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Motivation: impulsive noise

Impulsive noise

m appears in digital image acquisition, processing
(hardware defects, cosmic rays, ...)

m characterization: noise is “sparse”, acts pointwise

m e.g. random-valued impulsive noise

nix;) =

&  with probability A
0 with probability 1-A

& € N(0,0%) i.i.d. Gaussian, A >0

m meaningless in function space!
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Motivation

linded.

Goal:

m rigorous definition of continuous impulsive noise model
m analysis of stochastic inverse problems with impulsive noise

m conforming discretization reproducing discrete noise

Approach:

m model impulsive noise as point process ~~ random measure
m relate noise level to noise parameters

m discretization by averaging ~~ linear combination of Diracs
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Noise process: definition

Poisson point process:
m random countableset N C Q C R"
® intensity measure u (here: u(A) = AlA| for A > 0)

B counting measure N:A— #ITNA)
satisfying
1 A; C Qdisjoint, measurable = N(A;) independent

2 A C Q) measurable = N(A) Poisson distributed with mean u(A),

i HAK
P[NA) =k] =e “(A)T
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Noise process: definition

Marked Poisson point process:
M* = {(x&) :x €N, & € N(©0,07}

m x € [1denotes location of corrupted point

&y i.i.d denotes magnitude of corruption

Poisson point process on Q x IR

statistical model for physical cause (e.g., cosmic rays)
defines random measure

n= Z &xbx

(x.&)en*

m Q) bounded ~~ I finite, n € M(Q) = C(Q)* almost surely
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Noise process: moments

m Expectation:forA C Q,

Eln(A)] =) PINA) =k Y J &dv=0

k=1 xeNNA

m Variance:forA C Q,

o0

Var[n(A ZP[N Ky J & dv

xenna’R

Z na AIADE )\|A|

k=1
= 20°|A|
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Noise process: noise level

&n =l = sup Z &(6x, 9) = Z |&x|

ol < (¢, en= (x,E)en*

Campbell’s theorem, || i.i.d. and half-normal ~~

IE = «| dudv = A|Q dv = AolQ|y/ 2
el = | | telduav =i | feldv =rololy/2

Varle(n)] = J J |&|* dudv = )\|Q|J €7 dv =2Ac’|Q] (1- 2)
QJIR IR
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Noise process: convergence

Consider {nn}, _ CMQ) for Ay, 0,>0

nelN
1 IfA,0p — O:

IEle(nn)] = O(An0,) — 0

2 IfalsoA,0%2 = O(n™)forr>1 (e.g. subsequence):
&nn) — 0 almost surely

Proof:
m Chebyshev concentration inequality + Borel-Cantelli

®m not constructive ~» no uniform a priori bounds, no rates
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3 Continuous inverse problems

Overview Noise process Inverse problems Discretization 10/24



Inverse problem

: _E
min [F(u) = y&(@) || () + aR(W),

m X Banach space, R convex, |.s.c, weakly sequentially
precompact sublevel sets

m eg, RW) =1 |lul?

B F:X— M(Q) bounded, weak-to-strong continuous
(compact embedding F : X — Y — M(Q))

m y¢ = F(u") + nrandom noisy data,  y*(w) realization
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Inverse problem

A _E
min ||F(u) -y (@)l + aR(),

Standard arguments: for every a > 0 and realization y*(w) € M(Q):

m existence of minimizer ué(w)
By, — y&(w) implies u] — ué(w)
m if R strictly convex, u5(w) unique

~~ defines random field v}
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Inverse problem: convergence

Consider
m sequence {n,} for Ay, o, with

A0, — 0

m noisy data y, := Fu®) + Nn, Minimizer uy, :== uZ’;

AnOp
an

If a, — 0 and —0

then subsequence [E[u,] — ut

m proof: standard deterministic arguments + convergence of €,
[Bissantz/Hohage/Munk '04]

m full sequence if uf unique, strong convergence if R Kadec-Klee

Overview Noise process Inverse problems Discretization 12/24



Inverse problem: convergence Wi

Consider
m sequence {n,} for Ay, o, with

{An}.{0n} bounded, Ao, = O(n") forr > 1
® noisy datay, == Fu®) + Nn, Minimizer up, == uﬁ,’;

2
Ao,

an

If a, — 0 and —0

then subsequence u, — uf almost surely

m proof: standard deterministic arguments + convergence of €,
[Bissantz/Hohage/Munk '04]

m full sequence if uf unique, strong convergence if R Kadec—Klee
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Inverse problem: convergence rates

Under usual assumptions:
1 A priori choice: a~ (Ag)" fort € (0,1)

it
2

|E[||uf, - uT||X] < clro)
2 Morozov:  TAo < [|F(US) = ¥l < T2AO
IE [Huf, - uTHX] < clho)z

m no almost sure rates, since no such rates for ¢,

m for 0 bounded: rates independent of o
~ A essentially characterizes noise level; robustness
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Discretization ;

Approach: start with discretization of C(Q) [Casas/C./Kunisch "12]

] {x,}j’i’; C Q nodes (sampling points, pixel midpoints, vertices)

] {ej}jl\ih1 nodal basis of continuous functions (FEM basis, point
spread functions)

®m h:= max h;, h;:=|suppej|

1<G<N
Np
Chi=4vh €CQ):vh=) v, where {v}h C R
j=1
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Discretization

Np
Mp =< th € M(Q) : pp = ) by, where {uth € R
=1
with norm
Np h
lunllveer = sup D w8, v) =D Ikl = |k
VIl =1 j=1 j=

~ M}, topological dual of C, with respect to duality pairing

(Hps Vi) Z Hv; = BhVh
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Discretization: interpolation operators

_ N,
M:C@ =G M=) " (vo)e

N,
Mo M@ = My, A=Y (o,

~Forally e M(Q), veCQ), v,eCy

1 (M vh) = (Apvi)  and (u,TTpv) = (Ap, v)

At < Ml v

3 Ahu —*yin M(Q) and ||/\hU||M(Q) — ||U||M(Q)
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Discretization: noise

Define discrete noise ny, via
Np

Na(w) : = Auln(@)] = ) _(n,¢;) &

j=1

> g&() | 8y

j= x€MNsupp e;

Np
1

m nodes x; deterministic ~ identify n, with (..., n)) € IRN

m averaging ~» model of physical image acquisition by sensors
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Discrete noise: moments

Case differentiation:

1 n;j=0:iffsuppeNM =0~

x€NNsupp(e;)

a.s. finite linear combination of Gaussian ~~ Gaussian, [E[n,] = 0,
Var[y] = A J e(x)? de & dv =:As;0°
o} R
with s; < h; < h (Campbell’s theorem)
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Discrete noise: comparison

Discrete noise model in uniform case s; = s ~ h:

0 with probability 1-Ap,

Xj) =n;=
Na(X) = n; {6],63\{(0,0%) with probability A,

Ay=1-e™M, o ~ Ao*h

m effective noise parameters A, oy, discretization dependent
m 0, dependsonoandA

m note: taking h — 0 here meaningless since n, —* n
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Discrete noise: level

Np
&n = [Nnllyeq) = Z |njl
j=1

m |n;| half-normal random variable (not independent!)
m ~~ moments from Campbell’s theorem
B Apinterpolation ~- &, < galmost surely,
[E[e,] < [E[€]
Var[e,] < Varle]

Overview Noise process Inverse problems Discretization 21/24



Discrete inverse problem

rJg)r(\ IFh (W) = Y4l vgiey + aR(W)

| Fh = (/\hOF)ZX—)Mh
m oy =Nyt = Fnu®) + np € My,
m semi-discretization (discretization of X independent)

m conforming discretization ~ well-posed, solution uy, := u"

m &, uniformly bounded ~~ convergence, rates (uniform in h)
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Discrete solution: convergence

Consider
B noise parameters A, o fixed

m discretization parameter h — 0

Then: {uf },_, contains subsequences with
1 [E[We] — [E[ug]

2 u — uf almost surely

m whole sequence if u, unique, strong convergence if R Kadec-Klee

m proof: boundedness of Ay, standard arguments
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Conclusions

linded

Continous impulsive noise:

m Poisson point process is appropriate model
m conforming discretization reproduces standard discrete noise

m convergence of stochastic inverse problem

Outlook:

m numerical realization (based on [C./Jin 12])
m adaptive discretization & regularization
m heuristic parameter choice

m fitting with probability metrics
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