

Stochastic inverse problems with impulsive noise

Christian Clason¹ Laurent Demaret²

¹Faculty of Mathematics, Universität Duisburg-Essen ²HelmholtzZentrum München

Chemnitz Symposium on Inverse Problems Chemnitz, September 18, 2014

Motivation: impulsive noise

Impulsive noise

- appears in digital image acquisition, processing (hardware defects, cosmic rays, ...)
- characterization: noise is "sparse", acts pointwise
- e.g., random-valued impulsive noise

$$\eta(x_i) = \begin{cases} \xi_i & \text{with probability } \lambda \\ 0 & \text{with probability } 1 - \lambda \end{cases}$$

$$\xi_i \in \mathcal{N}(0, \sigma^2)$$
 i.i.d. Gaussian, $\lambda > 0$

meaningless in function space!

Motivation

Goal:

- rigorous definition of continuous impulsive noise model
- analysis of stochastic inverse problems with impulsive noise
- conforming discretization reproducing discrete noise

Approach:

- model impulsive noise as point process → random measure
- relate noise level to noise parameters
- discretization by averaging ~> linear combination of Diracs

- 1 Overview
- 2 Noise process
- 3 Continuous inverse problems
- 4 Discretization
 - Discrete noise process
 - Discrete inverse problem
 - Convergence of discretization

Noise process: definition

Poisson point process:

- random countable set $\Pi \subset \Omega \subset \mathbb{R}^n$
- intensity measure μ (here: $\mu(A) = \lambda |A|$ for $\lambda > 0$)
- **counting measure** $N: A \mapsto \#(\Pi \cap A)$

satisfying

- 1 A_i ⊆ Ω disjoint, measurable $⇒ N(A_i)$ independent
- A ⊂ Ω measurable A N(A) Poisson distributed with mean A(A),

$$IP[N(A) = k] = e^{-\mu(A)} \frac{\mu(A)^k}{k!}$$

Noise process: definition

Marked Poisson point process:

$$\Pi^* = \left\{ (x, \xi_x) : x \in \Pi, \ \xi_x \in \mathcal{N}(0, \sigma^2) \right\}$$

- $x \in \Pi$ denotes location of corrupted point
- \bullet ξ_x i.i.d denotes magnitude of corruption
- Poisson point process on $\Omega \times \mathbb{R}$
- statistical model for physical cause (e.g., cosmic rays)
- defines random measure

$$\eta = \sum_{(x,\xi_x)\in\Pi^*} \xi_x \delta_x$$

■ Ω bounded \rightsquigarrow Π finite, $\eta \in \mathcal{M}(\Omega) = C(\overline{\Omega})^*$ almost surely

Noise process: moments

■ Expectation: for $A \subset \Omega$,

$$\mathbb{E}[\eta(A)] = \sum_{k=1}^{\infty} \mathbb{IP}[N(A) = k] \sum_{x \in \Pi \cap A} \int_{\mathbb{IR}} \xi_x \, dv = 0$$

■ Variance: for $A \subset \Omega$,

$$Var[\eta(A)] = \sum_{k=1}^{\infty} IP[N(A) = k] \sum_{x \in \Pi \cap A} \int_{IR} \xi_x^2 dv$$
$$= \sum_{k=1}^{\infty} e^{-\lambda |A|} \frac{(\lambda |A|)^k}{k!} k\sigma^2$$
$$= \lambda \sigma^2 |A|$$

Noise process: noise level

$$\varepsilon(\eta) := \|\eta\|_{\mathfrak{M}(\Omega)} = \sup_{\|\varphi\|_{\mathsf{C}(\overline{\Omega})} \leqslant 1} \sum_{(x,\xi_x) \in \Pi^*} \xi_x \langle \delta_x, \varphi \rangle = \sum_{(x,\xi_x) \in \Pi^*} |\xi_x|$$

Campbell's theorem, $|\xi_x|$ i.i.d. and half-normal \rightsquigarrow

$$\mathsf{IE}[\varepsilon(\eta)] = \int_{\Omega} \int_{\mathbb{R}} |\xi_x| \, d\mu d\nu = \lambda |\Omega| \int_{\mathbb{R}} |\xi| \, d\nu = \lambda \sigma |\Omega| \sqrt{\frac{2}{\pi}}$$

$$Var[\varepsilon(\eta)] = \int_{\Omega} \int_{\mathbb{R}} |\xi_x|^2 d\mu d\nu = \lambda |\Omega| \int_{\mathbb{R}} |\xi|^2 d\nu = \lambda \sigma^2 |\Omega| \left(1 - \frac{2}{\pi}\right)$$

Noise process: convergence

Consider
$$\{\eta_n\}_{n\in\mathbb{N}}\subset \mathcal{M}(\Omega)$$
 for $\lambda_n,\sigma_n>0$

1 If $\lambda_n \sigma_n \to 0$:

$$\mathsf{IE}[\varepsilon(\eta_n)] = \mathcal{O}(\lambda_n \sigma_n) \to 0$$

If also $\lambda_n \sigma_n^2 = \mathcal{O}(n^{-r})$ for r > 1 (e.g., subsequence):

$$\varepsilon(\eta_n) \to 0$$
 almost surely

Proof:

- Chebyshev concentration inequality + Borel-Cantelli
- not constructive \rightsquigarrow no uniform a priori bounds, no rates

- 1 Overview
- 2 Noise process
- 3 Continuous inverse problems
- 4 Discretization
 - Discrete noise process
 - Discrete inverse problem
 - Convergence of discretization

Inverse problem

$$\min_{u\in X} \|F(u) - y^{\varepsilon}(\omega)\|_{\mathcal{M}(\Omega)} + \alpha \mathcal{R}(u),$$

- X Banach space, \Re convex, l.s.c., weakly sequentially precompact sublevel sets
- e.g., $\Re(u) = \frac{1}{2} \|u\|_X^2$
- $F: X \to \mathcal{M}(\Omega)$ bounded, weak-to-strong continuous (compact embedding $F: X \to Y \hookrightarrow \mathcal{M}(\Omega)$)
- $y^{\varepsilon} = F(u^{\dagger}) + \eta$ random noisy data, $y^{\varepsilon}(\omega)$ realization

Inverse problem

$$\min_{u\in X} \|F(u) - y^{\varepsilon}(\omega)\|_{\mathcal{M}(\Omega)} + \alpha \mathcal{R}(u),$$

Standard arguments: for every $\alpha > 0$ and realization $y^{\epsilon}(\omega) \in \mathcal{M}(\Omega)$:

- lacktriangle existence of minimizer $u_{\alpha}^{\varepsilon}(\omega)$
- $lacksquare y_n
 ightarrow y^{arepsilon}(\omega)$ implies $u^n_{lpha}
 ightarrow u^{arepsilon}_{lpha}(\omega)$
- if \Re strictly convex, $u_a^{\varepsilon}(\omega)$ unique
- \rightsquigarrow defines random field u_a^{ε}

Inverse problem: convergence

Consider

sequence $\{\eta_n\}$ for λ_n , σ_n with

$$\lambda_n \sigma_n \to 0$$

noisy data $y_n := F(u^{\dagger}) + \eta_n$, minimizer $u_n := u_{q_n}^{\varepsilon_n}$

$$a_n \to 0$$
 and $\frac{\lambda_n \sigma_n}{a_n} \to 0$

then subsequence $\mathbb{E}[u_n] \rightharpoonup u^{\dagger}$

$$\mathbb{IE}[u_n] \rightharpoonup u^{\dagger}$$

- **proof:** standard deterministic arguments + convergence of ε_n [Bissantz/Hohage/Munk '04]
- full sequence if u^{\dagger} unique, strong convergence if \Re Kadec-Klee

Inverse problem: convergence

Consider

■ sequence $\{\eta_n\}$ for λ_n , σ_n with

$$\{\lambda_n\}$$
, $\{\sigma_n\}$ bounded, $\lambda_n\sigma_n=\mathfrak{O}(n^r)$ for $r>1$

■ noisy data $y_n := F(u^{\dagger}) + \eta_n$, minimizer $u_n := u_{\alpha_n}^{\varepsilon_n}$

$$a_n o 0$$
 and $\frac{\lambda_n \sigma_n^2}{a_n} o 0$

then subsequence $u_n \rightharpoonup u^{\dagger}$ almost surely

- proof: standard deterministic arguments + convergence of ε_n [Bissantz/Hohage/Munk '04]
- full sequence if u^{\dagger} unique, strong convergence if ${\mathcal R}$ Kadec–Klee

Inverse problem: convergence rates

Under usual assumptions:

1 A priori choice: $\alpha \sim (\lambda \sigma)^{\tau}$ for $\tau \in (0, 1)$

$$\mathbb{E}\Big[\|u_{\alpha}^{\varepsilon}-u^{\dagger}\|_{X}\Big]\leqslant c(\lambda\sigma)^{\frac{1-\tau}{2}}$$

2 Morozov: $\tau_1 \lambda \sigma \leqslant \|F(u_\alpha^\varepsilon) - y^\varepsilon\|_{\mathcal{M}(\Omega)} \leqslant \tau_2 \lambda \sigma$

$$\mathbb{E}\Big[\|u_{\alpha}^{\varepsilon}-u^{\dagger}\|_{X}\Big]\leqslant c(\lambda\sigma)^{\frac{1}{2}}$$

- no almost sure rates, since no such rates for ε_n
- for σ bounded: rates independent of σ
 → λ essentially characterizes noise level; robustness

- 1 Overview
- 2 Noise process
- 3 Continuous inverse problems
- 4 Discretization
 - Discrete noise process
 - Discrete inverse problem
 - Convergence of discretization

Discretization

Approach: start with discretization of $C(\overline{\Omega})$ [Casas/C./Kunisch '12]

- $\{x_j\}_{j=1}^{N_h} \subset \Omega$ nodes (sampling points, pixel midpoints, vertices)
- $\{e_j\}_{j=1}^{N_h}$ nodal basis of continuous functions (FEM basis, point spread functions)

$$C_h := \left\{ v_h \in \mathsf{C}(\overline{\Omega}) : v_h = \sum_{j=1}^{N_h} v_j e_j, \text{ where } \{v_j\}_{j=1}^{N_h} \subset \mathsf{IR} \right\}$$

Discretization

$$M_h := \left\{ \mu_h \in \mathcal{M}(\Omega) : \mu_h = \sum_{j=1}^{N_h} \mu_j \delta_{x_j}, \text{ where } \{\mu_j\}_{j=1}^{N_h} \subset \mathbb{R} \right\}$$

with norm

$$\|\mu_h\|_{\mathcal{M}(\Omega)} = \sup_{\|\nu\|_{C(\overline{\Omega})}=1} \sum_{j=1}^{N_h} \mu_j \langle \delta_{x_j}, \nu \rangle = \sum_{j=1}^{N_h} |\mu_j| =: |\vec{\mu}_h|_1$$

 $\rightsquigarrow M_h$ topological dual of C_h with respect to duality pairing

$$\langle \mu_h, \nu_h \rangle = \sum_{j=1}^{N_h} \mu_j \nu_j = \vec{\mu}_h^T \vec{\nu}_h$$

Discretization: interpolation operators

$$\Pi_h: \mathsf{C}(\overline{\Omega}) \to C_h, \qquad \qquad \Pi_h v = \sum_{j=1}^{N_h} \langle v, \delta_{x_j} \rangle e_j$$
 $\Lambda_h: \mathfrak{M}(\Omega) \to M_h, \qquad \qquad \Lambda_h \mu = \sum_{j=1}^{N_h} \langle \mu, e_j \rangle \delta_{x_j}$

$$\leadsto$$
 For all $\mu \in \mathcal{M}(\Omega)$, $v \in C(\overline{\Omega})$, $v_h \in C_h$:

- 1 $\langle \mu, \nu_h \rangle = \langle \Lambda_h \mu, \nu_h \rangle$ and $\langle \mu, \Pi_h \nu \rangle = \langle \Lambda_h \mu, \nu \rangle$
- $\|\Lambda_h\mu\|_{\mathfrak{M}(\Omega)} \leqslant \|\mu\|_{\mathfrak{M}(\Omega)}$
- $\land \Lambda_h u \rightharpoonup^* u \text{ in } \mathcal{M}(\Omega) \quad \text{and} \quad \|\Lambda_h u\|_{\mathcal{M}(\Omega)} \to \|u\|_{\mathcal{M}(\Omega)}$

Discretization: noise

Define discrete noise n_h via

$$\eta_h(\omega) := \Lambda_h[\eta(\omega)] = \sum_{j=1}^{N_h} \langle \eta, e_j \rangle \, \delta_{x_j} \\
= \sum_{j=1}^{N_h} \left(\sum_{x \in \Pi \cap \text{supp } e_j} e_j(x) \xi_x(\omega) \right) \, \delta_{x_j} \\
= : \sum_{j=1}^{N_h} \eta_j(\omega) \delta_{x_j}$$

- nodes x_j deterministic \rightsquigarrow identify η_h with $(\eta_1, \dots, \eta_j) \in \mathbb{R}^{N_h}$
- averaging ~> model of physical image acquisition by sensors

Discrete noise: moments

Case differentiation:

1 $\eta_j = 0$: iff supp $e_j \cap \Pi = \emptyset \rightsquigarrow$

$$IP(\mu_j = 0) = IP(N(supp(e_j)) = 0) = e^{-\lambda h}$$

2 $\eta_j \neq 0$: then

$$\eta_j(\omega) = \sum_{x \in \Pi \cap \text{supp}(e_j)} e_j(x) \xi_x(\omega)$$

a.s. finite linear combination of Gaussian \rightsquigarrow Gaussian, $\mathbb{E}[\eta_h] = 0$,

$$Var[\mu_j] = \lambda \int_{\Omega} e_j(x)^2 dx \int_{\mathbb{R}} \xi^2 dv =: \lambda s_j \sigma^2$$

with $s_i \leqslant h_i \leqslant h$ (Campbell's theorem)

Discrete noise: comparison

Discrete noise model in uniform case $s_i \equiv s \approx h$:

$$\eta_h(x_j) = \eta_j = \begin{cases} 0 & \text{with probability } 1 - \lambda_h \\ \xi_j \in \mathcal{N}(0, \sigma_h^2) & \text{with probability } \lambda_h \end{cases}$$

$$\lambda_h := 1 - e^{-\lambda h}, \qquad \sigma_h \approx \lambda \sigma^2 h$$

- effective noise parameters λ_h , σ_h discretization dependent
- \bullet σ_h depends on σ and λ
- lacksquare note: taking h o 0 here meaningless since $\eta_h o^* \eta$

Discrete noise: level

$$\varepsilon_h := \|\eta_h\|_{\mathfrak{M}(\Omega)} = \sum_{j=1}^{N_h} |\eta_j|$$

- $|\eta_i|$ half-normal random variable (not independent!)
- ~→ moments from Campbell's theorem
- Λ_h interpolation \rightsquigarrow $\varepsilon_h \leqslant \varepsilon$ almost surely,

$$\mathbb{E}[\varepsilon_h] \leqslant \mathbb{E}[\varepsilon]$$

$$Var[\varepsilon_h] \leqslant Var[\varepsilon]$$

Discrete inverse problem

$$\min_{u \in X} \|F_h(u) - y_h^{\varepsilon}\|_{\mathcal{M}(\Omega)} + \alpha \mathcal{R}(u)$$

- \blacksquare $F_h := (\Lambda_h \circ F) : X \to M_h$
- $\mathbf{y}_h^{\varepsilon} := \Lambda_h \mathbf{y}^{\varepsilon} = F_h(u^{\dagger}) + \eta_h \in M_h$
- semi-discretization (discretization of *X* independent)
- conforming discretization \rightsquigarrow well-posed, solution $u_h := u_a^{\varepsilon_h}$
- ε_h uniformly bounded \leadsto convergence, rates (uniform in h)

Discrete solution: convergence

Consider

- noise parameters λ , σ fixed
- **discretization parameter** $h \rightarrow 0$

Then: $\left\{u_h^{\varepsilon}\right\}_{h>0}$ contains subsequences with

- 1 $\mathbb{E}[u_a^{\varepsilon_h}] \to \mathbb{E}[u_a^{\varepsilon}]$
- $u_a^{\varepsilon_h} \rightharpoonup u_a^{\varepsilon}$ almost surely
 - whole sequence if u_a unique, strong convergence if \Re Kadec–Klee
 - \blacksquare proof: boundedness of Λ_h , standard arguments

Conclusions

Continous impulsive noise:

- Poisson point process is appropriate model
- conforming discretization reproduces standard discrete noise
- convergence of stochastic inverse problem

Outlook:

- numerical realization (based on [C./Jin '12])
- adaptive discretization & regularization
- heuristic parameter choice
- fitting with probability metrics