

L¹ data fitting for parameter identification problems for PDEs

Christian Clason¹ Bangti Jin²

¹Institute for Mathematics and Scientific Computing, Karl-Franzens-Universität Graz

²Department of Mathematics (IAMCS), Texas A&M University

Applied Inverse Problems Conference College Station, Texas, May 23, 2011

L¹ fitting problem

 (\mathcal{P})

$$\min_{u \in \mathcal{X}} \|S(u) - y^{\delta}\|_{\mathsf{L}^{1}} + \frac{\alpha}{2} \|u\|_{\mathcal{X}}^{2}$$

• $\mathcal{S}: \mathcal{X} \to \mathcal{Y} \subset L^1(\Omega)$ nonlinear forward operator

•
$$y^{\delta} \in \mathsf{L}^{\infty}(\Omega)$$
 noisy measurements

- $\alpha > 0$ regularization parameter
- $\Omega \subset \mathbb{R}^n$, n = 1, 2, 3, Lipschitz boundary $\partial \Omega$

L¹ fitting problem

 (\mathcal{P})

$$\min_{u \in \mathcal{X}} \|S(u) - y^{\delta}\|_{\mathsf{L}^{1}} + \frac{\alpha}{2} \|u\|_{\mathcal{X}}^{2}$$

L¹ fitting more robust for non-Gaussian noise:

- Iarge outliers
- Laplace-distributed noise
- impulsive noise (salt & pepper, random-valued)
- \rightsquigarrow Many applications in imaging

L¹ fitting problem

 $(\mathcal{P}$

$$\min_{u \in \mathcal{X}} \|\boldsymbol{S}(u) - \boldsymbol{y}^{\delta}\|_{\mathsf{L}^{1}} + \frac{\alpha}{2} \|\boldsymbol{u}\|_{\mathcal{X}}^{2}$$

Here: parameter identification problems for PDEs

Main assumptions:

- $S: \mathcal{X} \to \mathcal{Y}$ sufficiently differentiable
- *X* Hilbert space (e.g., L², H¹)
- \mathcal{Y} embeds compactly into L^q, q > 2

Goal: Fast Newton-type methods for L¹ fitting

1

Elliptic model problems

1 Inverse potential problem: $S : L^2(\Omega) \to H^1(\Omega), u \mapsto y$,

$$\langle \nabla y, \nabla v \rangle_{\mathsf{L}^2} + \langle uy, v \rangle_{\mathsf{L}^2} = \langle f, v \rangle_{\mathsf{L}^2} \quad \text{ for all } v \in \mathsf{H}^1(\Omega)$$

2 Inverse Robin problem: $S : L^2(\Gamma_i) \to H^{1/2}(\Gamma_c), u \mapsto y|_{\Gamma_c}$,

$$\langle \nabla y, \nabla v \rangle_{\mathsf{L}^2} + \langle uy, v \rangle_{\mathsf{L}^2(\Gamma_i)} = \langle f, v \rangle_{\mathsf{L}^2(\Gamma_c)} \quad \text{ for all } v \in \mathsf{H}^1(\Omega)$$

3 Inverse conductivity problem, $S : H^1(\Omega) \cap L^{\infty}(\Omega) \to H^1_0(\Omega)$, $u \mapsto y$,

$$\langle u \nabla y, \nabla v \rangle_{\mathsf{L}^2} = \langle f, v \rangle_{\mathsf{L}^2} \quad \text{ for all } v \in \mathsf{H}^1_0(\Omega)$$

Common properties

(A1) *S* uniformly bounded in \mathcal{X} , $u_n \rightharpoonup u$ in \mathcal{X} implies

$$S(u_n) \to S(u)$$
 in $L^2(\Omega)$

(A2) S twice Fréchet differentiable

(A3) For all $u, h \in \mathcal{X}$,

$$\begin{split} \|S'(u)h\|_{\mathsf{L}^2} &\leq C \|h\|_{\mathcal{X}} \\ \|S''(u)(h,h)\|_{\mathsf{L}^2} &\leq C \|h\|_{\mathcal{X}}^2 \end{split}$$

 \rightsquigarrow sufficient conditions for approach, existence of minimizers u_{α}

L¹ fitting problem

$$\min_{u} \left\{ \mathcal{J}_{\alpha} \equiv \mathcal{F}(u) + \mathcal{G}(\mathcal{S}(u) - y^{\delta}) \right\}$$

with

$$\begin{split} \mathcal{F} &: \mathcal{X} \to \mathbb{R}, \qquad u \mapsto \frac{\alpha}{2} \|u\|_{\mathcal{X}}^2 \,, \\ \mathcal{G} &: \mathsf{L}^1(\Omega) \to \mathbb{R}, \quad v \mapsto \|v\|_{\mathsf{L}^1} \,, \end{split}$$

Problem: *S* nonlinear, Fenchel duality not applicable But *S* strictly diff., \mathcal{G} convex, real-valued $\Rightarrow \mathcal{J}_{\alpha}$ is Lipschitz

UNI GRAZ

 \mathcal{J}_{α} Lipschitz \Rightarrow sum rule, chain rule for generalized gradient:

$$\partial \mathcal{J}_{\alpha}(u) = \mathcal{F}'(u) + \mathcal{S}'(u)^* \partial \mathcal{G}(\mathcal{S}(u) - \mathbf{y}^{\delta})$$

Thus: The necessary condition for any local minimizer u_{α} ,

 $\mathbf{0}\in\partial\mathcal{J}_{\alpha}(\boldsymbol{u}_{\alpha}),$

implies existence of $p_{lpha}\in\partial\mathcal{G}(\mathcal{S}(u_{lpha})-y^{\delta})\subset\mathsf{L}^{\infty}(\Omega)$ with

$$\mathsf{OS}_1) \qquad \qquad \mathsf{0} = \alpha j(u_\alpha) + \mathcal{S}'(u_\alpha)^* \boldsymbol{p}_\alpha$$

INSTITUTE OF MATHEMATICS AND SCIENTIFIC COMPUTING

Optimality conditions

 $\mathcal{G} = \|\cdot\|_{L^1}$ convex:

$$p_{lpha} \in \partial \mathcal{G}(\mathcal{S}(u_{lpha}) - \mathbf{y}^{\delta}) \iff \mathcal{S}(u_{lpha}) - \mathbf{y}^{\delta} \in \partial \mathcal{G}^*(p_{lpha})$$

with Fenchel conjugate

$$\mathcal{G}^*(p) = I_{\{\|p\|_{L^{\infty}} \le 1\}} := egin{cases} 0 & \|p\|_{L^{\infty}} \le 1 \ \infty & ext{else} \end{cases}$$

$$oldsymbol{v}\in\partial\mathcal{G}^*(oldsymbol{
ho})\Leftrightarrow\langleoldsymbol{v},oldsymbol{q}-oldsymbol{
ho}
angle_{L^{\infty*},L^{\infty}}\leq0$$

for all $q\in\mathsf{L}^\infty(\Omega)$ with $\|q\|_{\mathsf{L}^\infty}\leq\mathsf{1}$

INSTITUTE OF MATHEMATICS AND SCIENTIFIC COMPUTING

Optimality conditions

 $\mathcal{G} = \| \cdot \|_{L^1}$ convex:

$$p_{lpha} \in \partial \mathcal{G}(\mathcal{S}(u_{lpha}) - \mathbf{y}^{\delta}) \quad \Longleftrightarrow \quad \mathcal{S}(u_{lpha}) - \mathbf{y}^{\delta} \in \partial \mathcal{G}^*(p_{lpha})$$

Thus, $p_{\alpha} \in \partial \mathcal{G}(\mathcal{S}(u_{\alpha}) - y^{\delta})$ iff

$$(\mathsf{OS}_2) \qquad \langle \boldsymbol{S}(\boldsymbol{u}_\alpha) - \boldsymbol{y}^\delta, \boldsymbol{p} - \boldsymbol{p}_\alpha \rangle_{\mathsf{L}^2} \leq \boldsymbol{0}$$

for all $\pmb{p}\in\mathsf{L}^\infty(\Omega)$ with $\left\|\pmb{p}
ight\|_{\mathsf{L}^\infty}\leq\mathsf{1}$

(Note $S(u_{\alpha}) - y^{\delta} \in L^{2}(\Omega)$ by assumption)

Theorem

For any local minimizer $u_{\alpha} \in \mathcal{X}$ of problem (\mathcal{P}), there exists a $p_{\alpha} \in L^{\infty}(\Omega)$ such that

(OS)
$$\begin{cases} S'(u_{\alpha})^* p_{\alpha} + \alpha j(u_{\alpha}) = 0, \\ \langle S(u_{\alpha}) - y^{\delta}, p - p_{\alpha} \rangle_{\mathsf{L}^2} \leq 0 \quad \text{for all } \|p\|_{\mathsf{L}^{\infty}} \leq 1. \end{cases}$$

(*j*: duality mapping in \mathcal{X})

Theorem

For any local minimizer $u_{\alpha} \in \mathcal{X}$ of problem (\mathcal{P}), there exists a $p_{\alpha} \in L^{\infty}(\Omega)$ such that

(OS)
$$\begin{cases} S'(u_{\alpha})^* p_{\alpha} + \alpha j(u_{\alpha}) = 0, \\ \langle S(u_{\alpha}) - y^{\delta}, p - p_{\alpha} \rangle_{L^2} \leq 0 \quad \text{for all } \|p\|_{L^{\infty}} \leq 1. \end{cases}$$

Complementarity function for variational inequality: for any c > 0,

$$egin{aligned} S(u_lpha)-y^\delta&=\max(0,S(u_lpha)-y^\delta+c(p_lpha-1))\ &+\min(0,S(u_lpha)-y^\delta+c(p_lpha+1)) \end{aligned}$$

UNI GRAZ

Complementarity function for variational inequality: for any c > 0,

$$egin{aligned} \mathcal{S}(u_lpha) - y^\delta &= \max(0, \mathcal{S}(u_lpha) - y^\delta + c(p_lpha - 1)) \ &+ \min(0, \mathcal{S}(u_lpha) - y^\delta + c(p_lpha + 1)) \end{aligned}$$

Pointwise interpretation:

$$p_lpha = ext{sign}(S(u_lpha) - y^\delta) = egin{cases} 1 & S(u_lpha) - y^\delta > 0 \ -1 & S(u_lpha) - y^\delta < 0 \ au \in [-1,1] & S(u_lpha) - y^\delta = 0 \end{cases}$$

Pointwise interpretation:

$$p_lpha = ext{sign}(S(u_lpha) - y^\delta) = egin{cases} 1 & S(u_lpha) - y^\delta > 0 \ -1 & S(u_lpha) - y^\delta < 0 \ au \in [-1,1] & S(u_lpha) - y^\delta = 0 \end{cases}$$

Reduced optimality system

(OS')
$$\alpha j(u_{\alpha}) + S'(u_{\alpha})^*(\operatorname{sign}(S(u_{\alpha}) - y^{\delta})) \ni 0$$

Regularization

sign not differentiable in any sense \rightsquigarrow replace by sign_{β} for $\beta > 0$,

$$\operatorname{sign}_{\beta}(u)(x) := egin{cases} 1 & \operatorname{if} u(x) > eta, \ -1 & \operatorname{if} u(x) < -eta, \ rac{1}{eta}t & \operatorname{if} |u(x)| \le eta, \end{cases}$$

(equivalent to Huber-smoothing of (\mathcal{P}), dual L² regularization)

Regularized optimality system

$$(\mathsf{OS}_{\beta}) \qquad \alpha j(u_{\beta}) + S'(u_{\beta})^*(\mathsf{sign}_{\beta}(S(u_{\beta}) - y^{\delta})) = 0$$

Regularization

Regularized optimality system

$$(\mathsf{OS}_eta) \qquad lpha j(u_eta) + S'(u_eta)^*(\mathsf{sign}_eta(S(u_eta) - y^\delta)) = 0$$

Theorem

 (OS_{β}) has a solution u_{β} , and sequence $\{u_{\beta}\}_{\beta>0}$ contains subsequence converging in \mathcal{X} to solution u_{α} to (OS').

 \rightsquigarrow Continuation strategy in $\beta \rightarrow 0$ for numerical solution

Consider (OS_{β}) as F(u) = 0 for $F : \mathcal{X} \to \mathcal{X}^*$,

$$F(u) = \alpha j(u) + S'(u)^*(\operatorname{sign}_{\beta}(S(u) - y^{\delta}))$$

 $t \mapsto \operatorname{sign}_{\beta}(t)$ semi-smooth, $S(u) - y^{\delta} \in L^q$, *S* twice differentiable $\Rightarrow P(u) = \operatorname{sign}_{\beta}(S(u) - y^{\delta})$ semi-smooth, Newton derivative

$$egin{aligned} \mathcal{D}_{N}\mathcal{P}(u)h&=eta^{-1}(\mathcal{S}'(u)h)\chi_{\mathcal{I}}\ &=egin{cases}eta^{-1}(\mathcal{S}'(u)h) & ext{if } |(\mathcal{S}(u)-y^{\delta})|\leqeta\ &0 & ext{else} \end{aligned}$$

 \mathcal{X} Hilbert space, $\mathcal{S}'(u)$ linear operator $\Rightarrow F$ semi-smooth

Semi-smooth Newton step for $\delta u = u^{k+1} - u^k$

$$\begin{aligned} \alpha j'(u^k)\delta u + (\mathcal{S}''(u^k)\delta u)^*\mathcal{P}(u^k) + \frac{1}{\beta}\mathcal{S}'(u^k)^*(\chi_{\mathcal{I}^k}\mathcal{S}'(u^k)\delta u) \\ &= -\mathcal{F}(u^k). \end{aligned}$$

Can be solved using matrix-free Krylov method (given u^k , δu , rhs/lhs computed by solving forward, adjoint PDE)

But: superlinear convergence requires regularity condition, S nonlinear, functional not necessarily convex \rightsquigarrow assume for $\gamma > 0$

Second order condition

(S)
$$\langle S''(u_{\beta})(h,h), P(u_{\beta}) \rangle_{L^{2}} + \alpha \|h\|_{\mathcal{X}}^{2} \geq \gamma \|h\|_{\mathcal{X}}^{2}$$
 for all $h \in \mathcal{X}$

(compare second order sufficient condition)

Here: (S) holds if either

- $\blacksquare \alpha$ large (large noise)
- β large or residual small (small noise) ($\Rightarrow P(u_\beta)$ small)

Second order condition

$$(\mathsf{S}) \quad \langle \boldsymbol{S}''(\boldsymbol{u}_\beta)(\boldsymbol{h},\boldsymbol{h}), \boldsymbol{P}(\boldsymbol{u}_\beta) \rangle_{\mathsf{L}^2} + \alpha \|\boldsymbol{h}\|_{\mathcal{X}}^2 \geq \gamma \|\boldsymbol{h}\|_{\mathcal{X}}^2 \quad \text{for all } \boldsymbol{h} \in \mathcal{X}$$

Theorem

If (S) holds and u^0 is sufficiently close to u_β , then the iterates of the semi-smooth Newton method converge superlinearly to the solution u_β to (OS_β) .

Numerical results for model problems

- Discretization using uniform linear finite elements 1d: N = 1001, 2d: $N = 128 \times 128$ grid points
- **Random impulsive noise:** $y^{\dagger} = S(u^{\dagger})$,

$$y^{\delta} = egin{cases} y^{\dagger} + \|y^{\dagger}\|_{\mathsf{L}^{\infty}} \xi, & ext{with probability } r \ y^{\dagger}, & ext{otherwise} \end{cases}$$

 $\xi(x)$ normally distributed random variable

- α chosen using fixed point iteration (2–4 its.)
- Comparison with standard L² fitting (Newton method)

Inverse potential: r = 0.3

Inverse potential: r = 0.6

Inverse potential: Performance

N	400	800	1600	3200	6400	12800
ts	5.28	12.09	19.40	29.66	55.33	107.87
<i>t</i> b	14.42	39.04	54.19	80.30	131.72	234.00
е	2.88e-3	9.17e-4	6.22e-4	3.52e-4	2.76e-4	2.78e-4

- N: number of elements
- t_s: computing time for semi-smooth Newton method including continuation in β (seconds, average of 10)
- \bullet t_b: computing time for fixed point iteration (choice of α)
- e: L² reconstruction error (average of 10)

Inverse potential (2d): r = 0.3

Inverse Robin: r = 0.3

Inverse Robin: r = 0.6

Inverse conductivity: r = 0.3

Inverse conductivity: r = 0.6

Inverse conductivity (2d): r = 0.3

Conclusion

- Semi-smooth Newton methods for numerical solution of non-smooth (Lipschitz) problems
- L¹ fitting very robust for impulsive noise

Future work

- Time dependent problems (require efficient FE solvers)
- Applications (magnetic induction, diffuse optical tomography)

Preprint, MATLAB code:

http://www.uni-graz.at/~clason/publications.html