| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |

# The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium

Christian Clason

Zentrum Mathematik, TU München

joint work with M. Klibanov

Applied Inverse Problems 2007 Vancouver, 26 June

Motivation Problem Formulation

2 Method of Quasi-reversibility

Derivation Stability Convergence

### **3** Numerical Solution

Galerkin Approximation Implementation

4 Numerical Results

### **5** Conclusion

000

# Thermoacoustic Tomography

Imaging method, multi-modal:

- Electromagnetic irradiation (RF, Microwave) 1
- 2 Absorption in tissue
- Heating, expansion 8
- Pressure wave in tissue, coupling medium
- 6 Measurement of acoustic pressure in medium

Absorption dependent on tissue type  $\Rightarrow$  recognition of tumours

000

# Mathematical Model for TCT

### Model for propagation of pressure waves

No heat conduction, homogeneous excitation pulse:

$$\begin{cases} \frac{1}{c^2(x)} \partial_{tt} u(x,t) - \Delta u(x,t) &= 0 \qquad (x,t) \in \mathbb{R}^3 \times [0,T] \\ u(x,t)|_{t=0} &= \alpha(x) \qquad x \in \mathbb{R}^3 \\ \partial_t u(x,t)|_{t=0} &= 0 \qquad x \in \mathbb{R}^3 \end{cases}$$

 $(u(x, t) \text{ acoustic pressure, } c(x) \text{ wave speed, } \alpha(x) \text{ absorption parameter})$ 

Inverse problem: Calculate  $\alpha(x)$  from measurement of u(x, t)!

#### Goal

Reconstruction method for variable wave speed c

000

# Mathematical Model for TCT

### Model for propagation of pressure waves

No heat conduction, homogeneous excitation pulse:

$$\begin{cases} \frac{1}{c^2(x)} \partial_{tt} u(x,t) - \Delta u(x,t) &= 0 \qquad (x,t) \in \mathbb{R}^3 \times [0,T] \\ u(x,t)|_{t=0} &= \alpha(x) \qquad x \in \mathbb{R}^3 \\ \partial_t u(x,t)|_{t=0} &= 0 \qquad x \in \mathbb{R}^3 \end{cases}$$

 $(u(x, t) \text{ acoustic pressure, } c(x) \text{ wave speed, } \alpha(x) \text{ absorption parameter})$ 

Inverse problem: Calculate  $\alpha(x)$  from measurement of u(x, t)!

#### Goal

Reconstruction method for variable wave speed c

00

# Mathematical Model for TCT

### Model for propagation of pressure waves

No heat conduction, homogeneous excitation pulse:

$$\begin{cases} \frac{1}{c^2(x)} \partial_{tt} u(x,t) - \Delta u(x,t) &= 0 \qquad (x,t) \in \mathbb{R}^3 \times [0,T] \\ u(x,t)|_{t=0} &= \alpha(x) \qquad x \in \mathbb{R}^3 \\ \partial_t u(x,t)|_{t=0} &= 0 \qquad x \in \mathbb{R}^3 \end{cases}$$

 $(u(x, t) \text{ acoustic pressure, } c(x) \text{ wave speed, } \alpha(x) \text{ absorption parameter})$ 

Inverse problem: Calculate  $\alpha(x)$  from measurement of u(x, t)!

#### Goal

Reconstruction method for variable wave speed c

# Lateral Cauchy Problem

Notations:  $\Omega \subset \mathbb{R}^n$  domain,  $Q_T := \Omega \times [0, T]$ ,  $S_T := \partial \Omega \times [0, T]$ . Initial conditions unknown, boundary measurement  $(u, \partial_{\nu} u)$ :

#### Problem (C)

Given c, f,  $\varphi_0$ ,  $\varphi_1$ , find u(x, t) in  $Q_T$  so that:

|   | $\int \frac{1}{c(x)^2} \partial_{tt} u(x,t) - \Delta u(x,t)$ | = f                | $(x,t)\in Q_T$ ,             |
|---|--------------------------------------------------------------|--------------------|------------------------------|
| ł | u(x,t)                                                       | $= \varphi_0(x,t)$ | $(x,t)\in S_T$ ,             |
|   | $\partial_{\nu} u(x,t)$                                      | $= \varphi_1(x,t)$ | $(x,t)\in S_{\mathcal{T}}$ . |

Ill posed: No solution must exist!

# Lateral Cauchy Problem

Notations:  $\Omega \subset \mathbb{R}^n$  domain,  $Q_T := \Omega \times [0, T]$ ,  $S_T := \partial \Omega \times [0, T]$ . Initial conditions unknown, boundary measurement  $(u, \partial_{\nu} u)$ :

#### Problem (C)

Given c, f,  $\varphi_0$ ,  $\varphi_1$ , find u(x, t) in  $Q_T$  so that:

$$\begin{cases} \frac{1}{c(x)^2} \partial_{tt} u(x,t) - \Delta u(x,t) &= f \qquad (x,t) \in Q_T, \\ u(x,t) &= \varphi_0(x,t) \qquad (x,t) \in S_T, \\ \partial_\nu u(x,t) &= \varphi_1(x,t) \qquad (x,t) \in S_T. \end{cases}$$

#### Ill posed: No solution must exist!

Approximation via Method of Quasi-reversibility

Consider first the case of  $\varphi_0 \equiv \varphi_1 \equiv 0$ .

Ansatz: Look for best approximation in Hilbert space X having minimal Y-norm

Tikhonov functional

$$J_{\varepsilon}(u) := \frac{1}{2} \left\| \frac{1}{c(x)^2} \partial_{tt} u - \Delta u - f \right\|_{L^2(Q_T)}^2 + \frac{\varepsilon}{2} \left\| u \right\|_Y^2 \to \min_{u \in X} du$$

Approximation via Method of Quasi-reversibility

Consider first the case of  $\varphi_0 \equiv \varphi_1 \equiv 0$ .

Ansatz: Look for best approximation in Hilbert space X having minimal Y-norm

Tikhonov functional

$$J_{\varepsilon}(u) := \frac{1}{2} \left\| \frac{1}{c(x)^2} \partial_{tt} u - \Delta u - f \right\|_{L^2(Q_T)}^2 + \frac{\varepsilon}{2} \left\| u \right\|_Y^2 \to \min_{u \in X}$$

For which X, Y does the minimisation problem have a unique solution?

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
| 000        | 0000000             | 0000               | 000000            |            |

# Choice of Function Space

Tikhonov functional

$$J_{\varepsilon}(u) := \frac{1}{2} \left\| \frac{1}{c(x)^2} \partial_{tt} u - \Delta u - f \right\|_{L^2(Q_T)}^2 + \frac{\varepsilon}{2} \left\| u \right\|_Y^2 \to \min_{u \in H^2_0(Q_T)}$$

Choose

$$X:=H^2_0(Q_T):=\left\{u\in H^2(Q_T):\ u|_{S_T}=\partial_\nu u|_{S_T}=0\right\}$$

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
| 000        | 0000000             | 0000               | 000000            |            |

# Choice of Function Space

### Tikhonov functional

$$J_{\varepsilon}(u) := \frac{1}{2} \left\| \frac{1}{c(x)^2} \partial_{tt} u - \Delta u - f \right\|_{L^2(Q_T)}^2 + \frac{\varepsilon}{2} \left\| u \right\|_{QR}^2 \to \min_{u \in H_0^2(Q_T)}$$

#### Choose

$$X:=H^2_0(Q_T):=\left\{u\in H^2(Q_T):\ u|_{S_T}=\partial_\nu u|_{S_T}=0\right\}$$

with inner product

$$\langle u, v \rangle_{QR} := \int_{Q_T} \partial_{tt} u \, \partial_{tt} v \, dq + \int_{Q_T} \sum_{i=1}^n \partial_{ii} u \, \partial_{ii} v \, dq + \int_{Q_T} u \, v \, dq$$

and induced norm  $\|u\|_{QR}^2 := \langle u, u \rangle_{QR}$ 

# Characterisation of Solution

#### Lemma

 $\|u\|_{QR}^2$  and  $\|u\|_{H^2(Q_T)}^2$  are equivalent norms on  $H_0^2(Q_T)$ .

### Characterisation of Solution

#### Lemma

 $\|u\|_{QR}^2$  and  $\|u\|_{H^2(Q_T)}^2$  are equivalent norms on  $H_0^2(Q_T)$ .

 $\Rightarrow J_{\varepsilon}$  is coercive and convex, minimiser  $u_{\varepsilon}$  exists and satisfies

#### Euler equation

$$J_arepsilon'(u_arepsilon)(v)=0$$
 for all  $v\in H^2_0(Q_\mathcal{T})$ 

### Characterisation of Solution

#### Lemma

 $\|u\|_{QR}^2$  and  $\|u\|_{H^2(Q_T)}^2$  are equivalent norms on  $H_0^2(Q_T)$ .

 $\Rightarrow$   $J_{\varepsilon}$  is coercive and convex, minimiser  $u_{\varepsilon}$  exists and satisfies

#### Euler equation

$$\int_{Q_{\mathcal{T}}} Lu_{\varepsilon} Lv \, dq + \varepsilon \, \langle u_{\varepsilon}, v \rangle_{QR} - \int_{Q_{\mathcal{T}}} Lv \, f \, dq = 0 \text{ for all } v \in H^2_0(Q_{\mathcal{T}})$$

$$(Lu:=\frac{1}{c(x)^2}\partial_{tt}u-\Delta u)$$

### Non-homogeneous Boundary Conditions

Consider boundary function  $\Phi \in H^2(Q_T)$  for  $(\varphi_0, \varphi_1)$ :

$$\begin{cases} \Phi(x,t) &= \varphi_0(x,t) \quad (x,t) \in S_T \\ \partial_{\nu} \Phi(x,t) &= \varphi_1(x,t) \quad (x,t) \in S_T \end{cases}$$

 $\Rightarrow u^* := u - \Phi$  satisfies

$$\begin{cases} Lu^* &= f - L\Phi \quad (x,t) \in Q_T \\ u^*(x,t) &= 0 & (x,t) \in S_T \\ \partial_{\nu}u^*(x,t) &= 0 & (x,t) \in S_T \end{cases}$$

 $\Rightarrow$  Set  $F := f - L\Phi$ 

(in the following:  $f \equiv 0$ )

### Non-homogeneous Boundary Conditions

Consider boundary function  $\Phi \in H^2(Q_T)$  for  $(\varphi_0, \varphi_1)$ :

$$\begin{cases} \Phi(x,t) &= \varphi_0(x,t) \quad (x,t) \in S_T \\ \partial_{\nu} \Phi(x,t) &= \varphi_1(x,t) \quad (x,t) \in S_T \end{cases}$$

 $\Rightarrow u^* := u - \Phi$  satisfies

$$\begin{cases} Lu^* &= f - L\Phi \quad (x,t) \in Q_T \\ u^*(x,t) &= 0 \qquad (x,t) \in S_T \\ \partial_\nu u^*(x,t) &= 0 \qquad (x,t) \in S_T \end{cases}$$

 $\Rightarrow$  Set  $F := f - L\Phi$ 

(in the following:  $f \equiv 0$ )

### Non-homogeneous Boundary Conditions

Consider boundary function  $\Phi \in H^2(Q_T)$  for  $(\varphi_0, \varphi_1)$ :

$$\begin{cases} \Phi(x,t) &= \varphi_0(x,t) \quad (x,t) \in S_T \\ \partial_{\nu} \Phi(x,t) &= \varphi_1(x,t) \quad (x,t) \in S_T \end{cases}$$

 $\Rightarrow u^* := u - \Phi$  satisfies

$$egin{array}{rll} Lu^* &= f - L\Phi & (x,t) \in Q_T \ u^*(x,t) &= 0 & (x,t) \in S_T \ \partial_
u^*(x,t) &= 0 & (x,t) \in S_T \end{array}$$

 $\Rightarrow \text{Set } F := f - L\Phi \qquad (\text{in the following: } f \equiv 0)$ 

# Quasi-reversibility Approximation

### Problem (Q)

Define bilinear form

$$M_{\varepsilon}(u,v) := \int_{Q_{T}} Lu \, Lv \, dq + \varepsilon \, \langle u,v 
angle_{QR}$$

Given  $\Phi \in H^2(Q_T)$ ,  $c \in C^1(\overline{\Omega})$ ,  $\varepsilon > 0$ , find  $u_{\varepsilon} \in H^2_0(Q_T)$  so that

$$M_{\varepsilon}(u_{\varepsilon},v)=-\int_{Q_{T}}L\Phi Lv\,dq$$

for all  $v \in H^2_0(Q_T)$ 

# Existence of Unique Solution

#### Theorem

For  $\Phi \in H^2(Q_T)$ ,  $c \in C^1(\overline{\Omega})$ ,  $\varepsilon > 0$ :

- Problem (Q) has unique solution  $u_{\varepsilon}$
- There is a  $C(Q_T, \|c\|_{L^2(\Omega)}) > 0$  such that

$$\|u_{\varepsilon}\|_{H^{2}(Q_{T})} \leq \frac{C}{\sqrt{\varepsilon}} \|\Phi\|_{H^{2}(Q_{T})}$$

#### Proof.

 $M_{\varepsilon}(u,v)$  inner product: Riesz' theorem, estimate via equivalence of norms

# Existence of Unique Solution

### Theorem

For  $\Phi \in H^2(Q_T)$ ,  $c \in C^1(\bar{\Omega})$ ,  $\varepsilon > 0$ :

- Problem (Q) has unique solution  $u_{\varepsilon}$
- There is a  $C(Q_{\mathcal{T}}, \|c\|_{L^2(\Omega)}) > 0$  such that

$$\|u_{\varepsilon}\|_{H^{2}(Q_{T})} \leq \frac{C}{\sqrt{\varepsilon}} \|\Phi\|_{H^{2}(Q_{T})}$$

#### Proof.

 $M_{\varepsilon}(u,v)$  inner product: Riesz' theorem, estimate via equivalence of norms

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            | 00000000            |                    |                   |            |
|            |                     |                    |                   |            |

# Regularity

#### Lemma

 $M_{\varepsilon}(u,v)$  is  $H_0^2(Q_T)$  elliptic: There are  $c_1(\|c\|_{L^2(\Omega)}), c_2(Q_T) > 0$  such that:

$$\begin{aligned} |M_{\varepsilon}(u,v)| &\leq (c_1+\varepsilon) \|u\|_{H^2(Q_T)} \|v\|_{H^2(Q_T)} \\ |M_{\varepsilon}(u,u)| &\geq c_2 \varepsilon \|u\|_{H^2(Q_T)}^2 \end{aligned}$$

Theorem

Problem (Q) has a solution in  $H^3(U)$  for all compact  $U \subset Q_T$ 

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            | 00000000            |                    |                   |            |
|            |                     |                    |                   |            |

# Regularity

#### Lemma

 $M_{\varepsilon}(u,v)$  is  $H_0^2(Q_T)$  elliptic: There are  $c_1(\|c\|_{L^2(\Omega)}), c_2(Q_T) > 0$  such that:

$$\begin{aligned} |M_{\varepsilon}(u,v)| &\leq (c_1+\varepsilon) \|u\|_{H^2(Q_T)} \|v\|_{H^2(Q_T)} \\ |M_{\varepsilon}(u,u)| &\geq c_2 \varepsilon \|u\|_{H^2(Q_T)}^2 \end{aligned}$$

#### Theorem

Problem (Q) has a solution in  $H^3(U)$  for all compact  $U \subset Q_T$ 

# Convergence of Approximations

#### Theorem

- $u^*$  solution of Problem (C) with boundary function  $\Phi$
- $u_{\varepsilon}^{\delta}$  solution of Problem (Q) for  $\Phi^{\delta}$  with  $\left\| \Phi \Phi^{\delta} \right\|_{H^{2}(Q_{T})} \leq \delta$
- c(x) bounded, satisfies  $2c^{-2}(x) + \langle 
  abla(c^{-2})(x), x x_0 
  angle_n > 0$
- If  $T > T_0(\Omega, c) > 0$ :

$$\left\|u^* - u_{\varepsilon}^{\delta}\right\|_{H^1(Q_{T})}^2 \leq C\left(\delta^2 + \varepsilon \left\|u^*\right\|_{H^2(Q_{T})}^2\right)$$

Parameter choice rule  $arepsilon= au\delta^2, au>1$  $\Rightarrow$  QR approximation is convergent regularisation method

# Convergence of Approximations

#### Theorem

- $u^*$  solution of Problem (C) with boundary function  $\Phi$
- $u_{\varepsilon}^{\delta}$  solution of Problem (Q) for  $\Phi^{\delta}$  with  $\left\| \Phi \Phi^{\delta} \right\|_{H^{2}(Q_{T})} \leq \delta$
- c(x) bounded, satisfies  $2c^{-2}(x) + \langle 
  abla(c^{-2})(x), x x_0 
  angle_n > 0$
- If  $T > T_0(\Omega, c) > 0$ :

$$\left\|u^* - u_{\varepsilon}^{\delta}\right\|_{H^1(Q_{T})}^2 \leq C\left(\delta^2 + \varepsilon \left\|u^*\right\|_{H^2(Q_{T})}^2\right)$$

Parameter choice rule  $\varepsilon = \tau \delta^2, \tau > 1$ 

 $\Rightarrow$  QR approximation is convergent regularisation method

# Ritz-Galerkin Approximation

Ansatz: Solve Problem (Q) in finite dimensional subspace

Problem (R)

Find  $u_h \in S_h \subset H^2_0(Q_T)$  such that for all  $v_h \in S_h$ 

$$M_{\varepsilon}(u_h,v_h)=-\int_{Q_T}L\Phi\,Lv_h\,dq$$

Here: Cubic splines

- satisfy regularity requirements
- are numerically advantageous (and easy to implement)
- allow construction of boundary function  $\Phi$

# Ritz-Galerkin Approximation

Ansatz: Solve Problem (Q) in finite dimensional subspace

Problem (R)

Find  $u_h \in S_h \subset H^2_0(Q_T)$  such that for all  $v_h \in S_h$ 

$$M_{\varepsilon}(u_h,v_h)=-\int_{Q_T}L\Phi\,Lv_h\,dq$$

Here: Cubic splines

- satisfy regularity requirements
- are numerically advantageous (and easy to implement)
- allow construction of boundary function  $\Phi$

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     | 0000               |                   |            |
|            |                     |                    |                   |            |

### Ansatz Space

### Cubic splines in one dimension

 $S_i^4 := \{s : s \text{ piecewise polynomial of order } 4\} \cap C^2$ 

#### Cubic splines in n + 1 dimensions

$$\mathcal{S}^4 := ext{span} \left\{ \prod_{i=1}^{n+1} s_i : \ s_i \in \mathcal{S}^4_i 
ight\}$$

Ansatz space

$$S_h := \mathcal{S}^4|_{Q_T} \cap H^2_0(Q_T)$$

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     | 0000               |                   |            |
|            |                     |                    |                   |            |

# Ansatz Space

### Cubic splines in one dimension

$$S_i^4 := \{s : s \text{ piecewise polynomial of order } 4\} \cap C^2$$

### Cubic splines in n + 1 dimensions

$$\mathcal{S}^4 := \operatorname{span}\left\{\prod_{i=1}^{n+1} s_i : s_i \in \mathcal{S}^4_i\right\}$$

#### Ansatz space

$$S_h := \mathcal{S}^4|_{Q_T} \cap H^2_0(Q_T)$$

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     | 0000               |                   |            |
|            |                     |                    |                   |            |

# Ansatz Space

### Cubic splines in one dimension

$$S_i^4 := \{s : s \text{ piecewise polynomial of order } 4\} \cap C^2$$

### Cubic splines in n + 1 dimensions

$$\mathcal{S}^4 := \operatorname{span}\left\{\prod_{i=1}^{n+1} s_i : s_i \in \mathcal{S}^4_i\right\}$$

#### Ansatz space

$$S_h := \mathcal{S}^4|_{Q_T} \cap H^2_0(Q_T)$$

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     | 0000               |                   |            |
|            |                     |                    |                   |            |

### Error Estimate

### Knots uniformly distributed, distance h:

#### Theorem

A solution  $u_h \in S_h$  of Problem (R) satisfies with  $C(\Omega, c, \varepsilon) > 0$ :

$$\|u_{\varepsilon} - u_h\|_{H^2(Q_T)} \le Ch \|u_{\varepsilon}\|_{H^3(Q_T)}$$

### Proof.

- $llowbreak M_arepsilon$  elliptic, hence use Céa's lemma
- approximation theorems for tensor product splines in Sobolev spaces
- ${f 8}$  infimum of interpolation error in  ${\cal S}^4$  is attained in  $S_h$

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     | 0000               |                   |            |
|            |                     |                    |                   |            |

### Error Estimate

Knots uniformly distributed, distance h:

#### Theorem

A solution  $u_h \in S_h$  of Problem (R) satisfies with  $C(\Omega, c, \varepsilon) > 0$ :

$$\|u_{\varepsilon} - u_{h}\|_{H^{2}(Q_{T})} \leq Ch \|u_{\varepsilon}\|_{H^{3}(Q_{T})}$$

### Proof.

- 1)  $M_{arepsilon}$  elliptic, hence use Céa's lemma
- approximation theorems for tensor product splines in Sobolev spaces
- ${\mathfrak S}$  infimum of interpolation error in  ${\mathcal S}^4$  is attained in  $S_h$

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     | 0000               |                   |            |
|            |                     |                    |                   | -          |

### Error Estimate

Knots uniformly distributed, distance h:

#### Theorem

A solution  $u_h \in S_h$  of Problem (R) satisfies with  $C(\Omega, c, \varepsilon) > 0$ :

$$\|u_{\varepsilon}-u_{h}\|_{H^{2}(Q_{T})} \leq Ch \|u_{\varepsilon}\|_{H^{3}(Q_{T})}$$

### Proof.

- **1**  $M_{\varepsilon}$  elliptic, hence use Céa's lemma
- e approximation theorems for tensor product splines in Sobolev spaces
- **(3)** infimum of interpolation error in  $S^4$  is attained in  $S_h$

# Implementation

Choose basis of  $S_i^4$ :

### Normalised cubic B-splines $B_i^4(x)$

- form partition of unity
- have local support
- can be differentiated analytically with B-splines as derivative
- have inner products which can be evaluated exactly and stably by Gauss quadrature
- allow stable construction of boundary function by *complete cubic spline interpolation*



# Implementation

Choose basis of  $S_i^4$ :

### Normalised cubic B-splines $B_i^4(x)$

- form partition of unity
- have local support
- can be differentiated analytically with B-splines as derivative
- have inner products which can be evaluated exactly and stably by Gauss quadrature
- allow stable construction of boundary function by *complete cubic spline interpolation*



# Numerical Results

- Domain  $Q_T = [-3,3]^2 \times [0,7]$
- Discretisation  $h_x = h_y = 0.2$ ,  $h_t = 0.1$
- Given initial conditions  $\partial_t u(x, y, 0) \equiv 0$ ,

$$u(x, y, 0) = e^{-(x^2 + y^2)} \sin(3x) \cos(3y)$$
| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusior |
|------------|---------------------|--------------------|-------------------|------------|
| 000        | 0000000             | 0000               | 000000            |            |

### Constant Coefficients ( $c \equiv 1$ ): Reconstruction



### Smooth Coefficients



$$\frac{1}{c(x,y)^2} = \frac{5}{2} - \frac{1}{12}(x^2 + y^2)$$

### Smooth Coefficients: Reconstruction



### Nondifferentiable Coefficients



$$c(x,y) = \max\left(2 - \left(\frac{\max(2 - 5 + x^2 + y^2, 0)}{2}\right)^2, 1\right)$$

### Nondifferentiable Coefficients: Reconstruction



 $u_{\varepsilon}(x,0,0), \ \varepsilon = 10^{-4}$ 

Numerical Solution

### Shepp-Logan Phantom



Given u(x, y, 0)

Numerical Solution

### Shepp-Logan Phantom



reconstruction (constant coefficients)

Numerical Solution

Numerical Results

### Shepp-Logan Phantom



reconstruction (smooth coefficients)

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |

### Conclusion

Advantages:

- robust
- not iterative (independent of initial guess, stopping criteria)
- applicable to variable (time dependent) coefficients
- extensible to large class of problems

Disadvantages:

- linear systems only
- high memory requirements

Perspective:

- systems: full elasticity, Maxwell equations
- general domains (weighted B-splines)

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |

### Conclusion

Advantages:

- robust
- not iterative (independent of initial guess, stopping criteria)
- applicable to variable (time dependent) coefficients
- extensible to large class of problems

Disadvantages:

- linear systems only
- high memory requirements

Perspective:

- systems: full elasticity, Maxwell equations
- general domains (weighted B-splines)

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |

### Conclusion

Advantages:

- robust
- not iterative (independent of initial guess, stopping criteria)
- applicable to variable (time dependent) coefficients
- extensible to large class of problems

Disadvantages:

- linear systems only
- high memory requirements

Perspective:

- systems: full elasticity, Maxwell equations
- general domains (weighted B-splines)

| Background | Quasi-reversibility | Numerical Solution | Numerical Results | Conclusion |
|------------|---------------------|--------------------|-------------------|------------|
|            |                     |                    |                   |            |
|            |                     |                    |                   |            |

## Thank you for your attention!

### Mammography with TCT Prototype











# Relative $L^2$ Errors (Constants Coefficients)

| $\delta, \varepsilon$ | 0       | $10^{-6}$ | $10^{-5}$ | 10 <sup>-4</sup> | 10 <sup>-3</sup> | 10 <sup>-1</sup> | 1.0     |
|-----------------------|---------|-----------|-----------|------------------|------------------|------------------|---------|
| 0                     | 0.15971 | 0.15964   | 0.15901   | 0.15281          | 0.09858          | 0.87138          | 0.99522 |
| 0.05                  | 0.16029 | 0.16041   | 0.15768   | 0.15073          | 0.09941          | 0.87178          | 0.99524 |
| 0.1                   | 0.16211 | 0.15708   | 0.15837   | 0.15076          | 0.09618          | 0.87057          | 0.99527 |
| 0.2                   | 0.16614 | 0.15912   | 0.16017   | 0.15119          | 0.09509          | 0.86999          | 0.99539 |
| 0.4                   | 0.16653 | 0.18398   | 0.17926   | 0.15146          | 0.11096          | 0.87364          | 0.99583 |
| 0.5                   | 0.19039 | 0.14141   | 0.18613   | 0.16458          | 0.13000          | 0.86619          | 0.99617 |
| 1.0                   | 0.20092 | 0.23337   | 0.18634   | 0.21325          | 0.12906          | 0.88003          | 0.99444 |
| 2.0                   | 0.31615 | 0.38390   | 0.43442   | 0.27649          | 0.34904          | 0.85463          | 0.99199 |
| 3.0                   | 0.54785 | 0.43724   | 0.52161   | 0.48232          | 0.55094          | 0.84709          | 0.99659 |
| 4.0                   | 0.78441 | 0.69156   | 0.64085   | 0.98342          | 0.64522          | 0.86108          | 0.99543 |
| 6.0                   | 0.90998 | 1.08680   | 0.84162   | 1.28090          | 1.26290          | 0.91392          | 0.99826 |

# Relative $L^2$ Errors (Smooth Coefficients)

| $\delta, \varepsilon$ | 0       | 10 <sup>-6</sup> | $10^{-5}$ | $10^{-4}$ | 10 <sup>-3</sup> | $10^{-1}$ | 1.0     |
|-----------------------|---------|------------------|-----------|-----------|------------------|-----------|---------|
| 0                     | 0.14984 | 0.14690          | 0.14850   | 0.15036   | 0.12667          | 0.76300   | 0.99530 |
| 0.05                  | 0.14253 | 0.13900          | 0.15360   | 0.13643   | 0.11971          | 0.76330   | 0.99540 |
| 0.1                   | 0.14457 | 0.14330          | 0.14200   | 0.14502   | 0.10915          | 0.76364   | 0.99513 |
| 0.2                   | 0.13169 | 0.14170          | 0.15068   | 0.13298   | 0.10365          | 0.76320   | 0.99554 |
| 0.5                   | 0.15338 | 0.17681          | 0.16089   | 0.15436   | 0.14229          | 0.75604   | 0.99508 |
| 1.0                   | 0.17350 | 0.22785          | 0.22412   | 0.21235   | 0.19087          | 0.75570   | 0.99376 |

# Time Development (Smooth Coefficients)



### Idea of proof.

• Use Carleman estimate for wave equation with variable coefficients to derive Lipschitz observability estimate:

$$||u||^2_{H^1(Q_T)} \leq C ||Lu||^2_{L^2(Q_T)}$$

2 Difference 
$$w := u^* - u_{\varepsilon}^{\delta}$$
 satisfies

$$\|Lw\|_{L^{2}(Q_{T})}^{2}+\varepsilon \|w\|_{QR}^{2}=-\left\langle L(\Phi-\Phi^{\delta}),Lw\right\rangle_{L^{2}(Q_{T})}+\varepsilon \langle u^{*},w\rangle_{QR}$$

8 Apply observability estimate to w, estimate

$$\left\|Lw\right\|_{L^{2}(Q_{T})}^{2} \leq C\left(\delta^{2} + \varepsilon \left\|u^{*}\right\|_{QR}^{2}\right)$$

### Idea of proof.

• Use Carleman estimate for wave equation with variable coefficients to derive Lipschitz observability estimate:

$$||u||^{2}_{H^{1}(Q_{T})} \leq C ||Lu||^{2}_{L^{2}(Q_{T})}$$

**2** Difference  $w := u^* - u_{\varepsilon}^{\delta}$  satisfies

$$\|Lw\|_{L^{2}(Q_{T})}^{2}+\varepsilon \|w\|_{QR}^{2}=-\left\langle L(\Phi-\Phi^{\delta}),Lw\right\rangle_{L^{2}(Q_{T})}+\varepsilon \langle u^{*},w\rangle_{QR}$$

Output Apply observability estimate to w, estimate

$$\|Lw\|_{L^2(Q_T)}^2 \le C\left(\delta^2 + \varepsilon \|u^*\|_{QR}^2\right)$$

#### Idea of proof.

• Use Carleman estimate for wave equation with variable coefficients to derive Lipschitz observability estimate:

$$||u||^{2}_{H^{1}(Q_{T})} \leq C ||Lu||^{2}_{L^{2}(Q_{T})}$$

**2** Difference  $w := u^* - u_{\varepsilon}^{\delta}$  satisfies

$$\|Lw\|_{L^{2}(Q_{T})}^{2}+\varepsilon \|w\|_{QR}^{2}=-\left\langle L(\Phi-\Phi^{\delta}),Lw\right\rangle_{L^{2}(Q_{T})}+\varepsilon \langle u^{*},w\rangle_{QR}$$

 $\bigcirc$  Apply observability estimate to w, estimate

$$\|Lw\|_{L^{2}(Q_{T})}^{2} \leq C\left(\delta^{2} + \varepsilon \|u^{*}\|_{QR}^{2}\right)$$

### Sketch of proof.

 Carleman estimate for wave equation with variable coefficients:

$$\begin{split} \lambda^3 \int_{Q_{\sigma}} |u|^2 e^{2\lambda\varphi} \, dq + \lambda \int_{Q_{\sigma}} \left( |\nabla u|^2 + |\partial_t u|^2 \right) e^{2\lambda\varphi} \, dq \\ &\leq C \int_{Q_{\tau}} |Lu|^2 e^{2\lambda\varphi} \, dq \end{split}$$

holds for all  $u \in H^2_0(Q_{\sigma})$ ,  $\lambda > 0$  large enough,  $\varphi$  pseudo-convex function,  $Q_{\sigma} \subset Q_T$  pseudo-convex domain

### Sketch of proof.

Carleman estimate for wave equation with variable coefficients:

$$\begin{split} \lambda^3 \int_{Q_{\sigma}} |u|^2 e^{2\lambda\varphi} \, dq + \lambda \int_{Q_{\sigma}} \left( |\nabla u|^2 + |\partial_t u|^2 \right) e^{2\lambda\varphi} \, dq \\ &\leq C \int_{Q_{\tau}} |Lu|^2 e^{2\lambda\varphi} \, dq \end{split}$$

holds for all  $u \in H_0^2(Q_{\sigma})$ ,  $\lambda > 0$  large enough,  $\varphi$  pseudo-convex function,  $Q_{\sigma} \subset Q_T$  pseudo-convex domain 2 Use cutoff function for estimate in  $Q_{\sigma}$  for  $u \in H_0^2(Q_T)$ 

$$\|u\|_{H^{1}(Q_{\sigma})}^{2} \leq C\left(e^{-2\lambda c_{1}}\|u\|_{H^{1}(Q_{T})}^{2} + e^{2\lambda c_{2}}\|Lu\|_{L^{2}(Q_{T})}^{2}\right)$$

Sketch of proof.

**2** Use cutoff function for estimate in  $Q_{\sigma}$  for  $u \in H^2_0(Q_T)$ 

$$\|u\|_{H^{1}(Q_{\sigma})}^{2} \leq C\left(e^{-2\lambda c_{1}}\|u\|_{H^{1}(Q_{T})}^{2} + e^{2\lambda c_{2}}\|Lu\|_{L^{2}(Q_{T})}^{2}\right)$$

**③** Combine estimates for suitable  $Q_{\sigma}$ ,  $Q'_{\sigma}$  for estimate in  $E := \Omega \times [t_1, t_2]$ 

#### Sketch of proof.

**2** Use cutoff function for estimate in  $Q_{\sigma}$  for  $u \in H^2_0(Q_T)$ 

$$\|u\|_{H^{1}(Q_{\sigma})}^{2} \leq C\left(e^{-2\lambda c_{1}}\|u\|_{H^{1}(Q_{T})}^{2} + e^{2\lambda c_{2}}\|Lu\|_{L^{2}(Q_{T})}^{2}\right)$$

- **3** Combine estimates for suitable  $Q_{\sigma}$ ,  $Q'_{\sigma}$  for estimate in  $E := \Omega \times [t_1, t_2]$
- **4** There is a  $\theta \in [t_1, t_2]$  such that

$$\|u\|_{H^{1}(E)}^{2} \geq (t_{2} - t_{1}) \left( \|u(\cdot, \theta)\|_{H^{1}(\Omega)}^{2} + \|\partial_{t}u(\cdot, \theta)\|_{L^{2}(\Omega)}^{2} 
ight)$$

#### Sketch of proof.

- **③** Combine estimates for suitable  $Q_{\sigma}$ ,  $Q'_{\sigma}$  for estimate in  $E := \Omega \times [t_1, t_2]$
- **4** There is a  $\theta \in [t_1, t_2]$  such that

$$\|u\|_{H^{1}(E)}^{2} \geq (t_{2} - t_{1}) \left( \|u(\cdot, \theta)\|_{H^{1}(\Omega)}^{2} + \|\partial_{t}u(\cdot, \theta)\|_{L^{2}(\Omega)}^{2} \right)$$

**5** Use standard energy estimate for wave equation:

$$\|u\|_{H^{1}(Q_{T})}^{2} \leq 2C \left(\|u(\cdot,\theta)\|_{H^{1}(\Omega)}^{2} + \|\partial_{t}u(\cdot,\theta)\|_{L^{2}(\Omega)}^{2} + \|Lu\|_{L^{2}(Q_{T})}^{2}\right)$$

#### Sketch of proof.

④ There is a 
$$heta\in[t_1,t_2]$$
 such that

$$\|u\|_{H^{1}(E)}^{2} \geq (t_{2} - t_{1}) \left( \|u(\cdot, \theta)\|_{H^{1}(\Omega)}^{2} + \|\partial_{t}u(\cdot, \theta)\|_{L^{2}(\Omega)}^{2} \right)$$

**5** Use standard energy estimate for wave equation:

$$\|u\|_{H^{1}(Q_{T})}^{2} \leq 2C \left(\|u(\cdot,\theta)\|_{H^{1}(\Omega)}^{2} + \|\partial_{t}u(\cdot,\theta)\|_{L^{2}(\Omega)}^{2} + \|Lu\|_{L^{2}(Q_{T})}^{2}\right)$$

**6** Insert in step 3 for Lipschitz observability inequality in  $Q_T$ 

$$||u||^2_{H^1(Q_T)} \le C ||Lu||^2_{L^2(Q_T)}$$

#### Sketch of proof.

**(6)** Insert in step 3 for Lipschitz observability inequality in  $Q_T$ 

$$||u||^{2}_{H^{1}(Q_{T})} \leq C ||Lu||^{2}_{L^{2}(Q_{T})}$$

7 Difference  $w := u^* - u_{\varepsilon}^{\delta}$  satisfies

$$\begin{aligned} \|Lw\|_{L^{2}(Q_{T})}^{2} + \varepsilon \|w\|_{QR}^{2} = \\ - \left\langle L(\Phi^{\delta} - \Phi), Lw \right\rangle_{L^{2}(Q_{T})} + \varepsilon \left\langle u^{*}, w \right\rangle_{QR} \end{aligned}$$

Sketch of proof.

**7** Difference 
$$w := u^* - u_{\varepsilon}^{\delta}$$
 satisfies

$$\begin{aligned} \|Lw\|_{L^{2}(Q_{T})}^{2} + \varepsilon \|w\|_{QR}^{2} = \\ - \left\langle L(\Phi^{\delta} - \Phi), Lw \right\rangle_{L^{2}(Q_{T})} + \varepsilon \left\langle u^{*}, w \right\rangle_{QR} \end{aligned}$$

Apply Lipschitz observability estimate to w, use step 7 to estimate ||Lw||<sup>2</sup><sub>L<sup>2</sup>(Q<sub>T</sub>)</sub>:

$$\|w\|_{H^1(Q_T)}^2 \le C\left(\delta^2 + \varepsilon \|u^*\|_{QR}^2\right)$$



### Cubic B-splines



## Cubic B-splines (first derivative)



### Cubic B-splines (second derivative)



### Basis of $S_h$

Simplified problem:

- $\Omega = [-R, R] \times [-R, R] \subset \mathbb{R}^2$
- Uniform discretisation with  $k_1, k_2, k_3$  knots in x, y, t

 $\mathcal{B} = \left\{ B_{i,1}^4(x) B_{j,2}^4(y) B_{k,3}^4(t), \ i \in \{1, \dots, k_1 + 4\}, j \in \{1, \dots, k_2 + 4\}, k \in \{1, \dots, k_3 + 4\} \right\}$ 

#### Basis of $S_h$

$$\mathcal{B}^{0} = \left\{ B_{i,1}^{4}(x) B_{j,2}^{4}(y) B_{k,3}^{4}(t), \\ i \in \{3, \dots, k_{1} + 2\}, j \in \{3, \dots, k_{2} + 2\}, k \in \{1, \dots, k_{3} + 4\} \right\}$$

### Basis of $S_h$

Simplified problem:

- $\Omega = [-R, R] \times [-R, R] \subset \mathbb{R}^2$
- Uniform discretisation with  $k_1, k_2, k_3$  knots in x, y, t

Basis of  $\mathcal{S}^4$ 

$$\mathcal{B} = \left\{ B_{i,1}^4(x) B_{j,2}^4(y) B_{k,3}^4(t), \\ i \in \{1, \dots, k_1 + 4\}, j \in \{1, \dots, k_2 + 4\}, k \in \{1, \dots, k_3 + 4\} \right\}$$

#### Basis of $S_h$

$$\mathcal{B}^{0} = \left\{ B_{i,1}^{4}(x) B_{j,2}^{4}(y) B_{k,3}^{4}(t), \\ i \in \{3, \dots, k_{1} + 2\}, j \in \{3, \dots, k_{2} + 2\}, k \in \{1, \dots, k_{3} + 4\} \right\}$$
## Basis of $S_h$

Simplified problem:

- $\Omega = [-R, R] \times [-R, R] \subset \mathbb{R}^2$
- Uniform discretisation with  $k_1, k_2, k_3$  knots in x, y, t

Basis of  $\mathcal{S}^4$ 

$$\mathcal{B} = \left\{ B_{i,1}^4(x) B_{j,2}^4(y) B_{k,3}^4(t), \\ i \in \{1, \dots, k_1 + 4\}, j \in \{1, \dots, k_2 + 4\}, k \in \{1, \dots, k_3 + 4\} \right\}$$

#### Basis of $S_h$

$$\mathcal{B}^{0} = \left\{ B_{i,1}^{4}(x) B_{j,2}^{4}(y) B_{k,3}^{4}(t), \\ i \in \{3, \dots, k_{1}+2\}, j \in \{3, \dots, k_{2}+2\}, k \in \{1, \dots, k_{3}+4\} \right\}$$

# Basis of $S_h$

### Basis of $\mathcal{S}^4$

$$\mathcal{B} = \left\{ B_{i,1}^4(x) B_{j,2}^4(y) B_{k,3}^4(t), \\ i \in \{1, \dots, k_1 + 4\}, j \in \{1, \dots, k_2 + 4\}, k \in \{1, \dots, k_3 + 4\} \right\}$$

### Basis of $S_h$

$$\mathcal{B}^0 = \left\{ B^4_{i,1}(x) B^4_{j,2}(y) B^4_{k,3}(t), \ i \in \{3, \dots, k_1 + 2\}, j \in \{3, \dots, k_2 + 2\}, k \in \{1, \dots, k_3 + 4\} 
ight\}$$

- **1** express  $u_h, v_h$  as linear combination from  $\mathcal{B}^0$
- **2** express  $\Phi$  as interpolant from  $\mathcal{B}$
- $\mathbf{3} \Rightarrow$  system of linear equations for coefficients of  $u_h$