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Motivation: Magnetic resonance imaging

Magnetic resonance imaging (MRI):

Overview

popular for medical imaging (and spectroscopy)
safe, radiation-free
versatile

simple image reconstruction (Fourier transform)

but: complicated physics
(compare CT: simple physics, complicated mathematics)



MRI in a nutshell

Basic steps in MR scan:
1 magnetic field is applied, aligns proton spins

2 radio pulse at resonance frequency is absorbed by hydrogen nuclei,
re-radiated over time at same frequency

3 decaying time-dependent signal is measured by receiver coil

Fundamental principles of MRI:

signal amplitude proportional to hydrogen density

signal frequency proportional to magnetic field strength

Overview



Spatial encoding

Problem:

measured time-dependent signal is composite over whole volume,
no spatial information

Solution:

use spatially dependent magnetic fields to map resonance frequency
to spatial location

But: linear superposition of (x, y, z) fields is not unique

sequential application of fields to encode (x, y, z) separately
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Spatial encoding

Slice selection (2):
use z-proportional magnetic field during RF excitation

~» only thin slice has resonance at RF pulse frequency, contributes to
measured signal

Not considered here:
Frequency encoding (x):
use x-proportional magnetic field during measurement
Phase encoding (y):
use y-proportional magnetic field before measurement to change phase offset of

signal

~» FFT of time/phase-dependent data gives image

~> MRI is controlled imaging ~» optimal control
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2 Optimal control of Bloch equation



Mathematical model

Bloch equation

%M(t) = yM(t) x B(t) +R(M()),  M(0) = Mo

M(t) € R3 describes temporal evolution of spin ensemble
B(t) controlled time-dependent magnetic field

y gyromagnetic ratio ~» resonance frequency w = yBy

;
R(M) = (_Mx;_z, My, (=M, — MO)T1—1) relaxation term
(T4, T, tissue parameters)

Optimal control of Bloch equation



Mathematical model

Slice selection (in rotating frame):

B(t) = (Uyx(t)B1,uy (t)B1,G, (t)z)

G, (t) slice-selective gradient field, B4 static magnetic field

Bloch equation

%M(t;Z) = A(u(t); 2)M(t; z) + b(2),
M(0; z) = M°(2),

- YG:(t)z  yuy(t)B
A(u;z) =| -yG,(t)z —T1—2 yux (t)B1
—yuy()B1 —yux(t)B  —f

Optimal control of Bloch equation

t>0,

b(z) =

5o o



Optimal control problem

Goal:
compute control u(t) = (ux(t),uy(t)) such that M(T) ~ My

~> control-to-state mapping $“) : u — M(T; z)
M4(z) desired magnetization state ~» slice selection
(Mg = ij“’) selective to resonance frequency ~» spectroscopy)

in addition: control with minimal specific absorption rate (SAR)

s@ () - M

2 o T 5
2dt+5/0 u(t)[2 dt

. !
min -
uel? 2 ; «[u

Optimal control of Bloch equation
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Numerical solution: gradient method

Gradient method

uk+1 — uk _ Skg(Uk)

gradient

- [5 M (t:2)Py(t;2) = My (t; 2)P,(t; 2) dz
g (u)(t) = au(t) +yB; /_aa M, (£ 2)Py (t; 2) — My(t; 2)P, (t; 2) dz

adjoint state solving (backward in time)

—%P(t;z) =A(u(t); 2) P(t; 2), 0<t<T,

P(T;2) =M(T;z) — My(2),

step length s¥ (Armijo, backtracking)

Optimal control of Bloch equation
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Numerical solution: Newton method

Newton method
Hw éu =—-g), " =uk+6u

Hessian
a
SM(t; 2)A1P(t;z) + M(t; 2)A16P(t;2) dz
(HWORI(E) = ah(t) + /‘a" (t;2)A1P(t;2) + M(t;2)A16P(t; 2)
f_a SM(t; 2)ALP(t;2) + M(t; 2)A,6P(t;2)dz
MA4P =yB, (MZPy — Msz) MALP =yBy(M,Py — MyPy)

linearized state

d
a5M(t;z) =AW ; 2)6M(t; ) + A" (WM, 0<t<T,

§M(0;z) = (0,0,0)7,

Optimal control of Bloch equation



Numerical solution: Newton method

Newton method
HWéu = -guk), " =uk+6u

Hessian

ORI = b (t) + [5 8M(t; 2)A1P(t; 2) + M(t; 2)A18P(t; 2) dz
/_aa SM(t; 2)A2P(t;2) + M(t; 2)A26P(t;2) dz

MAP =yB1(M;Py, — M,P,) MAP =yB1(M;Px —M,Py)
linearized adjoint

d
- 8P(t;2) = AWS 2)TsP(tz) +A'(W)TP, 0<t<T,

6P(T;z) =86M(T; 2).
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Numerical solution: Newton method

Bilinear control problem: non-convex
solution of Newton step via CG method

globalization by trust-region method (truncated CG [Steihaug])

Discretization:
collocation points z; (independent, parallel)
Crank-Nicolson (state piecewise linear, controls piecewise constant)
adjoint-consistent: adjoint state piecewise constant
same for linearized state, adjoint

CG method in weighted inner product (time steps)
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3 MR pulse design



MR pulse design

Goal: multi-slice excitation
initial magnetization My = (0,0, 1)"
gradient G, from standard Cartesian sequence (2.56 ms)
window g = 0.5m, Az = 0.2mm (5001 points)

desired magnetization (slice width 5 mm)

(sin(90°), cos(90°),0)" in slice

Mq(z) =
{(0, 0,17 out of slice

ug = (0,007, a=10"*

Validation:
implemented on 3T Siemens MR scanner
phantom (slice profile homogeneity)

healthy volunteer (image reconstruction)

MR pulse design



Results: slice profile
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Results: slice profile
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Results: slice profile
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Results: multi-slice excitation

B, [uT], G, [mT/m]
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Results: multi-slice excitation

B, [uT], G, [mT/m]

-15
0 5 10

time [ms]

(a) optimized pulse

MR pulse design

signal [a.u.]

2000

1500

1000

500

JUUUL

-0.05 0 0.05
position in m

(b) measured magnetization

17127



Results: multi-slice excitation
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Results: multi-slice reconstruction
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Results: multi-slice reconstruction

z .
sG reconstruction

readout slice 3 slice 4

slice 5

slice 2 slice 3

slice 1 slice 3 slice 6
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4 Discrete-valued pulses



Discrete control

Technical limitation: device can only realize control from discrete set

U={uel?0,T;R? :u(t) € {us,...,uq} ae}

u,...,uq € R? given (fixed amplitude, phases)

non-convex discrete-valued control problem

1 a [T
— (w) _M(w) 2, = 2
mip3 IS M+ [ o a
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Multi-bang penalty

convex relaxation: replace U by convex hull

works only for d = 2, cf. bang-bang control (a = 0)

~» promote u(x) € {u,...,Uq} by convex pointwise penalty
6) = [ 9wt ox

generalize L" norm: polyhedral epigraph with vertices uq, ..., uqg

not exact relaxation/penalization (in general)!
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Multi-bang penalty

generalize L' norm: polyhedral epigraph with vertices uq, ..., uq

motivation: convex envelope of
lull? + 68y

multi-bang (generalized
bang-bang) control

here: vector-valued control
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Vector-valued multi-bang: penalty

Here: admissible control set U of d radially distributed states, origin
6 6
b= o e oo B

fixed amplitude wq >0
phases 0<61<...<0y<2m

multi-bang penalty g = (] - 12 +6y)"" convex envelope

g'@ = ((31-B+60)") @ = (11 B+8s) @

_ {0 (q,uiy < Jwlforall1 <i<d

1,,2 0i_1+6; 0i+6;1 1,,2
(Q,ui) — 5wy =5 < /g < 25,(q,U)) = 5W;

Discrete-valued pulses



Vector-valued multi-bang: subdifferential

Fenchel conjugate

g@- {07 9e
(q,up) - 3wl qeqQ;

Subdifferential

{ui} q €Q; 0<i<d
co{uj, ...,y } q€Qj iy 0<Zip,... ik <d

g™ (q) = {

Discrete-valued pulses



Vector-valued multi-bang: subdifferential
Subdifferential

*(q):{{uf} geQ O0<i<d

co{uj,...,ui,} 9€Qi.ii 0<it,....ix<d

Moreau-Yosida regularization

uj geqQ!
<q:ui> _ y

( yw2 2y vi 4 S Qo,i

(09%)y(q) =
Y Ui+l + (Q.ui=Ui+1) (Ui=Ui1) qe Q

2 ylui 2’-’1+1 |2 ii+1

q9_a Wo ; ;

y v (lUi+Ui+1 |2) (Ui +Ujs1) q¢c QO,i,i+1



Vector-valued multi-bang: subdifferential
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Vector-valued multi-bang: Newton method

Newton derivative

0 qgeqQ
U,'LIT1 y
i q e Q )
* _ ) yw? 0,i
DN(agV)(q) - (UiBUiH)(Ui—UiH)T c QV
ylui-uin 3 q f,i+1
1 4
y1d q € Qpjs1

Superposition operator:

[DwHy (p)] () = Di (39;) (p(6) ae. te[0T]

Discrete-valued pulses



Vector-valued multi-bang: Newton method

Semismooth Newton system

(1d—DwHy (F ()T (1)) 6u = —u* + 3G, (F (u¥)

matrix-free Krylov method for semismooth Newton step
F’, F" via linearized, adjoint Bloch equation

discretization, adjoint as before

Discrete-valued pulses



Numerical examples

goal: shift magnetization from My = (0,0,1)" att =0
toMy=(1,0,0] att=T

d = 3, 6 radially distributed admissible control states

n = 1,4 isochromats with different resonance frequencies
1 shift all isochromats

2 shift only one isochromat

a=10" wo=1

example motivated by [Dridi/Lapert/Salomon/Glaser/Sugny "15]
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Numerical examples

(a) control u(t) (b) state M(t)

Figure: n = 1 isochromat, d = 3 control states
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Numerical examples

(a) control u(t) (b) state M(t)

Figure: n = 1 isochromat, d = 6 control states
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Numerical examples

(a) control u(t) (b) state M(t)

Figure: n = 4 isochromats, same target
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Numerical examples

(a) control u(t) (b) state M(t)

Figure: / = 4 isochromats, different targets
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Conclusion

Optimal control for MR pulse design
allows designing low energy pulses
allows incorporating full physical model
allows accelerated imaging

allows incorporating structural constraints

Outlook:
joint optimization of RF pulse and gradient
(joint) optimization of frequency, phase encoding

joint optimization and reconstruction

Preprints, codes:
http://homepage.uni-graz.at/c.clason/publikationen

Conclusion

27/27


http://homepage.uni-graz.at/c.clason/publikationen

	Overview
	Optimal control of Bloch equation
	MR pulse design
	Discrete-valued pulses
	Conclusion

