝔼
[
max{0, 𝛾−1 + 𝑍}] − 𝛼 ≤ 0

implies VaR𝛼 [𝑍] ≤ 0 and ℙ[𝑍 > 0] ≤ 𝛼 (inf not larger than 0)

Equivalent:
inf
𝑡<0

𝑡 + 𝛼−1𝔼 [max{0, 𝑍 − 𝑡}] ≤ 0

Note: 𝑡 > 0 implies 𝑡 + 𝛼−1𝔼 [max{0, 𝑍 − 𝑡}] ≥ 𝑡 > 0
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Motivation: risk measure

Goal: convex majorant for ℙ[𝑍 > 0] ≤ 𝛼

Conditional Value-at-Risk

CVaR𝛼 [𝑍] := inf
𝑡∈ℝ

𝑡 + 𝛼−1𝔼 [max{0, 𝑍 − 𝑡}]

for 𝛼 → 0, CVaR𝛼 [𝑍] ≤ 0 → 𝑍 ⪯ 0 almost surely (formally)

{ risk-averse control problem

min
𝑢∈𝑈ad

CVaR𝛼 [ 𝐽 (𝑢, 𝜉)]

Goal: efficient numerical methods
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Convex risk measures

Notation:

probability space (Ξ,A,ℙ)
random variable 𝑍 ∈ 𝐿𝑝(Ξ), 1 ≤ 𝑝 < ∞ (w.r.t. measure ℙ)

R : 𝐿𝑝(Ξ) → ℝ := ℝ ∪ {+∞} convex risk measure if

1 convex

2 monotone: R(𝑍) ≥ R(𝑍′) if 𝑍 ⪰ 𝑍′

3 translation invariant: R(𝑍 + 𝑎) = R(𝑍) + 𝑎 for 𝑎 ∈ ℝ and 𝑍 ∈ 𝐿𝑝(Ξ)

R : 𝐿𝑝(Ξ) → ℝ := ℝ ∪ {+∞} coherent risk measure if also

4 positively homogeneous: R(𝑡𝑍) = 𝑡R(𝑍) for 𝑡 > 0 and 𝑍 ∈ 𝐿𝑝(Ξ)

⇒ R(0) = 0 and R(𝑎) = 𝑎
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Convex risk measures: dual characterization

R : 𝐿𝑝(Ξ) → ℝ proper, convex, lsc

R∗ : 𝐿𝑞(Ξ) → ℝ Fenchel conjugate

Π := domR∗ risk envelope

Then:

monotone iff 𝑍∗ ⪰ 0 for all 𝑍∗ ∈ Π

translation invariant iff 𝔼[𝑍∗] = 1 for all 𝑍∗ ∈ Π

positively homogeneous iff

R(𝑍) = sup
𝑍∗∈dom R∗

⟨𝑍∗, 𝑍⟩𝐿𝑝 (Ξ) = sup
𝑍∗∈dom R∗

𝔼[𝑍∗𝑍]

{ R coherent implies

Π ⊆ Δ𝑞 := {𝑍∗ ∈ 𝐿𝑞(Ξ) : 𝔼[𝑍∗] = 1, 𝑍∗ ⪰ 0}
R∗ = 𝛿Π
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Convex risk measures: examples

1 R[𝑍] = 𝔼[𝑍] is coherent with risk envelope

Π := {𝑍∗ ∈ 𝐿∞(Ξ) : 𝑍∗(𝜉) = 1 almost surely}

2 R[𝑍] = ess sup𝜉∈Ξ 𝑍(𝜉) is coherent with risk envelope

Π := {𝑍∗ ∈ 𝐿∞(Ξ) : 𝑍∗ ⪰ 0,𝔼[𝑍∗] = 1}

3 R[𝑍] = CVaR𝛼 [𝑍] is coherent with risk envelope

Π :=
{
𝑍∗ ∈ 𝐿∞(Ξ) : 0 ⪯ 𝑍∗ ⪯ 𝛼−1,𝔼[𝑍∗] = 1

}
(truncated Gibbs simplex)
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Convex risk measures: optimality conditions

R : 𝐿𝑝(Ξ) → ℝ coherent risk measure

𝜕R(𝑍) = arg max
𝑍∗∈Π

⟨𝑍∗, 𝑍⟩𝐿𝑝 (Ξ)

{ subdifferential weighted expectation

𝐽 (𝑢, 𝜉) continuously differentiable for almost every 𝜉 ∈ Ξ

Solution 𝑢̄ ∈ 𝑈ad to min𝑢∈𝑈ad R[ 𝐽 (𝑢, 𝜉)] satisfies



𝑍∗ ∈ 𝜕R[ 𝐽 (𝑢̄, 𝜉)]
𝑝̄ = 𝐽′ (𝑢̄; ·) almost surely,

0 ∈ 𝔼[𝑝̄𝑍∗] + 𝑁𝑈ad (𝑢̄)
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Convex risk measures: optimality conditions

R : 𝐿𝑝(Ξ) → ℝ coherent risk measure

𝐽 (𝑢, 𝜉) continuously differentiable for almost every 𝜉 ∈ Ξ

Solution 𝑢̄ ∈ 𝑈ad to min𝑢∈𝑈ad R[ 𝐽 (𝑢, 𝜉)] satisfies



𝑍∗ ∈ 𝜕R[ 𝐽 (𝑢̄, 𝜉)]
𝑝̄ = 𝐽′ (𝑢̄; ·) almost surely,

0 ∈ 𝔼[𝑝̄𝑍∗] + 𝑁𝑈ad (𝑢̄)

(𝑢̄, 𝑍∗) is saddle point of

min
𝑢∈𝑈ad

sup
𝑍∗∈Π

𝔼 [ 𝐽 (𝑢, 𝜉)𝑍∗(𝜉)]
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Primal-dual proximal splitting

Saddle point problem

min
𝑢∈𝑈ad

sup
𝑍∈Π

𝔼 [ 𝐽 (𝑢, 𝜉)𝑍(𝜉)]

Algorithm

𝑢𝑘+1 = proj𝑈ad
𝑢𝑘 − 𝜏𝑘 𝐽

′ (𝑢𝑘)∗𝑍𝑘
𝑍𝑘+1 = projΠ (𝑍𝑘 + 𝜎𝑘 𝐽 (𝑢𝑘+1))

𝜎𝑘, 𝜏𝑘 > 0 step sizes

alternating direction minimization (not always convergent)
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Primal-dual proximal splitting

Saddle point problem

min
𝑢∈𝑈ad

sup
𝑍∈Π

𝔼 [ 𝐽 (𝑢, 𝜉)𝑍(𝜉)]

Algorithm

𝑢𝑘+1 = proj𝑈ad
𝑢𝑘 − 𝜏𝑘 𝐽

′ (𝑢𝑘)∗𝑍𝑘
𝑢̂𝑘+1 = 2𝑢𝑘+1 − 𝑢𝑘

𝑍𝑘+1 = projΠ (𝑍𝑘 + 𝜎𝑘 𝐽 (𝑢̂𝑘+1))

𝜎𝑘, 𝜏𝑘 > 0 step sizes

primal-dual proximal splitting (proximal point method for (𝑢, 𝑍))
problem: 𝐽 (𝑢𝑘), 𝐽′ (𝑢𝑘) ∈ 𝐿𝑝(Ξ) (scenarios if Ξ finite)
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Primal-dual proximal splitting: stochastic optimization

Goal: efficient algorithm for stochastic optimal control

Idea 1: dual-primal proximal splitting

𝑍𝑘+1 = projΠ (𝑍𝑘 + 𝜎𝑘 𝐽 (𝑢𝑘))
𝑍̂𝑘+1 = 2𝑍𝑘+1 − 𝑍𝑘,

𝑢𝑘+1 = proj𝑈ad
𝑢𝑘 − 𝜏𝑘 𝐽

′ (𝑢𝑘)∗𝑍̂𝑘+1

{ reuse state equation solves for 𝐽′ (𝑢𝑘, 𝜉)

Idea 2: mini-batch updates only for subset 𝐴𝑘 ∈ A

𝐽 (𝑢) { 𝐽𝑘 (𝑢) := 𝟙𝐴𝑘 𝐽 (𝑢) + (1 − 𝟙𝐴𝑘 ) 𝐽𝑘−1(𝑢𝑘−1)
𝐽′ (𝑢)∗ { 𝐽′𝑘 (𝑢)∗ := 𝐽′ (𝑢)∗ ◦ 𝟙𝐴𝑘 + 𝐽′𝑘−1(𝑢𝑘−1)∗ ◦ (1 − 𝟙𝐴𝑘 )
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Primal-dual proximal splitting: convergence

Analysis based on [Clason, Valkonen ’20], Chap. 8.1, [Combettes, Pesquet ’15]

Consider iteration for 𝑤𝑘 = (𝑢𝑘, 𝑍𝑘) in implicit form

0 ∈𝑊𝑘𝐻(𝑤𝑘+1) + 𝐷𝑘 (𝑤𝑘 + 1) +𝑀𝑘 (𝑤𝑘+1 − 𝑤𝑘)

𝑊𝑘 step size operator (diagonal)

𝐻 optimality conditions 0 ∈ 𝐻(𝑤̄)
𝐷𝑘 discrepancy operator: linearization error, mini-batch

𝑀𝑘 local preconditioner (decouples proximal point method)

Challenge: mini-batches 𝐴𝑘 random{ inclusion a.s., filtration
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Primal-dual proximal splitting: convergence

Central tool: abstract convergence result (formal)

Theorem

Assume

Z nonempty

{𝑅𝑘}𝑘∈ℕ uniformly bounded in operator norm

{𝑤𝑘}𝑘∈ℕ stochastic quasi-Fejér monotone: for all 𝑧 ∈ Z,

1
2
𝔼
[∥𝑤𝑘+1 − 𝑧∥2

𝑅𝑘+1

] + Δ𝑘 (𝑧) ≤ 1
2
∥𝑤𝑘 − 𝑧∥2

𝑅𝑘
+ 𝜆𝑘 (𝑧) a.s.

weak accumulation points of {𝑤𝑘}𝑘∈ℕ belong to Z,

𝑅𝑛𝑘𝑤 → 𝑅𝑤 for all 𝑤, convergent subsequences {𝑤𝑛𝑘 }𝑘∈ℕ
Then 𝑤𝑘 ⇀ 𝑤̄ ∈ Z almost surely

Proof: combine standard (Opial) argument with Robbins–Siegmund lemma

Overview Risk-averse optimization Primal-dual proximal splitting Numerical examples 15 / 28



Primal-dual proximal splitting: convergence

Theorem

Asssume

𝐽′ is locally Lipschitz, satisfies three-point inequality

𝑈ad, Π bounded ({ {(𝑢𝑘, 𝑍𝑘)}𝑘∈ℕ bounded)

choice of mini-batches satisfies

𝔼

[
ess sup

𝜉∈Ξ
(1 − 𝟙𝐴𝑘 )

]
≤ 𝑀𝑘−3 a.s.

({ decay rate for expectation that ℙ[𝐴𝐶
𝑘
] > 0)

step size conditions (very technical)

Then (𝑢𝑘, 𝑍𝑘) ⇀ (𝑢̄, 𝑍) saddle point

Proof: apply abstract theorem to 𝑅𝑘 = 𝑇𝑘𝑀𝑘 with 𝑇𝑘 testing operator (standard)
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Risk-averse optimal control: examples

min
𝑢∈𝑈ad

CVaR𝛼 [ 𝐽 (𝑢, 𝜉)]

Ξ = {𝜉1, . . . , 𝜉𝑆} i.i.d. scenarios (here: 𝑆 = 1000)

𝐽 (𝑢, 𝜉) = 1
2 ∥ 𝑦(𝑢) − 𝑦𝑑∥2 + 𝛾

2 ∥𝑢∥2

𝑦(𝑢) solves random PDE
1 elliptic with random jump diffusion
2 Burgers’ equation with random coefficients

projection on Π𝛼 not closed form{ algorithm, warm starts
mini-batch: 𝐴𝑘 ⊂ Ξ with 𝜉𝑘 selected with probability

𝑝𝑘 =

{
𝑞𝑘 if 𝑘 < 𝑀1/3

max{𝑞𝑘, (1 −𝑀𝑘−3)1/𝑆} if 𝑘 ≥ 𝑀1/3

for 𝑀 > 0, 𝑞𝑘 ∈ [0, 1]
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Risk-averse optimal control: elliptic example

−div(𝑎(𝜉)∇𝑦) = 𝑓 (𝜉) + 𝑢 in Ω

𝑦 = 0 on 𝜕Ω

Ω = (−1, 1)
𝑎(𝑥, 𝜉) = 0.1𝟙(−1,𝜉1 ] (𝑥) + 10𝟙(𝜉1,1)
𝑓 (𝑥, 𝜉) = exp(−(𝑥 − 𝜉2)2)
𝜉1 ∼ U((−.1, .1))
𝜉2 ∼ U((−0.5, 0.5))
𝑦𝑑 ≡ 1
𝑈ad = {𝑢 : −10 ≤ 𝑢(𝑥) ≤ 10}
𝑢0 = 0, 𝑍0 = 0, step sizes constant (estimated by power method)
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Risk-averse optimal control: elliptic example

6.3 Elliptic Equation with a Discontinuous Coe!icient

6.3.6 Numerical Results

In the following, we present some numerical results using the Julia code provided in [Ang22,
EEDC.jl]. !roughout this section, we de”ne the bounds within U𝐿𝑀 by →10 and 10, respectively,
i.e.

U𝐿𝑀 =
{
z ↑ R𝑁

"" →10 ↓ 𝐿𝑂 ↓ 10 for all 𝑀 ↑ {1, . . . , 𝑁 }} , (6.3.110)

and use the starting vectors

u0 = (0, . . . , 0) ↑ R𝑁 and v0 = (0, . . . , 0) ↑ R𝑃 . (6.3.111)

For a given dual step size 𝑂 > 0, the initial primal step size is de”ned by

𝑃0 := 0.99 (𝑂𝑄)→1 , (6.3.112)

where 𝑄 is the Rayleigh quotient determined by 5 iterations of Algorithm 6.1 with the matrix
𝑅 ↔ (u0)𝑅 ↔ (u0)↗ and the starting vector z0 := 𝑆→21. Note that, although 𝑇 is strongly monotone,
we can not accelerate the algorithm by choosing 𝑈𝑄 > 0 for this particular problem in practice.
However, this allows us to set 𝑈𝑄 := 0 in Lemma 6.3.5, which resolves the con#ict with condition
(viii) of !eorem 4.4.14 as discussed at the end of Section 4.4.3.

To give a ”rst impression of the problem, we ”rst present in Figure 6.1 the optimal control and
state of problem (6.3.1) for a probability level of 𝑉 = 0.9, 𝑆 = 1,000 scenarios, and 𝑁 = 256
equidistant grid points. !e solution was computed using constant scalar step sizes with 𝑂 = 0.01
and a stopping criterion tolerance of 𝑊 = 10→10. !e big jump in the control around 𝑋 = 0 can
be explained by the change of the PDE coe$cient 𝑌 (𝑋) from 0.1 to 10, which appears at some 𝑋
within [→0.1, 0.1].

→1 →0.5 0 0.5 1

0

2

4

𝑋

𝑍
(𝑋
)

(a) Optimal control

→1 →0.5 0 0.5 1
0

0.5

1

1.5

𝑋

𝑎
(𝑋
)

(b) Optimal state (mean ± one and two standard de-
viations)

Figure 6.1: Example of optimal control and state for 𝑉 = 0.9

Figure 6.2 illustrates how the use of the Conditional Value-at-Risk as a risk measure a%ects the
solution. !e blue graph shows the risk-averse control and state for a probability level of 𝑉 = 0.99
and all other parameters as in Figure 6.1. !e red graph shows the risk-neutral case where the
Conditional Value-at-Risk is replaced by the expected value as described in (6.3.107). One can see
that, especially in the region where the discontinuity of the coe$cient appears, the risk-averse
optimal state has a smaller deviation from its mean than the risk-neutral state. Apparently, this
is achieved by the sharp dip of the risk-averse optimal control around 𝑋 = 0.
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(viii) of !eorem 4.4.14 as discussed at the end of Section 4.4.3.

To give a ”rst impression of the problem, we ”rst present in Figure 6.1 the optimal control and
state of problem (6.3.1) for a probability level of 𝑉 = 0.9, 𝑆 = 1,000 scenarios, and 𝑁 = 256
equidistant grid points. !e solution was computed using constant scalar step sizes with 𝑂 = 0.01
and a stopping criterion tolerance of 𝑊 = 10→10. !e big jump in the control around 𝑋 = 0 can
be explained by the change of the PDE coe$cient 𝑌 (𝑋) from 0.1 to 10, which appears at some 𝑋
within [→0.1, 0.1].
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Figure 6.1: Example of optimal control and state for 𝑉 = 0.9

Figure 6.2 illustrates how the use of the Conditional Value-at-Risk as a risk measure a%ects the
solution. !e blue graph shows the risk-averse control and state for a probability level of 𝑉 = 0.99
and all other parameters as in Figure 6.1. !e red graph shows the risk-neutral case where the
Conditional Value-at-Risk is replaced by the expected value as described in (6.3.107). One can see
that, especially in the region where the discontinuity of the coe$cient appears, the risk-averse
optimal state has a smaller deviation from its mean than the risk-neutral state. Apparently, this
is achieved by the sharp dip of the risk-averse optimal control around 𝑋 = 0.
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Figure: risk-averse control, state for 𝛼 = 0.1
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Risk-averse optimal control: elliptic example

6 Applications
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Figure 6.2: Comparison of risk-averse (𝑂 = 0.99) and risk-neutral case

In the following we examine the convergence behavior for di”erent choices of the probability
level 𝑂 . Figure 6.3 shows how the norm of the di”erence of successive iterates changes in relation
to the number of solved PDEs. #is norm is particularly interesting because it is the norm of the
residual of the $xed-point iteration (4.1.2), which is the basis of our algorithm. #e results were
computed using 𝑃 = 0.01 with constant scalar step sizes, 𝑄 = 1,000 scenarios, 𝑅 = 256 grid
points, and a stopping criterion tolerance of 𝑆 = 10→10. Apparently, in order to reach the required
tolerance, a higher probability level leads to more PDE solves. Interestingly, this behavior is
not visible in Figure 6.4, where the function values approach their asymptotes around the same
number of PDE solves.
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Figure 6.3: Convergence behavior for 𝑂 = 0.01, 𝑂 = 0.5, and 𝑂 = 0.99

Before investigating the convergence behavior for di”erent choices of parameters, we brie%y
show how the use of Algorithm 5.2 and Algorithm 5.3 can decrease the computation time in
practice. We already mentioned in Section 5.4 that simply checking the condition

𝑇𝑈 +
𝑀∑

𝑁=𝑂+1
max{0, 𝑀𝑁 + 𝑈 → 𝑀 𝑂 } ↓ 1 (6.3.113)

for all 𝑇 ↔ {0, . . . , 𝑄} (starting with 𝑇 = 0 until it is not satis$ed any more) in order to compute
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Figure: risk-averse (𝛼 = 0.01) vs. risk-neutral control
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6 Applications
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Figure: convergence w.r.t. PDE solves for 𝛼 = 0.99, 𝛼 = 0.5, 𝛼 = 0.01
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Risk-averse optimal control: elliptic example

6 Applications

If 𝐿 is close to 0, then the upper bound 1
(1→𝐿 )𝑀 is close to 1

𝑀 , which means that almost all coor-
dinates of the projection’s result in Line 8 of Algorithm 6.2 need to be at this bound in order to
satisfy the equality in the de!nition of ω. As a consequence, there cannot be many coordinates
𝑀 ↑ {1, . . . , 𝑁} such that (v𝑁+1) 𝑂 = 2 (𝑂𝑁+1) 𝑂 → (𝑂𝑁 ) 𝑂 = 0, since 𝑂𝑁+1, 𝑂𝑁 ↑ ω for all 𝑃 ↑ N. ”erefore,
the cardinality of 𝑄𝑁 is o#en close to 0, hence the e$ect of disregarding indices in 𝑄𝑁 is very small.
On the other hand, one can observe that the cardinality of 𝑄𝑁 is close to 𝑁 if 𝐿 is close to 1. ”is is
the reason why very few PDE solves are needed in Line 10 in this case and the savings by using
𝑄𝑁 are almost 50% for 𝐿 = 0.99.

# solved PDEs

𝐿 without 𝑄𝑁 with 𝑄𝑁 savings

0.01 3.16 · 106 3.15 · 106 0.47%

0.1 1.23 · 107 1.17 · 107 5.13%

0.5 1.04 · 107 7.78 · 106 25.16%

0.9 1.95 · 107 1.07 · 107 44.93%

0.99 3.81 · 107 1.93 · 107 49.26%

Table 6.1: Number of solved PDEs with/without 𝑄𝑁 for di$erent values of 𝐿

In the following, we investigate how this compares to the savings we achieve by the use of CGF.
We start with index selection rule №1 as described in Lemma 6.2.1 with a constant sequence of
probabilities 𝑅𝑁 := 𝑅 for some 𝑅 ↑ [0, 1] and all 𝑃 ↑ N, and𝑆 := 1020. Note that𝑆 is deliberately
chosen so large that the stopping criterion is likely to be reached in an iteration 𝑃 < 𝑆1/3 and we
can observe the maximal possible e$ect of using CGF2. In Figure 6.5 we show the convergence
behavior for a probability level of 𝐿 = 0.01 and di$erent values of 𝑅.
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Figure 6.5: Convergence behavior for 𝐿 = 0.01 with CGF and index selection rule №1 for 𝑅 = 0.5,
𝑅 = 0.1, 𝑅 = 0.01, and without CGF (do%ed)

2Recall that, if 𝑃 ↔ 𝑆1/3, the probability for choosing an index is max
{
𝑅𝑁 ,

(
1 →𝑆𝑃→3)1/𝑀 }. Hence, the expected

number of frozen indices gradually decreases beyond the iteration threshold of 𝑆1/3.
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Figure: convergence w.r.t. PDE solves for 𝛼 = 0.99 and minibatch: 𝑞𝑘 = 0.5,
𝑞𝑘 = 0.1, 𝑞𝑘 = 0.01, 𝑀 = 1020
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Risk-averse optimal control: Burgers’ equation

−𝜈(𝜉)Δ𝑦 + 𝑦 grad 𝑦 = 𝑓 (𝜉) + 𝑢 in (0, 1)
𝑦(0) = 𝑔0(𝜉), 𝑦(1) = 𝑔1(𝜉)

𝜈(𝜉) = 10𝜉1−2

𝑓 (𝜉) = 0.01𝜉2

𝑔1(𝜉) = 1 + 0.001𝜉3

𝑔1(𝜉) = 0.001𝜉4

𝜉𝑖 ∼ U([−1, 1]) i.i.d.

𝑦𝑑 ≡ 1
𝑈ad = {𝑢 : −10 ≤ 𝑢(𝑥) ≤ 10}
𝑢0 = 0, 𝑍0 = 0, step sizes constant (estimated by power method)
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Risk-averse optimal control: Burgers example

6.4 Steady Burgers’ Equation

6.4.4 Numerical Results

In this section, we present some numerical results using the Julia code provided in [Ang22,
SBE.jl]. As in Section 6.3.6, we de!ne the bounds within U𝐿𝑀 by →10 and 10, use the starting
vectors u0 = (0, . . . , 0) ↑ R𝑁 and v0 = (0, . . . , 0) ↑ R𝑂 , and set 𝐿𝑃 := 0. Furthermore, we use the
same rule to determine the primal step size for a given dual step size 𝑀 > 0.
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Figure 6.9: Example of optimal control and state for 𝑄 = 0.5

A !rst impression of the problem is given in Figure 6.9, where the optimal control and state of
(6.4.1) are shown for a probability level of 𝑄 = 0.5. In this and all following examples, we use
𝑅 = 100 scenarios and 𝑆 = 512 grid points. ”e solution was computed using constant scalar
step sizes with 𝑀 = 0.1, a stopping criterion tolerance of 𝑇 = 10→6, and a tolerance for Newton’s
method of 𝑇↓ = 10→8.
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Figure 6.10: Convergence behavior for 𝑄 = 0.01, 𝑄 = 0.5, and 𝑄 = 0.99

”e convergence behavior without CGF is presented in Figure 6.10, where 𝑆 = 256 grid points
and constant scalar step sizes with 𝑀 = 0.1 were used to compute the solution for the probability
levels 𝑄 ↑ {0.01, 0.5, 0.99}. ”e stopping criterion tolerance for this and all following examples is
𝑇 = 10→6 with a tolerance for Newton’s method of 𝑇↓ = 10→8. As in Section 6.3.6, we can observe
that a higher probability level does lead to a slower convergence. In the following analysis, we
consider the case 𝑄 = 0.5.

117

(a) optimal control

6.4 Steady Burgers’ Equation

6.4.4 Numerical Results

In this section, we present some numerical results using the Julia code provided in [Ang22,
SBE.jl]. As in Section 6.3.6, we de!ne the bounds within U𝐿𝑀 by →10 and 10, use the starting
vectors u0 = (0, . . . , 0) ↑ R𝑁 and v0 = (0, . . . , 0) ↑ R𝑂 , and set 𝐿𝑃 := 0. Furthermore, we use the
same rule to determine the primal step size for a given dual step size 𝑀 > 0.

0 0.2 0.4 0.6 0.8 1

0

2

4

𝑁

𝑂
(𝑁
)

(a) Optimal control

0 0.2 0.4 0.6 0.8 1

0

1

2

𝑁
𝑃
(𝑁
)
(b) Optimal state (mean ± one and two standard de-

viations)

Figure 6.9: Example of optimal control and state for 𝑄 = 0.5

A !rst impression of the problem is given in Figure 6.9, where the optimal control and state of
(6.4.1) are shown for a probability level of 𝑄 = 0.5. In this and all following examples, we use
𝑅 = 100 scenarios and 𝑆 = 512 grid points. ”e solution was computed using constant scalar
step sizes with 𝑀 = 0.1, a stopping criterion tolerance of 𝑇 = 10→6, and a tolerance for Newton’s
method of 𝑇↓ = 10→8.

102 103 104 105 106

10→5

10→3

10→1

Number of solved PDEs

↔ u
𝑄
→

u 𝑄
→1
↔ 2

(a) Convergence of primal variable

102 103 104 105 10610→6

10→5

10→4

10→3

10→2

10→1

Number of solved PDEs

↔ v
𝑄
→

v 𝑄
→1
↔ 2

(b) Convergence of dual variable

Figure 6.10: Convergence behavior for 𝑄 = 0.01, 𝑄 = 0.5, and 𝑄 = 0.99

”e convergence behavior without CGF is presented in Figure 6.10, where 𝑆 = 256 grid points
and constant scalar step sizes with 𝑀 = 0.1 were used to compute the solution for the probability
levels 𝑄 ↑ {0.01, 0.5, 0.99}. ”e stopping criterion tolerance for this and all following examples is
𝑇 = 10→6 with a tolerance for Newton’s method of 𝑇↓ = 10→8. As in Section 6.3.6, we can observe
that a higher probability level does lead to a slower convergence. In the following analysis, we
consider the case 𝑄 = 0.5.

117

(b) optimal state mean ± 𝜎 and 2𝜎

Figure: risk-averse control, state for 𝛼 = 0.1
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Risk-averse optimal control: Burgers example

6.4 Steady Burgers’ Equation

6.4.4 Numerical Results
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vectors u0 = (0, . . . , 0) ↑ R𝑁 and v0 = (0, . . . , 0) ↑ R𝑂 , and set 𝐿𝑃 := 0. Furthermore, we use the
same rule to determine the primal step size for a given dual step size 𝑀 > 0.
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Figure 6.9: Example of optimal control and state for 𝑄 = 0.5

A !rst impression of the problem is given in Figure 6.9, where the optimal control and state of
(6.4.1) are shown for a probability level of 𝑄 = 0.5. In this and all following examples, we use
𝑅 = 100 scenarios and 𝑆 = 512 grid points. ”e solution was computed using constant scalar
step sizes with 𝑀 = 0.1, a stopping criterion tolerance of 𝑇 = 10→6, and a tolerance for Newton’s
method of 𝑇↓ = 10→8.

102 103 104 105 106

10→5

10→3

10→1

Number of solved PDEs

↔ u
𝑄
→

u 𝑄
→1
↔ 2

(a) Convergence of primal variable

102 103 104 105 10610→6

10→5

10→4

10→3

10→2

10→1

Number of solved PDEs
↔ v

𝑄
→

v 𝑄
→1
↔ 2

(b) Convergence of dual variable

Figure 6.10: Convergence behavior for 𝑄 = 0.01, 𝑄 = 0.5, and 𝑄 = 0.99

”e convergence behavior without CGF is presented in Figure 6.10, where 𝑆 = 256 grid points
and constant scalar step sizes with 𝑀 = 0.1 were used to compute the solution for the probability
levels 𝑄 ↑ {0.01, 0.5, 0.99}. ”e stopping criterion tolerance for this and all following examples is
𝑇 = 10→6 with a tolerance for Newton’s method of 𝑇↓ = 10→8. As in Section 6.3.6, we can observe
that a higher probability level does lead to a slower convergence. In the following analysis, we
consider the case 𝑄 = 0.5.
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Figure: convergence w.r.t. PDE solves for 𝛼 = 0.99, 𝛼 = 0.5, 𝛼 = 0.01
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Risk-averse optimal control: Burgers example

6 Applications

For the investigation of index selection rule №1, we use the same constant sequence of probabil-
ities 𝐿𝐿 := 𝐿 for some 𝐿 → [0, 1] and all 𝑀 → N and𝑁 := 1020 as in Section 6.3.6. Figure 6.11 shows
the convergence behavior for 𝑂 = 0.5 and 𝐿 → {0.5, 0.1, 0.01}. !e required number of PDE solves
in relation to the approach is shown in Table 6.3. As in Table 6.2, we can also observe here that
the number of required PDE solves is pre”y close to the product of 𝐿 and the number of PDE
solves without CGF.
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Figure 6.11: Convergence behavior for 𝑂 = 0.5 with CGF and index selection rule №1 for 𝐿 = 0.5,
𝐿 = 0.1, 𝐿 = 0.01, and without CGF (do”ed)

We already noticed in Section 6.3.6 that the use of index selection rule №2 leads to similar savings
in the number of solved PDEs, which is why we do not consider index selection rule №2 in this
example at all.

# solved PDEs

𝐿 absolute relative

- 5.98 · 106 100%

0.5 1.59 · 106 49.95%

0.2 6.36 · 105 20.00%

0.1 3.19 · 105 10.04%

0.05 1.60 · 105 5.03%

0.01 3.21 · 104 1.01%

Table 6.3: Number of solved PDEs for 𝑂 = 0.5 with CGF and index selection rule №1 in relation
to the choice of 𝐿
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Figure: convergence w.r.t. PDE solves for 𝛼 = 0.99 and minibatch: 𝑞𝑘 = 0.5,
𝑞𝑘 = 0.1, 𝑞𝑘 = 0.01, 𝑀 = 1020
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Conclusion

Risk-averse optimal control problems:

can be formulated using coherent risk measures

can be solved numerically using primal-dual splitting

involve a lot of PDE solves. . .

{ stochastic primal-dual splitting (≈ 100× speedup)

Outlook:

acceleration (use strongly convex control costs)

adaptive mini-batches (e.g., probability based on residual)

application to probabilistic constraints

other risk measures

Dissertation: https://doi.org/10.17185/duepublico/78165

Code: https://zenodo.org/records/7121224
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