UNIVERSITY OF GRAZ

Department of Mathematics and Scientific Computing

Convex relaxation of (some) hybrid discrete-valued optimization problems

Christian Clason

Department of Mathematics and Scientific Computing, University of Graz

joint work with Florian Kruse, Karl Kunisch, Carla Tameling, Benedikt Wirth

4th Austrian Calculus of Variations Day University of Innsbruck, November 8, 2024

Motivation: hybrid discrete optimization

$$\min_{u\in U}\mathcal{F}(u)+\frac{\alpha}{2}\|u\|^2$$

\mathbf{F} tracking, discrepancy term (involving PDEs)

U discrete set

$$U = \{ u \in L^{p}(\Omega) : u(x) \in \{u_{1}, \dots, u_{d}\} \text{ a.e.} \}$$

u₁,..., u_d given voltages, velocities, materials, ...
 (assumed here: ranking by magnitude possible!)

motivation: topology optimization, medical imaging

■ convex relaxation: replace *U* by convex hull $u(x) \in [u_1, u_d]$

• works only for d = 2, cf. bang-bang control ($\alpha = 0$)

■ ~> promote $u(x) \in \{u_1, ..., u_d\}$ by convex pointwise penalty

$$\mathcal{G}(u) = \int_{\Omega} g(u(x)) \, dx$$

generalize L^1 norm: polyhedral epigraph with vertices u_1, \ldots, u_d

not exact relaxation/penalization (in general)!

generalize L^1 norm: polyhedral epigraph with vertices u_1, \ldots, u_d

- motivation: convex envelope of $\frac{1}{2}u^2 + \delta_U$
- multi-bang (generalized bang-bang) control
- → non-smooth optimization in function spaces

1 Overview

2 Approach

- Convex analysis
- Moreau–Yosida regularization
- Semismooth Newton method

3 Multi-bang penalty

4 Vector-valued multi-bang penalty

 $f : \mathbb{R} \to \mathbb{R}$ differentiable:

$$f(\overline{u}) = \min_{u} f(u) \Rightarrow f'(\overline{u}) = 0$$

calculus for f'

Convex relaxation: motivation

$$f: \mathbb{R} \to \mathbb{R} \text{ not differentiable, convex:}$$

$$= \text{ directional derivative:}$$

$$f'(u; h) = \lim_{t \to 0^+} \frac{f(u + th) - f(u)}{t}$$

$$= \text{ but: for all } h,$$

$$f'(\overline{u}; h) \neq 0$$

$$f(\overline{u}) + \langle f'(\overline{u}; -1), u \rangle$$

Convex relaxation: motivation

- $f:\mathbb{R}\to\mathbb{R}$ not differentiable, convex:
 - subdifferential:

$$\partial f(u) = \{u^*: \langle u^*, h\rangle \leq f'(u;h)\}$$

■ geometrically: ∂f(u) set of tangent slopes

$$f(\overline{u}) = \min_{u} f(u) \Rightarrow 0 \in \partial f(\overline{u})$$

■ calculus for ∂f under regularity conditions

 $\mathcal{F}: \mathsf{V} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\} \ \text{convex}, \ \ \mathsf{V} \ \text{Banach space}, \ \mathsf{V}^* \ \text{dual space}$

subdifferential

$$\partial \mathcal{F}(\overline{\nu}) = \left\{ \nu^* \in V^* : \langle \nu^*, \nu - \overline{\nu} \rangle_{V^*, V} \le \mathcal{F}(\nu) - \mathcal{F}(\overline{\nu}) \quad \text{for all } \nu \in V \right\}$$

Fenchel conjugate (always convex)

$$\mathcal{F}^*: V^* \to \overline{\mathbb{R}}, \qquad \mathcal{F}^*(v^*) = \sup_{v \in V} \langle v^*, v \rangle_{V^*, V} - \mathcal{F}(v)$$

■ "convex inverse function theorem" (if *F* lower semicontinuous)

$$v^* \in \partial \mathcal{F}(v) \quad \Leftrightarrow \quad v \in \partial \mathcal{F}^*(v^*)$$

Fenchel duality: example

$$\mathcal{G}: V \to \mathbb{R}, \quad V \mapsto \|V\|_{V}:$$

$$\mathcal{G}^{*}: V^{*} \to \overline{\mathbb{R}}, \quad v^{*} \mapsto \delta_{\{\|\cdot\|_{V^{*}} \leq 1\}}(v^{*}) := \begin{cases} 0 & \text{if } \|v^{*}\|_{V^{*}} \leq 1 \\ \infty & \text{else} \end{cases}$$

$$\mathcal{G}: V \to \overline{\mathbb{R}}, \quad v \mapsto \delta_{\{\|\cdot\|_{V} \leq 1\}}(v):$$

$$\partial \mathcal{G}(\overline{v}) = \left\{v^{*} \in V^{*}: \langle v^{*}, v - \overline{v} \rangle_{V^{*}, V} \leq 0 \quad \text{for all} \quad \|v\|_{V} \leq 1\right\}$$

11...11

\rightsquigarrow box-constrained optimization

Fenchel duality: application

$$\mathcal{F}(\overline{u}) + \mathcal{G}(\overline{u}) = \min_{u} \mathcal{F}(u) + \mathcal{G}(u)$$

- Fermat principle: $0 \in \partial \left(\mathcal{F}(\bar{u}) + \mathcal{G}(\bar{u}) \right)$
- 2 sum rule: $0 \in \partial \mathcal{F}(\bar{u}) + \partial \mathcal{G}(\bar{u})$, i.e., there is $\bar{p} \in V^*$ with

$$\begin{cases} -\bar{p} \in \partial \mathcal{F}(\bar{u}) \\ \bar{p} \in \partial \mathcal{G}(\bar{u}) \end{cases}$$

3 Fenchel duality:

$$\begin{cases} -\bar{p} \in \partial \mathcal{F}(\bar{u}) \\ \bar{u} \in \partial \mathcal{G}^*(\bar{p}) \end{cases}$$

 \mathcal{G} non-smooth \rightsquigarrow subdifferential $\partial \mathcal{G}^*$ set-valued \rightsquigarrow regularize

 $u, p \in L^2(\Omega)$ Hilbert space \rightsquigarrow consider for $\gamma > 0$

Proximal mapping

$$\operatorname{prox}_{\gamma \mathcal{G}^*}(p) = \arg\min_{w} \mathcal{G}^*(w) + \frac{1}{2\gamma} \|w - p\|^2$$

single-valued, Lipschitz continuous

- coincides with resolvent $(\text{Id} + \gamma \partial \mathcal{G}^*)^{-1}(p)$
- (also required for primal-dual first-order methods)

Proximal mapping

$$\operatorname{prox}_{\gamma \mathcal{G}^*}(p) = \arg\min_{w} \mathcal{G}^*(w) + \frac{1}{2\gamma} \|w - p\|^2$$

Complementarity formulation of $u \in \partial \mathcal{G}^*(p)$

$$u = \frac{1}{\gamma} \left((p + \gamma u) - \operatorname{prox}_{\gamma \mathcal{G}^*} (p + \gamma u) \right)$$

equivalent for every $\gamma > 0$

single-valued, Lipschitz continuous, implicit

Proximal mapping

$$\operatorname{prox}_{\gamma \mathcal{G}^*}(p) = \arg\min_{w} \mathcal{G}^*(w) + \frac{1}{2\gamma} \|w - p\|^2$$

Moreau–Yosida regularization of $u \in \partial \mathcal{G}^*(p)$

$$u = \frac{1}{\gamma} \left(p - \operatorname{prox}_{\gamma \mathcal{G}^*}(p) \right) =: \partial \mathcal{G}^*_{\gamma}(p)$$

■ $\partial \mathcal{G}_{\gamma}^* = \partial \left(\mathcal{G} + \frac{\gamma}{2} \| \cdot \|^2 \right)^* \rightarrow \partial \mathcal{G}^*$ as $\gamma \rightarrow 0$ (no smoothing of \mathcal{G} !)

$$\mathcal{G}^*: V^* \to \overline{\mathbb{R}}, \quad p \mapsto \delta_{\{\|\cdot\|_{V^*} \leq 1\}}(p):$$

Proximal mapping:

$$\mathsf{prox}_{\gamma \mathcal{G}^*}(p) = \mathsf{proj}_{\{\|\cdot\|_{V^*} \le 1\}}(p)$$

• Moreau–Yosida regularization ($V^* = L^{\infty}(\Omega)$):

$$\partial \mathcal{G}^*_{\gamma}(p) = \frac{1}{\gamma} \big(\max(0, p-1)) + \min(0, p+1) \big)$$

(max, min pointwise almost everywhere)

Generalized Newton method

Consider Banach spaces X, Y, mapping $F : X \rightarrow Y$

```
Newton-type method for F(x) = 0

• choose x^0 \in X (close to solution x^*)

• for k = 0, 1, ...

• choose M_k \in \mathcal{L}(X, Y) invertible

• solve for s^k:

M_k s^k = -F(x^k)
```

Convergence of Newton method

Set
$$d^k = x^k - x^* \rightsquigarrow$$

$$\frac{\|x^{k+1} - x^*\|_X}{\|x^k - x^*\|_X} = \frac{\|M_k^{-1}(F(x^* + d^k) - F(x^*) - M_k d^k)\|_X}{\|d^k\|_X}$$

ightarrow superlinear convergence if

1 regularity condition

 $\|M_k^{-1}\|_{\mathcal{L}(Y,X)} \le C \quad \text{for all } k$

2 approximation condition

$$\lim_{d^k \parallel_X \to 0} \frac{\|F(x^* + d^k) - F(x^*) - M_k d^k\|_Y}{\|d^k\|_X} = 0$$

Semismooth Newton method

Goal: define Newton derivative $M_k =: D_N F(x^k)$ such that

$$x^{k+1} = x^k - D_N F(x^k)^{-1} F(x^k)$$

converges superlinearly for F(x) = 0 nonsmooth

- Rⁿ: F Lipschitz → D_NF from Clarke subdifferential (Rademacher) [Mifflin 1977, Kummer 1992, Qi/Sun 1993]
- function space: Clarke subdifferential not explicit
 → define D_NF via approximation condition
 [Chen/Nashed/Qi 2000, Hintermüller/Ito/Kunisch 2002]

■ $f : \mathbb{R}^N \to \mathbb{R}$ semismooth \rightsquigarrow superposition operator $F : L^p(\Omega) \to L^q(\Omega)$ semismooth for p > q[Ulbrich 2002/03/11, Schiela 2008]

Semismooth Newton method

f locally Lipschitz, piecewise C^1 :

$$f(\mathbf{v}) = 0, \qquad f: \mathbb{R}^n \to \mathbb{R}$$

Newton derivative

$$D_N f(v) \delta v \in \partial_C f(v) \delta v$$

Clarke generalized gradient: convex hull of piecewise derivatives

semismooth Newton method

$$D_N f(v^k) \delta v = -f(v^k), \qquad v^{k+1} = v^k + \delta v$$

converges locally superlinearly

f locally Lipschitz, piecewise C^1 :

 $F(u) = 0, \qquad F: L^{r}(\Omega) \to L^{s}(\Omega), \quad [F(u)](x) = f(u(x))$

Newton derivative

$$[D_N F(u) \delta u](x) \in \partial_C f(\delta u(x)) \delta u(x)$$

any measurable selection of Clarke generalized gradient

semismooth Newton method

$$D_N F(u^k) \delta u = -F(u^k), \qquad u^{k+1} = u^k + \delta u$$

converges locally superlinearly if r > s

Semismooth functions: example

 $f: \mathbb{R} \to \mathbb{R}, \quad t \mapsto \max(0, t)$

$$D_N f(t) \in \partial_C f(t) = \begin{cases} \{0\} & t < 0\\ \{1\} & t > 0\\ [0,1] & t = 0 \end{cases}$$

$$F: L^{p}(\Omega) \to L^{q}(\Omega), \quad u(x) \mapsto \max(0, u(x)), \quad p > q$$

$$[D_N F(u)h](x) = \begin{cases} 0 & u(x) < 0 \\ h(x) & u(x) \ge 0 \end{cases}$$

\rightsquigarrow Moreau–Yosida regularization semismooth

Numerical solution: summary

For (non)convex $\mathcal{G} : L^2(\Omega) \to \mathbb{R}$, $\mathcal{G}(u) = \int_{\Omega} g(u(x)) dx$,

Approach: pointwise

- **1** compute subdifferential ∂g (or Fenchel conjugate g^*)
- **2** compute subdifferential ∂g^*
- 3 compute proximal mapping prox_{vg*}
- 4 compute Moreau–Yosida regularization ∂g_v^*
- 5 compute Newton derivative $D_N \partial g_V^*$
- → semismooth Newton method, continuation in γ for superposition operator $[\partial \mathcal{G}_{\gamma}^{*}(p)](x) = \partial g_{\gamma}^{*}(p(x))$

1 Overview

2 Approach

- Convex analysis
- Moreau–Yosida regularization
- Semismooth Newton method

3 Multi-bang penalty

4 Vector-valued multi-bang penalty

Formulation

$$\begin{cases} \min_{u \in L^2(\Omega)} \frac{1}{2} \|y - z\|_{L^2}^2 + \alpha \mathcal{G}(u) \\ \text{s.t. } Ay = u, \quad u_1 \le u(x) \le u_d \text{ a.e.} \end{cases}$$

 $u_1 < \cdots < u_d$ given parameter values (d > 2)

$$z \in L^2(\Omega)$$
 target (or noisy data)

• $A: V \to V^*$ isomorphism for Hilbert space $V \hookrightarrow L^2(\Omega) \hookrightarrow V^*$ (e.g., elliptic differential operator with boundary conditions)

$$\longrightarrow \mathcal{F}(u) = \frac{1}{2} \|A^{-1}u - z\|_{L^2}^2 \text{ smooth}$$

G multi-bang penalty (will include control constraints from now)

Multi-bang penalty

$$g: \mathbb{R} \to \overline{\mathbb{R}}, \qquad v \mapsto \begin{cases} \frac{1}{2} \left((u_i + u_{i+1})v - u_i u_{i+1} \right) & v \in [u_i, u_{i+1}] \\ \infty & \text{else} \end{cases}$$

piecewise differentiable \rightsquigarrow subdifferential convex hull of derivatives

$$\partial g(v) = \begin{cases} \left(-\infty, \frac{1}{2}(u_1 + u_2)\right) & v = u_1 \\ \left\{\frac{1}{2}(u_i + u_{i+1})\right\} & v \in (u_i, u_{i+1}) & 1 \le i < d \\ \left[\frac{1}{2}(u_{i-1} + u_i), \frac{1}{2}(u_i + u_{i+1})\right] & v = u_i & 1 < i < d \\ \left[\frac{1}{2}(u_{d-1} + u_d), \infty\right) & v = u_d \end{cases}$$

Multi-bang penalty

$$\partial g(v) = \begin{cases} \left(-\infty, \frac{1}{2}(u_1 + u_2)\right] & v = u_1 \\ \left\{\frac{1}{2}(u_i + u_{i+1})\right\} & v \in (u_i, u_{i+1}) & 1 \le i < d \\ \left[\frac{1}{2}(u_{i-1} + u_i), \frac{1}{2}(u_i + u_{i+1})\right] & v = u_i & 1 < i < d \\ \left[\frac{1}{2}(u_{d-1} + u_d), \infty\right) & v = u_d \end{cases}$$

convex inverse function theorem:

$$\partial g^{*}(q) \in \begin{cases} \{u_{1}\} & q \in \left(-\infty, \frac{1}{2}(u_{1}+u_{2})\right) \\ [u_{i}, u_{i+1}] & q = \frac{1}{2}(u_{i}+u_{i+1}), & 1 \le i < d \\ \{u_{i}\} & q \in \left(\frac{1}{2}(u_{i-1}+u_{i}), \frac{1}{2}(u_{i}+u_{i+1})\right) & 1 < i < d, \\ \{u_{d}\} & q \in \left(\frac{1}{2}(u_{d-1}+u_{d}), \infty\right) \end{cases}$$

Multi-bang penalty: sketch

Multi-bang penalty: sketch

Optimality system

$$\overline{p} = \frac{1}{\alpha} S^* (z - S\overline{u})$$
$$\overline{u} \in \partial \mathcal{G}^*(\overline{p}) = \begin{cases} \{u_i\} & \overline{p}(x) \in Q_i \\ [u_i, u_{i+1}] & \overline{p}(x) \in \overline{Q}_i \cap \overline{Q}_{i+1} \end{cases}$$

S : $u \mapsto y$ control-to-state mapping, S^* adjoint

•
$$\rightarrow$$
 unique solution $(\overline{u}, \overline{p}) \in L^2(\Omega) \times L^2(\Omega)$

singular arc $S = \{x : \overline{u}(x) \notin \{u_i\}\} \subset \{x : \overline{p}(x) = \frac{1}{2}(u_i + u_{i+1})\}$

for suitable A, $\overline{p}(x)$ constant implies $[A^*\overline{p}](x) = [z - \overline{y}](x) = 0$

 $\rightarrow |\{x : \overline{y}(x) = z(x)\}| = 0 \implies \overline{u} \in \{u_1, \dots, u_d\}$ a.e., true multi-bang

Proximal mapping $\operatorname{prox}_{\gamma g^*}(q) = w$ iff $q \in \{w\} + \gamma \partial g^*(w)$

case-wise inspection of subdifferential:

$$\partial g_{\gamma}^{*}(q) = \frac{1}{\gamma} \left(q - \operatorname{prox}_{\gamma g^{*}}(q) \right) = \begin{cases} u_{i} & q \in Q_{i}^{\gamma} \\ \frac{1}{\gamma} \left(q - \frac{1}{2}(u_{i} + u_{i+1}) \right) & q \in Q_{i,i+1}^{\gamma} \end{cases}$$

$$Q_{i}^{\gamma} = \left(\frac{1}{2}(u_{i-1} + u_{i}) + \gamma u_{i}, \frac{1}{2}(u_{i} + u_{i+1}) + \gamma u_{i}\right)$$
$$Q_{i,i+1}^{\gamma} = \left[\frac{1}{2}(u_{i} + u_{i+1}) + \gamma u_{i}, \frac{1}{2}(u_{i} + u_{i+1}) + \gamma u_{i+1}\right]$$

Regularized optimality system

$$\begin{cases} p_{\gamma} = \frac{1}{\alpha} S^*(z - Su_{\gamma}) \\ u_{\gamma} = \partial \mathcal{G}^*_{\gamma}(p_{\gamma}) \end{cases}$$

• optimality conditions for $\mathcal{F}(u) + \alpha \mathcal{G}(u) + \frac{\gamma}{2} ||u||^2$

• \rightarrow unique solution (u_{γ}, p_{γ})

$$(u_{\gamma}, p_{\gamma}) \rightharpoonup (\overline{u}, \overline{p}) \text{ as } \gamma \rightarrow 0$$

■ ∂g_{γ}^* Lipschitz continuous, piecewise C^1 , norm gap $V \hookrightarrow L^2(\Omega)$

semismooth Newton method

Regularized optimality system

$$\begin{cases} A^* p_{\gamma} = \frac{1}{\alpha} (z - y_{\gamma}) \\ A y_{\gamma} = \mathcal{G}^*_{\gamma}(p_{\gamma}) \end{cases}$$

- optimality conditions for $\mathcal{F}(u) + \alpha \mathcal{G}(u) + \frac{\gamma}{2} ||u||^2$
- \rightarrow unique solution (u_{γ}, p_{γ})

$$(u_{\gamma}, p_{\gamma}) \rightarrow (\overline{u}, \overline{p}) \text{ as } \gamma \rightarrow 0$$

- ∂g_V^* Lipschitz continuous, piecewise C^1 , norm gap $V \hookrightarrow L^2(\Omega)$
- semismooth Newton method

introduce
$$y_{\gamma} = Su_{\gamma}$$
, eliminate $u_{\gamma} = \mathcal{G}_{\gamma}^{*}(p_{\gamma})$

Semismooth Newton method

$$\begin{pmatrix} \frac{1}{\alpha} \operatorname{Id} & A^* \\ A & -D_N \mathcal{G}^*_{\gamma}(p) \end{pmatrix} \begin{pmatrix} \delta y \\ \delta p \end{pmatrix} = - \begin{pmatrix} A^* p + \frac{1}{\alpha} (y - z) \\ A y - \mathcal{G}^*_{\gamma}(p) \end{pmatrix}$$

$$[D_N \mathcal{G}^*_{\gamma}(p) \delta p](x) = \begin{cases} \frac{1}{\gamma} \delta p(x) & p(x) \in Q^{\gamma}_{i,i+1} \\ 0 & \text{else} \end{cases}$$

- \rightarrow continuation in $\gamma \rightarrow 0$
- \blacksquare \rightsquigarrow backtracking line search based on residual norm
- only number of sets Q_i^{γ} depends on $d \rightarrow$ linear complexity

$$\Omega = [0, 1]^2, A = -\Delta$$

finite element discretization: uniform grid, 256 × 256 nodes

state, adjoint: piecewise linear

parameter: eliminated (variational discretization)

$$d = 5$$
, $(u_1, \dots, u_5) = (-2, 1, 0, 1, 2)$

γ = 0: regularized active sets empty, true multi-bang
 γ > 0: terminated with 2–21 nodes in regularized active sets

Numerical examples: desired state

Multi-bang controls

1 Overview

2 Approach

- Convex analysis
- Moreau–Yosida regularization
- Semismooth Newton method

3 Multi-bang penalty

4 Vector-valued multi-bang penalty

Vector-valued multi-bang control

Discrete vector-valued controls $u : \Omega \to U \subset \mathbb{R}^m$

Example: optimal control of Bloch equation: $\Omega = [0, T]$, m = 2

$$\frac{d}{dt}M(t) = M(t) \times B(t), \qquad M(0) = M_0$$

- $M(t) \in \mathbb{R}^3$ describes temporal evolution of spin ensemble
- $B(t) = (u_1(t), u_2(t), \omega)^T$ controlled time-dependent magnetic field
- ω resonance frequency (material parameter)
- applications in magnetic resonance imaging, spectroscopy
- **c**ontrol-to-state mapping $S : u \to M$ bilinear (\rightsquigarrow chain rule, Clarke)

Vector-valued multi-bang: penalty

Here: admissible control set U of d radially distributed states, origin

$$U = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \omega_0 \cos \theta_1 \\ \omega_0 \sin \theta_1 \end{pmatrix}, \dots, \begin{pmatrix} \omega_0 \cos \theta_d \\ \omega_0 \sin \theta_d \end{pmatrix} \right\}$$

fixed amplitude
$$\omega_0 > 0$$
phases $0 \le \theta_1 < \ldots < \theta_d < 2\pi$
multi-bang penalty $g = \left(\frac{1}{2} |\cdot|_2^2 + \delta_U\right)^{**}$ convex envelope
$$g^*(q) = \left(\left(\frac{1}{2} |\cdot|_2^2 + \delta_U\right)^{**}\right)^* (q) = \left(\frac{1}{2} |\cdot|_2^2 + \delta_U\right)^* (q)$$

$$= \begin{cases} 0 & \langle q, u_i \rangle \le \frac{1}{2}\omega_0^2 \text{ for all } 1 \le i \le d \\ \langle q, u_i \rangle - \frac{1}{2}\omega_0^2 & \frac{\theta_{i-1} + \theta_i}{2} \le \angle q \le \frac{\theta_i + \theta_{i+1}}{2}, \langle q, u_i \rangle \ge \frac{1}{2}\omega_0^2 \end{cases}$$

Vector-valued multi-bang: subdifferential

Fenchel conjugate

$$g^*(q) = \begin{cases} 0 \eqqcolon u_0 & q \in \overline{Q}_0 \\ \langle q, u_i \rangle - \frac{1}{2}\omega_0^2 & q \in \overline{Q}_i \end{cases}$$

Subdifferential

$$\partial g^{*}(q) = \begin{cases} \{u_{i}\} & q \in Q_{i} & 0 \le i \le d \\ \cos \{u_{i_{1}}, \dots, u_{i_{k}}\} & q \in Q_{i_{1}\dots i_{k}} & 0 \le i_{1}, \dots, i_{k} \le d \end{cases}$$

Vector-valued multi-bang: subdifferential

Subdifferential

$$\partial g^{*}(q) = \begin{cases} \{u_{i}\} & q \in Q_{i} & 0 \le i \le d \\ \operatorname{co} \{u_{i_{1}}, \dots, u_{i_{k}}\} & q \in Q_{i_{1}\dots i_{k}} & 0 \le i_{1}, \dots, i_{k} \le d \end{cases}$$

Moreau-Yosida regularization

$$(\partial g^{*})_{\gamma}(q) = \begin{cases} u_{i} & q \in Q_{i}^{\gamma} \\ \left(\frac{\langle q, u_{i} \rangle}{\gamma \omega_{0}^{2}} - \frac{\alpha}{2\gamma}\right) u_{i} & q \in Q_{0,i}^{\gamma} \\ \frac{u_{i} + u_{i+1}}{2} + \frac{\langle q, u_{i} - u_{i+1} \rangle (u_{i} - u_{i+1})}{\gamma |u_{i} - u_{i+1}|_{2}^{2}} & q \in Q_{i,i+1}^{\gamma} \\ \frac{q}{\gamma} - \frac{\alpha}{\gamma} \left(\frac{\omega_{0}}{|u_{i} + u_{i+1}|_{2}}\right)^{2} (u_{i} + u_{i+1}) & q \in Q_{0,i,i+1}^{\gamma}. \end{cases}$$

Vector-valued multi-bang: subdifferential

goal: shift magnetization from $M_0 = (0, 0, 1)^T$ at t = 0to $M_d = (1, 0, 0)^T$ at t = T

- d = 3, 6 radially distributed admissible control states
- **n** = 1, 4 isochromats with different resonance frequencies
 - shift all isochromats
 - 2 shift only one isochromat

$$\alpha = 10^{-1}, \omega_0 = 1$$

- example motivated by [Dridi/Lapert/Salomon/Glaser/Sugny '15]
- matrix-free Krylov method for semismooth Newton step
- discretization, adjoint from [Aigner/Clason/Rund/Stollberger '16]

Figure: n = 1 isochromat, d = 3 control states

Figure: n = 1 isochromat, d = 6 control states

Figure: n = 4 isochromats, same target

Figure: *J* = 4 isochromats, different targets

Linear elasticity: $S: u \mapsto y$ solving

$$\begin{cases} -2\mu \operatorname{div} \epsilon(y) - \lambda \operatorname{grad} \operatorname{div} y = u & \text{in } \Omega, \\ y = 0 & \text{on } \Gamma, \\ (2\mu\epsilon(y) + \lambda \operatorname{div} y)n = 0 & \text{on } \partial\Omega \setminus \Gamma \end{cases}$$

Concentric admissible set (without origin!)

$$U = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ -2 \end{pmatrix} \right\}$$

Figure: radial, d = 3, $\alpha = 10^{-3}$ (grey: prescribed, red: achieved deformation)

Figure: radial, d = 5, $\alpha = 10^{-3}$ (grey: prescribed, red: achieved deformation)

Figure: concentric, $\alpha = 10^{-3}$ (grey: prescribed, red: achieved deformation)

Figure: concentric, $\alpha = 10^{-5}$ (grey: prescribed, red: achieved deformation)

Figure: concentric, $\alpha = 10^{-5}$ (grey: prescribed, red: achieved deformation)

Figure: concentric, $\alpha = 10^{-5}$ (grey: prescribed, red: achieved deformation)

Multimaterial transport on graph (V, E): S graph divergence

$$Su(x) = \sum_{e \in E \text{ to } x} u(e) - \sum_{e \in E \text{ from } x} u(e)$$

 \rightsquigarrow tracking term penalizes material loss

$$U = \{ u \in \mathbb{R}^m \, | \, u_i \in \{0, m_i\} \text{ or } u_i \in \{0, -m_i\} \text{ for } i = 1, \dots, m \}$$

ightarrow all transport in same direction (same sign)

Here: multibang penalty

$$g(u) = |u|_2 + \delta_U$$

Here: multibang penalty

$$g(u) = |u|_2 + \delta_U$$

 \rightsquigarrow algorithmic computation of proximal mapping:

1 enumerate all faces of

epi
$$g^* = \{(q, t) \in \mathbb{R}^{m+1} : t \ge \langle \overline{u}_i, q \rangle - \alpha c(\overline{u}_i) \text{ for } i \in I\}$$

(linear program, precompute!)

- ² for each face, precompute linear system for $(\text{Id} + \gamma \partial g^*)^{-1}$
- 3 for given *q*, evaluate linear system for each face and pick correct face (inequalities)

Conclusion

Discrete controls:

- can be promoted by convex penalty
- linear complexity in number of parameter values
- efficient numerical solution (superlinear convergence)
- applicable to vector-valued problems

Outlook:

- nonlinear inverse problems: seismic imaging
- combination with total variation regularization
- primal-dual proximal splitting
- other discrete-continuous problems: switching, state diagrams

Papers, Code: https://imsc.uni-grat.at/clason/publications SIREV paper: https://arxiv.org/abs/2108.10077 Textbook: https://arxiv.org/abs/1708.04180