UNIVERSITY OF GRAZ

Department of Mathematics and Scientific Computing

MRI pulse design via discrete-valued optimal control

Christian Clason

Christoph Aigner Armin Rund Carla Tameling Benedikt Wirth

Department of Mathematics and Scientific Computing, University of Graz

11th Applied Inverse Problems Conference Göttingen, September 8, 2023

Magnetic resonance imaging (MRI):

- popular for medical imaging (and spectroscopy)
- safe, radiation-free
- versatile
- simple image reconstruction (Fourier transform)
- but: complicated physics (compare CT: simple physics, complicated mathematics)

Basic steps in MR scan:

- 1 magnetic field is applied, aligns proton spins
- 2 radio pulse at resonance frequency is absorbed by hydrogen nuclei, re-radiated over time at same frequency
- 3 decaying time-dependent signal is measured by receiver coil

Fundamental principles of MRI:

- signal amplitude proportional to hydrogen density
- signal frequency proportional to magnetic field strength

Problem:

measured time-dependent signal is composite over whole volume, no spatial information

Solution:

use spatially dependent magnetic fields to map resonance frequency to spatial location

But: linear superposition of (x, y, z) fields is not unique

 \rightarrow sequential application of fields to encode (x, y, z) separately

Spatial encoding

Slice selection (z):

use z-proportional magnetic field during RF excitation

 $\blacksquare \rightsquigarrow$ only thin slice has resonance at RF pulse frequency, contributes to measured signal

Not considered here:

Frequency encoding (x):

use x-proportional magnetic field during measurement

Phase encoding (y):

 use y-proportional magnetic field before measurement to change phase offset of signal

 \rightsquigarrow FFT of time/phase-dependent data gives image

\rightsquigarrow MRI is controlled imaging \rightsquigarrow optimal control

2 Optimal control of Bloch equation

3 MR pulse design

4 Discrete-valued pulses

5 Conclusion

2 Optimal control of Bloch equation

3 MR pulse design

4 Discrete-valued pulses

5 Conclusion

Mathematical model

Bloch equation

$$\frac{d}{dt}M(t) = \gamma M(t) \times B(t) + R(M(t)), \qquad M(0) = M_0$$

- $M(t) \in \mathbb{R}^3$ describes temporal evolution of spin ensemble
- **B**(t) controlled time-dependent magnetic field
- ightarrow γ gyromagnetic ratio ightarrow resonance frequency $ω = γB_0$

$$R(M) = \left(-M_x \frac{1}{T_2}, -M_y \frac{1}{T_2}, (-M_z - M_0) \frac{1}{T_1}\right)^T$$
 relaxation term
(T_1, T_2 tissue parameters)

Mathematical model

Slice selection (in rotating frame):

$$B(t) = (u_x(t)B_1, u_y(t)B_1, G_z(t)z)^T$$

 $G_z(t)$ slice-selective gradient field, B_1 static magnetic field

Bloch equation $\begin{cases}
\frac{d}{dt}M(t;z) = A(u(t);z)M(t;z) + b(z), & t > 0, \\
M(0;z) = M^{0}(z),
\end{cases}$

$$A(u;z) = \begin{pmatrix} -\frac{1}{T_2} & \gamma G_z(t)z & \gamma u_y(t)B_1 \\ -\gamma G_z(t)z & -\frac{1}{T_2} & \gamma u_x(t)B_1 \\ -\gamma u_y(t)B_1 & -\gamma u_x(t)B_1 & -\frac{1}{T_1} \end{pmatrix} \qquad b(z) = \begin{pmatrix} 0 \\ 0 \\ \frac{M_0}{T_1} \end{pmatrix}$$

Optimal control problem

Goal:

- compute control $u(t) = (u_x(t), u_y(t))$ such that $M(T) \approx M_d$
- \rightsquigarrow control-to-state mapping $S^{(\omega)}: u \to M(T; z)$
- $M_d(z)$ desired magnetization state \rightarrow slice selection
- $(M_d = M_d^{(\omega)})$ selective to resonance frequency \rightarrow spectroscopy)
- in addition: control with minimal specific absorption rate (SAR)

$$\min_{u \in L^2} \frac{1}{2} \sum_{\omega} \int_{-\alpha}^{\alpha} \left| S^{(\omega)}(u) - M_d^{(\omega)} \right|_2^2 dt + \frac{\alpha}{2} \int_0^T |u(t)|_2^2 dt$$

Numerical solution: gradient method

Gradient method

$$u^{k+1} = u^k - s^k g(u^k)$$

gradient

$$g(u^{k})(t) = \alpha u(t) + \gamma B_{1} \left(\int_{-\alpha}^{\alpha} M_{z}(t;z) P_{y}(t;z) - M_{y}(t;z) P_{z}(t;z) dz \right) \\ \int_{-\alpha}^{\alpha} M_{z}(t;z) P_{x}(t;z) - M_{x}(t;z) P_{z}(t;z) dz \right)$$

adjoint state solving (backward in time)

$$\begin{cases} -\frac{d}{dt}P(t;z) = A(u(t);z)^{T}P(t;z), & 0 \le t < T, \\ P(T;z) = M(T;z) - M_{d}(z), \end{cases}$$

step length s^k (Armijo, backtracking)

Numerical solution: Newton method

Newton method

$$H(u^k)\delta u=-g(u^k),\qquad u^{k+1}=u^k+\delta u$$

$$[H(u^k)h](t) = \alpha h(t) + \begin{pmatrix} \int_{-\alpha}^{\alpha} \delta M(t;z) A_1 P(t;z) + M(t;z) A_1 \delta P(t;z) dz \\ \int_{-\alpha}^{\alpha} \delta M(t;z) A_2 P(t;z) + M(t;z) A_2 \delta P(t;z) dz \end{pmatrix}$$

 $MA_1P = \gamma B_1(M_zP_y - M_yP_z) \qquad MA_2P = \gamma B_1(M_zP_x - M_yP_y)$

linearized state

$$\begin{cases} \frac{d}{dt} \delta M(t;z) = A(u^{k};z) \delta M(t;z) + A'(h)M, & 0 < t \le T, \\ \delta M(0;z) = (0,0,0)^{T}, \end{cases}$$

Numerical solution: Newton method

Newton method

$$H(u^k)\delta u=-g(u^k),\qquad u^{k+1}=u^k+\delta u$$

$$[H(u^k)h](t) = \alpha h(t) + \begin{pmatrix} \int_{-\alpha}^{\alpha} \delta M(t;z) A_1 P(t;z) + M(t;z) A_1 \delta P(t;z) dz \\ \int_{-\alpha}^{\alpha} \delta M(t;z) A_2 P(t;z) + M(t;z) A_2 \delta P(t;z) dz \end{pmatrix}$$

 $MA_1P = \gamma B_1(M_zP_y - M_yP_z) \qquad MA_2P = \gamma B_1(M_zP_x - M_yP_y)$

linearized adjoint

$$\begin{cases} -\frac{d}{dt}\delta P(t;z) = A(u^k;z)^T \delta P(t;z) + A'(h)^T P, & 0 \le t < T, \\ \delta P(T;z) = \delta M(T;z). \end{cases}$$

Numerical solution: Newton method

Bilinear control problem: non-convex

- solution of Newton step via CG method
- globalization by trust-region method (truncated CG [Steihaug])

Discretization:

- collocation points z_i (independent, parallel)
- Crank–Nicolson (state piecewise linear, controls piecewise constant)
- adjoint-consistent: adjoint state piecewise constant
- same for linearized state, adjoint
- CG method in weighted inner product (time steps)

2 Optimal control of Bloch equation

3 MR pulse design

4 Discrete-valued pulses

5 Conclusion

MR pulse design

Goal: multi-slice excitation

- initial magnetization $M_0 = (0, 0, 1)^T$
- gradient G_z from standard Cartesian sequence (2.56 ms)
- window a = 0.5 m, $\Delta z = 0.2 \text{ mm}$ (5001 points)

desired magnetization (slice width 5 mm)

$$M_d(z) = \begin{cases} (\sin(90^\circ), \cos(90^\circ), 0)^T & \text{in slice} \\ (0, 0, 1)^T & \text{out of slice} \end{cases}$$

• $u_0 \equiv (0,0)^T$, $\alpha = 10^{-4}$

Validation:

- implemented on 3T Siemens MR scanner
- phantom (slice profile homogeneity)
- healthy volunteer (image reconstruction)

Results: slice profile

Results: slice profile

Results: slice profile

Results: multi-slice excitation

Results: multi-slice excitation

Results: multi-slice excitation

Results: multi-slice reconstruction

Results: multi-slice reconstruction

2 Optimal control of Bloch equation

3 MR pulse design

4 Discrete-valued pulses

5 Conclusion

Technical limitation: device can only realize control from discrete set

$$U = \{ u \in L^2(0,T; \mathbb{R}^2) : u(t) \in \{u_1, \dots, u_d\} \text{ a.e.} \}$$

■ $u_1, \ldots, u_d \in \mathbb{R}^2$ given (fixed amplitude, phases)

non-convex discrete-valued control problem

$$\min_{u \in U} \frac{1}{2} \sum_{\omega} \|S^{(\omega)}(u) - M_d^{(\omega)}\|_2^2 + \frac{\alpha}{2} \int_0^T |u(t)|_2^2 dt$$

convex relaxation: replace U by convex hull

• works only for d = 2, cf. bang-bang control ($\alpha = 0$)

■ ~> promote $u(x) \in \{u_1, ..., u_d\}$ by convex pointwise penalty

$$\mathcal{G}(u) = \int_{\Omega} g(u(x)) \, dx$$

generalize L^1 norm: polyhedral epigraph with vertices u_1, \ldots, u_d

not exact relaxation/penalization (in general)!

generalize L^1 norm: polyhedral epigraph with vertices u_1, \ldots, u_d

- motivation: convex envelope of $\frac{1}{2} ||u||^2 + \delta_U$
- multi-bang (generalized bang-bang) control
- here: vector-valued control

Vector-valued multi-bang: penalty

Here: admissible control set U of d radially distributed states, origin

$$U = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \omega_0 \cos \theta_1 \\ \omega_0 \sin \theta_1 \end{pmatrix}, \dots, \begin{pmatrix} \omega_0 \cos \theta_d \\ \omega_0 \sin \theta_d \end{pmatrix} \right\}$$

fixed amplitude
$$\omega_0 > 0$$

phases $0 \le \theta_1 < \ldots < \theta_d < 2\pi$
multi-bang penalty $g = \left(\frac{1}{2}|\cdot|_2^2 + \delta_U\right)^{**}$ convex envelope
 $g^*(q) = \left(\left(\frac{1}{2}|\cdot|_2^2 + \delta_U\right)^{**}\right)^* (q) = \left(\frac{1}{2}|\cdot|_2^2 + \delta_U\right)^* (q)$
 $= \begin{cases} 0 & \langle q, u_i \rangle \le \frac{1}{2}\omega_0^2 \text{ for all } 1 \le i \le d \\ \langle q, u_i \rangle - \frac{1}{2}\omega_0^2 & \frac{\theta_{i-1}+\theta_i}{2} \le \angle q \le \frac{\theta_i+\theta_{i+1}}{2}, \langle q, u_i \rangle \ge \frac{1}{2} \end{cases}$

Vector-valued multi-bang: subdifferential

Fenchel conjugate

$$g^*(q) = \begin{cases} 0 := u_0 & q \in \overline{Q}_0 \\ \langle q, u_i \rangle - \frac{1}{2}\omega_0^2 & q \in \overline{Q}_i \end{cases}$$

Subdifferential

$$\partial g^{*}(q) = \begin{cases} \{u_{i}\} & q \in Q_{i} & 0 \le i \le d \\ \cos\{u_{i_{1}}, \dots, u_{i_{k}}\} & q \in Q_{i_{1}\dots i_{k}} & 0 \le i_{1}, \dots, i_{k} \le d \end{cases}$$

Vector-valued multi-bang: subdifferential

Subdifferential

$$\partial g^*(q) = \begin{cases} \{u_i\} & q \in Q_i & 0 \le i \le d \\ \cos\{u_{i_1}, \dots, u_{i_k}\} & q \in Q_{i_1 \dots i_k} & 0 \le i_1, \dots, i_k \le d \end{cases}$$

Moreau-Yosida regularization

$$(\partial g^{*})_{\gamma}(q) = \begin{cases} u_{i} & q \in Q_{i}^{\gamma} \\ \left(\frac{\langle q, u_{i} \rangle}{\gamma \omega_{0}^{2}} - \frac{\alpha}{2\gamma}\right) u_{i} & q \in Q_{0,i}^{\gamma} \\ \frac{u_{i}+u_{i+1}}{2} + \frac{\langle q, u_{i}-u_{i+1} \rangle (u_{i}-u_{i+1})}{\gamma |u_{i}-u_{i+1}|_{2}^{2}} & q \in Q_{i,i+1}^{\gamma} \\ \frac{q}{\gamma} - \frac{\alpha}{\gamma} \left(\frac{\omega_{0}}{|u_{i}+u_{i+1}|_{2}}\right)^{2} (u_{i}+u_{i+1}) & q \in Q_{0,i,i+1}^{\gamma} \end{cases}$$

Vector-valued multi-bang: subdifferential

Vector-valued multi-bang: Newton method

Newton derivative

$$D_{N}(\partial g_{\gamma}^{*})(q) = \begin{cases} 0 & q \in Q_{i}^{\gamma} \\ \frac{u_{i}u_{i}^{T}1}{\gamma \omega_{0}^{2}} & q \in Q_{0,i}^{\gamma} \\ \frac{(u_{i}-u_{i+1})(u_{i}-u_{i+1})^{T}}{\gamma |u_{i}-u_{i+1}|_{2}^{2}} & q \in Q_{i,i+1}^{\gamma} \\ \frac{1}{\gamma} \operatorname{Id} & q \in Q_{0,i,i+1}^{\gamma} \end{cases}$$

Superposition operator:

$$\left[D_N H_{\gamma}(p)\right](t) \coloneqq D_N\left(\partial g_{\gamma}^*\right)(p(t)) \text{ a.e. } t \in [0,T]$$

Semismooth Newton system

$$\left(\operatorname{Id} - D_N H_{\gamma}(\mathcal{F}'(u^k))\mathcal{F}''(u^k)\right)\delta u = -u^k + \partial \mathcal{G}_{\gamma}^*(\mathcal{F}'(u^k))$$

matrix-free Krylov method for semismooth Newton step

- $\blacksquare \mathcal{F}', \mathcal{F}''$ via linearized, adjoint Bloch equation
- discretization, adjoint as before

goal: shift magnetization from $M_0 = (0, 0, 1)^T$ at t = 0to $M_d = (1, 0, 0)^T$ at t = T

d = 3, 6 radially distributed admissible control states

- n = 1, 4 isochromats with different resonance frequencies
 - shift all isochromats
 - 2 shift only one isochromat

$$\alpha = 10^{-1}, \omega_0 = 1$$

example motivated by [Dridi/Lapert/Salomon/Glaser/Sugny '15]

Figure: n = 1 isochromat, d = 3 control states

Figure: n = 1 isochromat, d = 6 control states

Figure: n = 4 isochromats, same target

Figure: J = 4 isochromats, different targets

Conclusion

Optimal control for MR pulse design

- allows designing low energy pulses
- allows incorporating full physical model
- allows accelerated imaging
- allows incorporating structural constraints

Outlook:

- joint optimization of RF pulse and gradient
- (joint) optimization of frequency, phase encoding
- joint optimization and reconstruction

Preprints, codes:

http://homepage.uni-graz.at/c.clason/publikationen