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work of spectral decomposition systems, which covers a wide range of previously studied settings,
including eigenvalue decomposition of Hermitian matrices and singular value decomposition of
rectangular matrices, and allows deriving new results in more general settings such as normal
decomposition systems and signed singular value decompositions. The main results character-
ize Fréchet and limiting normal cones to spectral sets as well as Fréchet, limiting, and Clarke
subdifferentials of spectral functions in terms of the reduced functions. For the latter, we also
characterize Fréchet differentiability. Finally, we obtain a generalization of Lidskii’s theorem on
the spectrum of additive perturbations of Hermitian matrices to arbitrary spectral decomposition
systems.
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1. Introduction

Many practically relevant optimization problems are naturally posed in terms of matrices instead of
vectors; prominent examples include non-negative matrix factorization [23], matrix completion [8],
low-rank approximation [18, 39], or operator learning [26]. Particularly — but not only — in the last
example, one is actually interested in optimizing over (finite-dimensional) linear operators and not
their particular matrix representations. This implies that the functions to be minimized should be
invariant under basis changes. It is a well-known fact from linear algebra that, under appropriate
assumptions, such functions are fully characterized by their dependence on the eigenvalues (or sin-
gular values) of its argument; the most well-known example is probably the nuclear norm of a matrix.
Correspondingly, examples of such spectral functions are ubiquitous in applications such as robust ma-
trix estimation [4], signal processing [9], conic programming [12], semi-definite programming [24],
nonlinear elasticity [50], and brain network analysis [55]. Along the same lines, such optimization
problems can include constraints in terms of spectral sets that are defined in terms of eigenvalues or
singular values; the most common example is the set of positive (semi-)definite matrices.

While many of these problems can be formulated as convex problems, this is not always the case;
by way of example we only mention low-rank matrix completion via Schatten p-norm minimization
for 0 < p < 1 [38] or mathematical programs with semidefinite cone complementarity constraints
(SDCMPCC) [15]. Here the main question is about the characterization of the fundamental objects of
variational analysis and geometry such as (Clarke, Fréchet, limiting) subdifferentials or normal cones
of the spectral function or set in terms of the invariant function or set of the eigenvalues (or singular
values) in order to obtain sharp necessary optimality conditions. The central challenge in this is the
fact that the invariant function only depends on the set of eigenvalues but not their ordering. The same
issue already arises in studying the Fréchet differentiability and characterizing the Fréchet derivative
of spectral functions.

Correspondingly, variational analysis of convex and nonconvex spectral optimization problems
has been studied in a variety of different settings. For symmetric functions of eigenvalues, [28] an-
alyzed Fréchet differentiability and characterized Clarke subdifferentials while [31] treated Fréchet,
limiting, horizon, and Clarke subdifferentials. Later, [16] provided a simplified approach for these
results. Higher-order differentiability was studied in [2], where also other related type of functions
such as radial functions and isotropic functions were considered. Following the same patterns as in
[31], the series of works [34, 35] studied Fréchet, limiting, horizon, and Clarke subdifferentials of
signed-symmetric functions of singular values of rectangular matrices. These results have also been
generalized to the setting of Euclidean Jordan algebras (see Example 2.10 below). Specifically, [52]
analyzed (higher-order) differentiability analyticity, and semismoothness of Loéwner’s operator and
spectral functions, [1] studied convex analysis and differentiability of (non-convex) spectral functions.
On the other hand, following the pattern developed by Lewis in [28, 31] for the case of symmetric
matrices, [37] characterized Fréchet, limiting, horizon, and Clarke subdifferentials. See also [51] for
these results in the setting of a specific Euclidean Jordan algebra.

However, each of these works treated a specific setting in isolation. Building on our earlier work [7]
on convex analysis of spectral functions, we therefore aim to bring together these results on Fréchet,
limiting, and Clarke subdifferentials as well as Fréchet differentiability in a general framework that
covers all these settings and — more importantly — allows deriving results more easily for settings and
objects not covered so far. In a nutshell, we work in a spectral decomposition system consisting of

i) afamily of spectral decompositions that generalize constructing a matrix with given eigenvalues
y ot sp p g g g g
(e.g., via a basis of eigenvectors);



(ii) a spectral mapping that generalizes computing the eigenvalues from a given matrix;

(iii) an ordering mapping that generalizes sorting eigenvalues in decreasing order;

that satisfy some natural compatibility conditions such as a generalization of von Neumann’s trace
inequality; see Definition 2.1 for a precise definition. To be able to treat limiting subdifferentials, we
also require - in addition to our previous work — a closedness condition on the family of spectral de-
compositions (Assumption 2.2). This definition covers all previously considered settings in uniform
generality (applying, for instance, in each case to matrices over the real, complex, or quaternion fields).
Moreover, our results appear to be new in the setting of normal decomposition system [29], which
settles the open question set forth in the discussion in the paragraph following [33, Theorem 7.2],
as well as for the setting of signed singular values as studied in [13] and [50] (which treated only
the case of convex spectral functions). Our general approach allows bypassing the matrix-dependent
proof techniques of existing works via a geometric approach common in variational analysis: First we
leverage the results in the first part [7] to establish characterizations of normal cones to spectral sets,
which are of interest in their own right. We then transfer these results in the usual way via normal
cones to epigraphs (with the help of “product space spectral decompositions”, see Example 2.14) to the
subdifferentials of interest. Along the way, we give a full characterization of the Fréchet differentia-
bility of spectral functions. Our characterization of the Clarke subdifferential also yields a generalized
Lidskii’s theorem on the effect of additive perturbations on the spectrum (see Theorem 5.1) that brings
together the classical Lidskil’s theorem [36], the version for rectangular matrices, the version for Eu-
clidean Jordan algebras [25], and the version for Eaton triples [21] (in particular, the Lie-theoretic
majorization result of [5]).

This work is organized as follows. In the next Section 2, we recall the precise definition of spectral
decomposition systems and illustrate how it covers previously studied settings. We also recall from
[7] various basic properties that are fundamental to the analysis in this work. Section 3 is then con-
cerned with variational geometry of spectral sets, where we give full characterizations of the Fréchet
and limiting normal cones (Proposition 3.4). In Section 4, we exploit these results to obtain full charac-
terizations of the Fréchet and limiting subdifferential of spectral functions in terms of their invariant
functions (Theorem 4.1). The former in particular yields a full characterization of Fréchet differen-
tiability and of Fréchet derivatives (Corollary 4.8). We also obtain from this a representation of the
Clarke subdifferential of spectral functions (Proposition 4.11). In the final Section 5, this is then used
to derive a generalization of Lidskii’s theorem in spectral decomposition systems (Theorem 5.1).

2. Spectral decomposition systems

Let H be a Euclidean space, that is, a finite-dimensional real Hilbert space. The scalar product and
its associated norm are denoted by (- | -) and || -||, respectively. (We will use ||-||¢; when there is a
potential ambiguity.) The space of linear operators from H to a Euclidean space G is denoted by
Z(H, G) and we equip it with the topology induced by the norm

(VLe Z(H.6) Illzgg = max|Lx, (21)
lIxll<1

and we write Z(H) = L (H, H). (Since we are working in finite-dimensional spaces, this topology
coincides with the topology of pointwise convergence.) Group operations are written multiplicatively.
Now let G be a group acting on H, where we use - to denote group action. Additionally:



. TheorbitofanelementxE?’(iSG-x:{g-x|gEG}.

« Given a nonempty set U, a mapping ¢: H — U is G-invariant if (Vx € H)(Vg € G) &(g-x) =
d(x).

« A subset C of ‘H is G-invariant if its indicator function

0 ifreC
Lc:?{—>]—oo,+00]:XI—>{ Hxe 2.2)

+oo otherwise,

is G-invariant or, equivalently, (Vx € C)(Vge G) g-x € C.
« We say that G acts on H by linear isometries if, for every g € G, the mapping H — H: x — g-x

is a linear isometry.
2.1. Definitions, assumptions, and characterization

We are now ready to state the formal definition of the abstract framework for this work.

Definition 2.1 (spectral decomposition system [7, Definition 2.1]). A spectral decomposition system
for a Euclidean space §) is a tuple & = (X, S, y, (A )gea), where X is a Euclidean space, S is a group
which acts on X by linear isometries, y is a mapping from $ to X, and (A, )qey is a family of linear
isometries from X to $ such that the following are satisfied:

[A] There exists an S-invariant mapping 7: X — X such that
[(VxEX) T(X)ES'X] and [(Vaesﬂ)yoA@=T]. (2.3)
[B] (VX € $)(Fa ed) X =Ay(X).
[C] (VX € H)(VY € H) (X|Y) < (y(X) |y (Y)).
In which case:

+ The mapping y is called the spectral mapping of the system S.
+ The mapping 7 in property [A] is called the spectral-induced ordering mapping of the system &.
« We set

(VX e$) dyx={acd|X=Ay(X)} (2.4)

(Property [B] guarantees that the sets (dx)xeg are nonempty.)

« Given X € 9, the vector y(X) is called the spectrum of X with respect to S and, for every
<« € dx, the identity

X = Auy(X) (2.5)
is called a spectral decomposition of X with respect to S.

Our results will be formulated under the following assumption, which extends the assumptions in
[7] with a closedness condition on {A, } , 4 that will be essential in several limiting arguments in this
paper. As we shall demonstrate in Section 2.2, this assumption is satisfied in all previously considered
examples.



Assumption 2.2. § is a Euclidean space and & = (X,S,y, (A )eca) is a spectral decomposition
system for $. Moreover, the set {A, },cy is closed in Z (X, 9).

We now formally define the classes of functions and sets that will be studied in this paper.

Definition 2.3 (spectral function and spectral set). Let § be a Euclidean space, andlet (X, S, y, (Ag)aes)
be a spectral decomposition system for $).

(i) A function @: § — [—o0, +00] is said to be a spectral function if
(VX eH)(VYeH) y(X)=y() = &X)=o(Y). (2.6)

(ii) A set D C 9 is said to be a spectral set if its indicator function ig is a spectral function or,
equivalently,

y(X) =y(Y)

= Ye9. (2.7)
XeD

(VX € 9)(VY € 9) {

The next result characterizes spectral functions precisely as those of the form
®=¢poy, wherep: X — [—oo,+00] is S-invariant, (2.8)

which thus motivates the study of variational analytic properties and objects attached to ¢ in terms
of those of ¢.

Proposition 2.4 ([7, Proposition 4.1]). Let § be a Euclidean space, and let (X,S,y, (Ag)aeq) be a
spectral decomposition system for §. Then a function : § — [—oo,+00] is a spectral function if and
only if there exists an S-invariant function ¢: X — [—oo, +00] such that & = ¢ oy, in which case, ¢ is
uniquely determined by

Vo ed) o=doA,, (2.9)
and we call ¢ the invariant function associated with ¢.

By specializing Proposition 2.4 to indicator functions, we obtain a characterization of spectral sets
precisely as those of the form

9D =y (D), where D C X is S-invariant. (2.10)

Corollary 2.5 ([7, Corollary 4.3]). Let $ be a Euclidean space, and let (X, S, y, (Ag)aeq) be a spectral
decomposition system for §. Then a set D C $ is a spectral set if and only if there exists an S-invariant
set D C X such that @ =y~ (D), in which case D is uniquely determined by

(Vo ed) D=AYD), (2.11)

and we call D the invariant set associated with 9.



2.2. Examples

We now illustrate the versatility of spectral decomposition systems. The examples here are mostly
drawn from [7], where we first introduced this notion and to which we refer the reader for additional
background and details. In addition, we verify that the additional closedness assumption required in
this work is satisfied for these examples. To that end, let us introduce some notation.

Notation 2.6. Let M and N be strictly positive integers.

« K denotes one of the following: the field R of real numbers, the field C of complex numbers,
or the skew-field H of Hamiltonian quaternions (we refer the reader to [49] for background on
quaternions).

+ The canonical involution on K is & 5_5, which fixes only the elements of R.

KM*N stands for the real vector space of M x N matrices with entries in K.

« The conjugate transpose of X = [&;j]1<i<m € KMXN jg x* = [E]KKN e KNxM
ISjSN 1<isM

« The trace of a matrix X € KN*N is denoted by tra X.

« HY(K) = {X e KNN | X =X *} is the vector subspace of KN*N which consists of Hermitian
matrices.

. UN(K) = {U e KNN | U*U = Id} is the multiplicative group of unitary matrices.

. SON = {U € UNR) | detU = 1} is the special orthogonal group.

« PY denotes the multiplicative group of N x N signed permutation matrices, that is, matrices
which contain exactly one nonzero entry in every row and every column, and that entry is —1
or 1.

« PV is the group of permutation matrices, that is, the subgroup of PY which consists of matrices
with entries in {0, 1}.

« For every x = (&)1<i<n € RN, x! denotes the rearrangement vector of x with entries listed in
decreasing order, and Ix|* denotes the rearrangement vector of (|&;|)1<;<n With entries listed in
decreasing order.

« O(H) stands for the orthogonal group of a Euclidean space H, that is, the set of linear isometries
from H to H equipped with the composition operation.

Our first example shows that every Euclidean space admits a spectral decomposition system.

Example 2.7. Let 2 < N € N, set
e=(10,...,00 RN and (YU € UN(R)) Ay: R —» RN: & EUe, (2.12)

and let the multiplicative group {—1, 1} act on R via multiplication. Then (R, {—1, 1}, ||-[l, (Av)yeun(r))
is a spectral decomposition system for RY, and the set {Au}yeun r) is closed in Z (R, RN).

Proof. The former assertion is proved in [7, Example 2.3], while the latter follows from the closedness
of UN(R) in RN*N for the topology of pointwise convergence. [

Our next example shows that the normal decomposition system framework of [29] can be viewed
as a spectral decomposition system. This subsumes, in particular, the Lie-theoretic framework of [5,
32, 53].



Example 2.8 (normal decomposition system). Let (£, G, y) be a normal decomposition system in the
sense of [29, Definition 2.1], that is, $ is a Euclidean space, G is a closed subgroup of O($), and
Y: H — 9 is a G-invariant mapping (here G acts on §) via the canonical action (g, X) — g(X)) such
that

{(VX €9)(FgeC) X =g(y(X)) .13
(VX e9H)(VY eH) (X|Y) < (yX)[y(¥)).
Let X be a vector subspace of § which contains range y, and set

S= {g|gx | g € G such that g(X) = ?I} and (Vg€ G) Ag: XL — H: X — g(X). (2.14)
Moreover, let S act on X via (s, X) — s(X). Suppose that

(VX eX)(TseS) X =s(y(X)). (2.15)

Then © = (X, S, y, (Ag)gec) is a spectral decomposition system for §), and the set {Ag} ¢ is closed in
Z (X, D).

Proof. For the former assertion, note that property [A] in Definition 2.1 is fulfilled with 7 = y|q.. The
later assertion follows from the closedness of G in O($). [

A framework equivalent to normal decomposition systems is the notion of an Eaton triple [17],
which arose in probability theory and group majorization.

Example 2.9 (Eaton triple). Let ($, G, X) be an Eaton triple [17, Chapter 6], that is, $ is a Euclidean
space, G is a closed subgroup of O(%), and ¥ is a closed convex cone in $ such that

(VX € 9)(AgeCG) gX) e X, (2.16)
and
VX e K)(VY € K) man<X [g(Y)) =(X|Y). (2.17)
ge

As shown on [43, p. 14], for every X € §, the intersection K N (G - X) is a singleton, which we denote
by y(X). This thus defines a G-invariant mapping

y:H—9, (2.18)

where G acts on $ via (g, X) — g(X). Now let X be a vector subspace of § which contains range y,
set

S = {g|9c | g € G such that g(X) = %} and (Vg€ G) Ag: XL — H: X — g(X), (2.19)
and let S act on X via (s, X) +— s(X). Suppose that
(VX eX)(3TseS) X =s(y(X)). (2.20)

Then & = (X, S, y, (Ag)gec) is a spectral decomposition system for £, and the set {Ag},¢¢ is closed in
Z(X, 9).



Proof. We claim that (£, G, y) is a normal decomposition system. To this end, it is enough to verify
the inequality

(VX eH)(VY € 9) (X|Y) < (y(X)[y(Y)). (2.21)

Take X and Y in $, and let g and h be in G such that y(X) = g(X) and y(Y) = h(Y). Since
{y(X),y(Y)} € & by construction, we derive from (2.17) that

) 1y(N) = (y(X) [ (g7 o h) (y(1))) = (g(y()) [h(y (1))} = (X Y). (2:22)
Consequently, we obtain the conclusion by invoking Example 2.8. [

The next example demonstrates that our notion of a spectral decomposition system encompasses
the Euclidean Jordan algebra framework of [1, 25, 37, 52], which in turn captures the space H™ (K) of
Hermitian matrices (see Example 2.11). It was shown in [44] that, in general, Euclidean Jordan algebras
cannot be embedded into a normal decomposition system of Example 2.8, demonstrating that these
are distinct notions.

Example 2.10 (Euclidean Jordan algebra). Let $ be a Euclidean Jordan algebra, that is, $ is a finite-
dimensional real vector space which is endowed with a bilinear form

HXH - H: (X, V)—»XeY (2.23)
such that the following are satisfied:

[A] ("X eD)(VYeH) XY =Y XandX® (XeX)®aY)=XeX)®(X®Y).
[B] There exists a scalar product (- | -) on § such that (VX € $)(VY € H)(VZ € H) X@Y|Z) =
XY®Z)

see [19] for background and complements on Euclidean Jordan algebras. We equip $ with the scalar
product

(VX € H)(YY € §) (X|Y) =Tra(X ® Y), (2.24)

where Tra X is the trace in §) of an element X € $§ (see [19, Section II.2]). Denote by E the identity
element of § and by N the rank of §, and let PV act on RY via matrix-vector multiplication. Next, a
Jordan frame of § is a family (A;)1<i<n in HV \ {0} such that

A,’ lfl:],

(Vie{l,...,N})(Vje{L,....,N}) Ai®Aj={O £

N
Z A; = E.
i=1

The spectral decomposition theorem for Euclidean Jordan algebras [19, Theorem III.1.2] states that,
for every X € §, there exist a unique vector (1;(X),...,An(X)) € RV, the entries of which are called
the eigenvalues of X, and a Jordan frame (A;)1<;<n such that

(2.25)

N
(X)) > > (X)) and X =) L(X)A;. (2.26)

i=1



We thus obtain a mapping
19— RY: X - (4(X),..., An(X)). (2.27)

Further, denote by o the set of Jordan frames of § and set

N
(Vo = (A)icien €d)  Ag: RN = §:x = (&)icien Z EiA;. (2.28)

i=1

Then & = (RN,PN, A, (As)seq) is a spectral decomposition system for §, and the set {A,},cq is
closed in Z(RN, §).

Proof. The first assertion is proved in [7, Example 2.5]. To establish the closedness of {A,},cy in
Z(RN, 9), let (wn)nen be a sequence of Jordan frames of §) such that (A, )qen converges pointwise
to some L € Z (RN, $). We must show that there exists a Jordan frame « € o such that L = A,. To
do so, denote by (e;)1<i<n the canonical basis of RN, set

(Vie{L,...,N}) A;=Le. (2.29)
Additionally, for every n € N, we write &, = (A;)1<i<N- We deduce from (2.28) that
(Vie{1,...,N}) Ai,=A,ei > Le; = A;. (2.30)
On the other hand, for every n € N, since (A;,)1<i<n is a Jordan frame of §, we have
Ain ifi=j,

Vie{l,...,N})(Vjed{1,...,N Ain®Ai, =
(Vied Dvied DA > {0 ifi+]

N
> Ain =E.
i=1
Hence, since the bilinear form (2.23) is continuous (note that $) is finite-dimensional), letting n — +co

shows that (A;)i<i<n satisfies (2.25) and it is therefore a Jordan frame of §. Furthermore, we derive
from the linearity of L that

(2.31)

N N N
(Vx = (Ercien € RY)  Lx = L(Z giei) = > Glei= ) EA: (2.32)
i=1 i=1

i=1

Consequently, upon setting « = (A;)1<i<n € 9, we conclude that L = A,. [

Specializing Example 2.10 to the case of Hermitian matrices (see [19, Section V.2]) yields at once
the following example.

Example 2.11 (eigenvalue decomposition). Let 2 < N € N. We equip HY (K) with the scalar product

¢-|): (X,Y) > Retra(XY) (2.33)

and let PN act on RV via matrix-vector multiplication. For every X € HY(K), we denote by A(X) =
(A1(X), ..., AN(X)) the vector of the N (not necessarily distinct) eigenvalues of X listed in decreasing
order (see [49, Theorem 5.3.6(c)] for the quaternion case). Additionally, set

(VU e UN(K)) Apy: RN — HN(K): x +— U(Diagx)U*. (2.34)

Then & = (RN,PN, (Au)ueun(x)) is a spectral decomposition system for HN(K), and the set
{Avu}yeun (k) is closed in Z (RN, HN(K)).
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The next example concerns singular values of rectangular matrices.

Example 2.12 (singular value decomposition). Let M and N be strictly positive integers and set
m = min{M, N}. Let § be the Euclidean space obtained by equipping KM*N with the scalar product

(X,Y) > Retra(X'Y), (2.35)

and let P7” act on R™ via matrix-vector multiplication. Given a matrix X € §), the vector in R formed
by the m (not necessarily distinct) singular values of X, with the convention that they are listed in
decreasing order, is denoted by (o1(X), ..., o0m(X)); see [49, Proposition 3.2.5(f)] for singular value
decomposition of matrices in H¥*N This thus defines a mapping

c:H-oR™ X (01(X),...,0m(X)). (2.36)
Further, set of = UM(K) x UN(K) and
(Ve =(U,V)ed) A,:R™— $: x> U(Diagx)V", (2.37)

where the operator Diag: R™ — § maps a vector (&;)1<i<m to the diagonal matrix in § of which the
diagonal entries are &, ...,&y,. Then & = (R™,P7, 0, (Ag)aeq) is a spectral decomposition system
for §, and the set {A, },cy is closed in Z(R™, ).

Proof. The former assertion is established in [7, Example 2.7], while the latter follows from the closed-

ness of U™(K) in K™, [

Our next example is a framework that arose in the study of isotropic stored energy functions in
nonlinear elasticity [50] and the study of existence of a matrix with prescribed singular values and
main diagonal elements [54]. Several convex analysis results in this setting were established in [13].

Example 2.13 (signed singular value decomposition). Let 2 < N € N and let $ be the Euclidean
space obtained by equipping RVN*N with the scalar product

(X,Y) - tra(X"Y), (2.38)

let S be the subgroup of PY which consists of all matrices with an even number of entries equal to —1,
and let S act on RN via matrix-vector multiplication. As in Example 2.12, ¢(X) = (01(X), ..., on(X))
designates the vector of the N singular values of a matrix X € §, with the convention that oy (X) >
-++ > oN(X). Define a mapping

p: 9 —=RY: X (1(X),...,yn(X)) (2.39)
by
0i(X), if1<i<N-1;
VX € Vie{l,...,N (X)) = 2.40
(VX € D)(vie | Doneo {GN(X) sign(detX), ifi=N. (2:40)
Finally, set of = SON x SOV and
(Vo = (U, V) ed) A,:RN = §: x> U(Diagx)V". (2.41)

Then & = (RN, S,y, (A4 )aex) is a spectral decomposition system for §, and the set {A, }, <y is closed
in Z(RN, §).
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Proof. It was shown in [7, Example 2.8] that & is a spectral decomposition system for §. Furthermore,
the closedness of {A, },cy follows from that of SOV in RN*N_ []

The final example concerns spectral decomposition systems of product spaces and is instrumental
to the development of Section 4.

Example 2.14. Suppose that Assumption 2.2 is in force. Let S act on the direct sum X ® R via

(s, (x,8)) > (s x, &), (2.42)
and define

{y: HOR - XoR: (X, — (y(X),§)

(2.43)
Vaed)A,: XOR - HDR: (x,&) — (Aux, ).

Then (X ® R, S, y, (Ag)aeq) is a spectral decomposition system for § @ R, and the set {A, },cy is
closedin Z(X @R, 9 & R).
2.3. Fundamental properties

We now gather several essential properties of spectral decomposition systems that will be used
throughout the paper.

Proposition 2.15. Suppose that Assumption 2.2 is in force. Then the following hold:

(i) y is nonexpansive, that is, (VX € H)(VY € §) |ly(X) —y(D| < [|IX =Y.
(ii) A function ¢: X — [—oo, +0c0] is S-invariant if and only if (Vo € dd) p oy o A, = @.

Proof. See [7, Propositions 3.5 (iv) and 4.4 (i)], respectively. [

Given a Euclidean space H and a set D C H, the closure of D is denoted by D, the distance function
toDis

dp: H — R: x — inf ||x — y||, (2.44)
yeD

and the projector onto D is
Projp: H — 2M: x> {y e D | |lx - yll =dp(x)}, (2.45)
where 2/ designates the power set of H.

Proposition 2.16. Suppose that Assumption 2.2 is in force and let D be a nonempty S-invariant subset

of X. Then the following hold:
@) yY(D) =y (D).
(ii) dp is S-invariant and (Vo € o) dp oy o A, =dp.
(111) dy_l(D) = dD oYy.

(iv) For every X € $ and every Z € §, Z € Proj 1(p) X if and only if y(Z) € Projp y(X) and there
exists & € A such that X = Ay y(X) and Z = A,y (2).

(v) ForeveryX € $, Proj,1py X = {A@z | z € Proj, y(X) and @ € sﬂx}.
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Proof. (i): This is [7, Corollary 4.8 (ii)].

(ii): For every x € X and every s € S, since y + s

-y is an isometry and D is S-invariant,

dp(s-x) = inf||s - x — y|| = inf|jx — s~ - y|| = inf||lx — y|| = dp(x). (2.46)
yeD yeD yeD

Thus dp is S-invariant. The latter claim follows from Proposition 2.15 (ii).
(iii), (iv), and (v): It results from [7, Proposition 3.5 (iii)] that

AR
(T) oy= — (2.47)

Therefore, these claims follow respectively from items (i), (ii), and (iii) of [7, Corollary 6.4] applied to
the S-invariant Legendre function ¢ = %H . ||(2\, (note that S acts on X by linear isometries). [

Proposition 2.17. Suppose that Assumption 2.2 is in force. Let (X,,) nen be a sequence in § that converges
tosome X € $) and, foreveryn € N, let w,, € dx, . Suppose that there exists - € d such that A,, — A,.
Then « € dy.

Proof. Since y is nonexpansive (Proposition 2.15 (1)), we get y(X,) — y(X). Thus X = limX, =
lim A, y(X,) = A, y(X), which confirms that @ € dx. [

Finally, we point out an important consequence of Assumption 2.2 that will be employed repeatedly
in the subsequent proofs.

Proposition 2.18. Suppose that Assumption 2.2 is in force. Then the set {Ag,},cy is compact in
Z(X,9).

Proof. This follows from the closedness of {A }, g and the fact that (Va € d) [|[Agllgx g =1 U

3. Variational geometry of spectral sets

Consider Assumption 2.2. A main result in this paper is Theorem 4.1, which establishes the following
relationship between the generalized subdifferentials of a spectral function and those of the associated
invariant function:

(VX €9) d(poy)(X)={Auy|ycdo(y(X)) and « € dx}. (3.1)

Here, ¢: X — [—o00, +00] is an S-invariant function, and d: stands for either the Fréchet or the limiting
subdifferential operator. Let us trace the path leading to this result. A common strategy in variational
analysis for establishing a result for functions is to first treat the special case of sets, and then apply it
to epigraphs to obtain the general case. Following this path, we establish in this section the identity

(VX €9) N:(X;y ' (D)) ={A.y |y € Ne(y(X); D) and « € sy}, (3.2)

where @ # D c X is S-invariant, and N, signifies either the Fréchet or the limiting normal cone
operator. In Section 4.1, we will apply this result to epigraphs — within the context of the “product”
spectral decomposition system from Example 2.14 - to obtain the desired expressions (3.1).
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We proceed by recalling relevant notions from variational analysis following the standard refer-
ences [42, 48], to which we refer for background and further details. Let H be a Euclidean space and
let D be a nonempty subset of H. The Fréchet normal cone operator of D is

. {ye?-( hmsup< V) \0} if xeD,
Ne: H — 2 X = zei)—\v{cx} HZ - X” (3 3)
@ otherwise.
Evidently,
dp =d5 and (Vx € D) Ne(x;D) = Ni(x; D). (3.4)

The limiting normal cone to D at a point x € D, in symbols N (x; D), is the set of all y € H for
which there exists a sequence (X, Yn)nen in gra Nr such that x, — x and y, — y; here, graM =
{(x,y) € H x H | y € Mx} denotes the graph of a set-valued operator M: H — 2%. In addition, we
set (Vx € H\ D) N.(x;D) = @.

Next, we collect two preliminary results that will be frequently employed.

Lemma 3.1. Let H be a Euclidean space, let D be a nonempty subset of H, and let x € D. Then the
following hold:

(i) Lety € Ne(x; D). Then there exist sequences (x,)nen and (Yn)nen in H such that
Xp =%, yp—y, and (VneN) y, € cone(x, — Projg x,), (3.5)

where (YC € 2M) cone C = Uze]o,+00[ @C-
(i) Lety € H. Then

d
y€ Ne(x;D) &  lim M

[24

= |lyll- (3.6)

Proof. (i): Combine (3.4) and [42, Theorem 1.6].
(ii): We adapt and simplify the proof of [16, Lemma 2.1 (i)] for this special case. Since x € D, we
infer from (3.4) that it suffices to establish the equivalence

ds(x + ay)

y€Ni(x;D) & lim = [lyll. (3.7)
al0

For every a € 0, +co[, because D is closed and H is finite-dimensional, there exists z, € D such that
llx + ay — z4|| = d5(x + ay). In turn, since x € D, we have

(Va €10, +00[)  [lx + ay = z4l = d5(x + ay) = inf|lx + ay - z|| < ally|| (3.8)
zeD
Hence
x+a
timsup DY i (3.9)
al0

and

limz, = x. (3.10)

al0
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Now suppose that y € Ni(x; D) and let ¢ € ]0, 1[. Then there exists & € ]0, 1[ such that
(VzeﬁﬂB(x;5)) (z—x|y) < el|lz—x]|. (3.11)
We deduce from (3.10) that there exists § € ]0, 1[ such that (Ve € ]0, B[) z& € D N B(x; ). Therefore
(Va €10, 1) di(x+ay) = lIx — zl* — 2a(ze — x | y) + &*|lyll?
> |lx = zall® = 20¢llx = 24|l + &®|ly||?
= (Ix = zall — 22)” + 2*(lyll* = £9.
> d(|lyll* - &*). (3.12)
Thus
2
11%an > |ly|l* - €. (3.13)
Since ¢ € 0, 1[ was arbitrarily chosen, it follows that

d%(x + ay)
lim inf 2———— > ||y||*. (3.14)
al0 [04
Combining with (3.9), we obtain lim, | d5(x + ay)/a = ||y||. Conversely, suppose that lim o d5(x +
ay)/a = ||y|| but thaty ¢ N¢ - (x5 D). Then, by definition of Fréchet normal cones, there exists x € ]0,1[
and a sequence (wy)new in D \ {x} such that w, — x and that (Yn € N) (w, — x|y) > «|lw, — x]|.
Set (Vn € N) a,, = ||w, — x||/x. Then @, — 0 and, since {wp,},cy € D, we derive that

d%(x+any) 1 2 2 2
(VneN) ————— < = (llx = wall* = 2an(wn — x| y) + o, |lyll*)
ap ay
< K2 _ 2K||Wn _x” + ”y||2
(04

n

= -k + |lyll*. (3.15)
Letting n — +oo yields a contradiction. [

The inclusion D in (3.2) follows at once from the following result.

Proposition 3.2. Suppose that Assumption 2.2 is in force. Let D be a nonempty S-invariant subset of X,
let x andy be in X, and let a. € . Theny € Ne(x; D) if and only if A,y € Np(Ayx;y~1(D)).

Proof. Since [7, Corollary 4.3] asserts that D = A'(y~!(D)), we deduce that x € D & A, x € y 1(D).
On the other hand, using items (iii) and (ii) in Proposition 2.16, we obtain

(Ya €Ry)  dp1py(Aex +aAyy) =(dpoyo Ay)(x + ay) =dp(x + ay). (3.16)

Altogether, since A, is a linear isometry, we derive from Lemma 3.1 (ii) that

d
y € Np(x;D) & x e D and liinM =lyll
al0
d,1 Aox + al,
& Agx €y (D) and lim el D Jiauyl
a 04
& Ayy € Ne(Aox;y H(D)), (3.17)

as claimed. [
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We now establish a key identity that underpins the proof of the inclusion C in (3.2). Beyond this
context, it may also be of independent interest, and we therefore state it as a standalone result.

Proposition 3.3. Suppose that Assumption 2.2 is in force. Let D be a nonempty S-invariant subset of X
and let X € §. Then

cone(X — Proj,-1(p) X) = {A@y | y € cone(y(X) — Projp y(X)) and @ € sﬂx}. (3.18)
Proof. Thanks to the linearity of the operators (A, )q e, it suffices to show that
X = Proj,(p) X = {A@y | y € y(X) — Projp y(X) and « € sﬂx}. (3.19)

LetY € $ and suppose first that Y € X —Proj,-1(p X, thatis, X—Y € Proj,-1p) X. Proposition 2.16 (iv)
asserts that

y(X =Y) € Proj, y(X) (3.20)
and that there exists « € o for which

X=Ay(X) and X-Y=A.y(X-Y). (3.21)
Since A} o A, =Idx, it follows that

VX =Y) = AL(X = Y) = AL X = ALY = AL (Agy(X)) = ALY = y(X) - ALY. (3.22)

In turn, invoking (3.21) once more, we obtain X =Y = A, (y(X) — A} Y) = X — A, (A} Y), which leads
to

Y =Au(ALY). (3.23)

On the other hand, we deduce from (3.20) and (3.22) that A} Y € y(X) — Projp y(X). We have thus
established the inclusion C in (3.19). Conversely, suppose that Y = A,y for some y € y(X)—Proj, y(X)
and some « € dx, and let z € Projj, y(X) be such that y = y(X) — z. Proposition 2.16 (v) implies that
Ayz € Projy_l( D) X and, therefore,

Y =Au(y(X) —2) =X = Az € X = Proj,1p) X, (3.24)
which completes the proof. [

We are now in a position to establish (3.2).

Proposition 3.4. Suppose that Assumption 2.2 is in force. Let D be a nonempty S-invariant subset of X
and let X € ). Then the following hold:

(i) Ne(Xy (D)) = {Awy | y € Ne(y(X); D) and o € dlx}.
(i) NL(OXGy U(D)) = {Awy | y € NL(y(X); D) and @ € dx}.

Proof. We assume henceforth that
X ey (D) (3.25)

since otherwise all the cones are empty and the assertions are thus trivial. Additionally, note that D
is also S-invariant. Now let Y € .
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(i): The inclusion D follows from Proposition 3.2 applied to x = y(X). To establish the converse,
suppose that Y € Ne(X;y™'(D)). Then Lemma 3.1 (i) states that there exist sequences (X;)nen and
(Yn)neN in fb such that

X,—X, Y,—>Y and (VneN)Y,e cone(Xn - Projmxn). (3.26)

In turn, we learn from Proposition 2.16 (i) and Proposition 3.3 (applied to D) that

(Vn € N) Y, € cone(X, — Projy,1 D) Xn)
= {A@y |y e cone(y(Xn) — Projy y(Xn)) and « € SﬂXn}- (3.27)

Hence, we obtain sequences (y,)nen in X and (y,)nen in o such that

Yn € cone(y(X,) — Projg y (X))

(Vn e N) an € dx, (3.28)
Yo = Aw,Yn.
Since the operators (A, )qeq are linear isometries, (3.26) implies that sup, i llynll = sup,enllYall <

+c0. Thus, we deduce from Proposition 2.18 that there exist a strictly increasing sequence (kj,)nen in
N, together with y € X and « € o such that

Yk, 2y and A, — A, (3.29)

We derive from (3.26) and (3.28) that Y = lim Y, = lim A, yk, = Asy. At the same time, invoking
(3.26), (3.28), and (3.29), we deduce from Proposition 2.17 that « € dx. Therefore

Ay =Y € Ne(X;y71(D)) = Ne(Aay (X);y ™ (D). (3.30)

Consequently, Proposition 3.2 yields y € Nr(y(X); D).

(ii): Assume that Y € N_(X;y '(D)) and let (X, Y,)nen be a sequence in gra Ne(-;y~ (D)) such
that X;, — X and Y,, — Y. It results from (i) that there exist sequences (yp)nen in X and (ep)pen in
o such that

(VneN) Y, =Ay,Un, UYn€ Np(y(X,,);D), and @, € dx,. (3.31)

Note that sup,cillynll = sup,enllYnll < +00. Combining with Proposition 2.18, we obtain a strictly
increasing sequence (kj)uen in N, a point y € X, and an element « € 9 such that

Yk, 2y and A, — A, (3.32)

Moreover, the nonexpansiveness of y (Proposition 2.15 (i)) gives y(Xk,) — y(X). Therefore, by (3.31)
and (3.32), y € NL(y(X); D). At the same time, we have Y = limYy, = limA,, yk, = Ayy, while
Proposition 2.17 entails that @ € dlx. Finally, to establish the reverse inclusion, assume that Y = Azo
for some v € N_(y(X);D) and some 6 € dlx. Let (z,, 0n)nen be a sequence in H X H such that
zn — y(X), v, — v, and (Vn € N) v, € Np(zn; D). Proposition 3.2 entails that (Vn € N) Ago, €
Ni(Agzn; ¥y 1(D)). Hence, since the continuity of Ag gives Agz, — Agy(X) = X and Agv, — Ago =Y,
we conclude that Y € N (X;y~}(D)). 0O
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4. Generalized subgradients of spectral functions

The goal of this section is to relate Fréchet, limiting, and Clarke subdifferentials and Fréchet differen-
tiability of an invariant function to those of the induced spectral function.
4.1. Fréchet and limiting subdifferentials of spectral functions

We start by recalling the notions of Fréchet and limiting subdifferentials. Let { be a Euclidean space
and let f: H — [—o0, +00]. The Fréchet subdifferential of f is

SR - f() —(z—x|y) .
1 f >0 f R,
Ff: H — 2" x 1o {yEH £ Iz — x| > 00 i f(0) € (4.1)
@ otherwise.

The limiting subdifferential of f at a point x € H such that f(x) € R, in symbols g f(x), is the set of
all y € H for which there exists a sequence (Xp, Yn)nen in graorf such that x, — x, f(x,) — f(x),
and y, — y. Further, for every x € H such that f(x) € {+oo}, we set 9 f(x) = @. For every # € {F,L}
and every x € H such that f(x) € R, we have

%f(x) = {y e H | (y.-1) € Ne((x, f(x))sepif) }, (4.2)

where epi f = {(y,7) € H xR | f(y) < n} is the epigraph of f; see [48, Theorem 8.9].

Having assembled the necessary tools in Section 3, we can now prove (3.1). Our key observation
is the identity (4.2) and that, in the spectral decomposition system (X & R, S, y, (A )eeq) for H ® R
constructed in Example 2.14, given an S-invariant function ¢: X — [—00, +0], epi ¢ is an S-invariant
subset of X ® R and

yil(epi(p) = {(X, HepeR|yX e epi(p}
={(X.5) e H@R| (y(X),¢) € epip}
={X.HeHoR|o(y(X) < ¢}
= epi(p o y). (4.3)

As a byproduct of our analysis, we also establish the implication

(VxeX)(Vye X)(Va ed) yedo(x) = Auycd(poy)(Aux), (4.4)

which may be viewed as a strengthening of the inclusion D in (3.1). It reveals an invariance property
of the subdifferential operators under the “action” of the operators (A )qcq; see Remark 4.7 for a
detailed discussion. In particular, we will leverage this to establish in Corollary 4.8 that the Fréchet
differentiability of an invariant function transfers to the corresponding spectral function.

Theorem 4.1. Suppose that Assumption 2.2 is in force. Let ¢: X — [—co,+00] be S-invariant and let
X € 9. Then the following hold:

(i) F(poy)(X) ={Auy |y € Fo(y(X)) and « € dx}.
(i) (¢ oy)(X) ={Auy |y € do(y(X)) and o € slx}.
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Proof. We work with the spectral decomposition system (X @ R, S, y, (Ay)qeq) of Example 2.14. It
will be convenient to set

x=y(X) and &=0p(y(X)). (45)

Note that y(X, &) = (x, £). Moreover, since the assertions trivially hold when & € {+co}, we assume
henceforth that £ € R.

(i): We derive from (4.2), (4.3), and Proposition 3.4 (i) (applied to the system (X ® R, S, y, (As)aes)
and the S-invariant set epi ¢) that

(VY e9) Yedk(poy)X)

& (Y,-1) € Ne((X, &);epi(p 0 ) = Ne((X, £);y~' (epip))

(y.1) € Ne(y(X, &); epio)
© 3@y eXoR) 3w ed) {(X,8) =A,y(X, &) = (Aux, &)
(Y,-1) =A.(y.n) = (Asy, 1)

(y,—1) € Np((x, &);epip)
X =Azxand Y = Ay
& (Fyedo(x))Fa edy) Y =Auy, (4.6)

o (dyeX)(Taed) {

as desired.
(ii): Argue as in (i) and use Proposition 3.4 (ii) instead of Proposition 3.4 (i). [

Remark 4.2. In the case of convex subdifferentials, it was established in [7, Proposition 5.5 (i)] that,
under Assumption 2.2 and for every proper S-invariant function ¢: X — ]—o0, +o0], we have

(VX eH)(VY €9) Yealpoy)(X)

{y(Y) € 9p(y(X)) @7

(3¢ €dl) X = A,y(X) and Y = A, y(Y),

where 9 stands for the convex subdifferential operator. By contrast, one cannot assert that Y € (¢ o
Y (X) = y(Y) € drp(y(X)). To see this, consider the setting of Example 2.11 with K =R and N = 2,
and the following function ¢ considered in [14, Example 3.2]:

¢: R > R: (£,8) - &b (4.8)

Then ¢ o A is Fréchet differentiable at X = Diag(1,2) with V(¢ o 1)(X) = Diag(2, 1). On the other
hand, Vp(A(X)) = Vo(2,1) = (1,2) # A(Diag(2,1)).

Remark 4.3. Theorem 4.1 unifies several well-known results describing the subdifferentials of a spec-
tral function through those of the associated invariant function and the spectral mapping. More pre-
cisely, in the settings of Examples 2.10, 2.11, and 2.12, Theorem 4.1 reduces to [37, Theorem 17] (see
[51, Theorems 8.5 and 9.1] for special cases), [31, Theorem 6] (see also [16, Theorem 4.2]), and [34,
Theorem 7.1], respectively. To the best of our knowledge, Theorem 4.1 is new in the settings of Ex-
amples 2.8 and 2.13; see also the discussion in the paragraph following [33, Theorem 7.2].

As an application of Theorem 4.1, we establish a generalization of the so-called commutation prin-
ciple established in [20, 47].
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Corollary 4.4. Suppose that Assumption 2.2 is in force. Let ¢: X — ]—o00,+0c0]| be proper and S-
invariant, let ¥: $ — R be Fréchet differentiable, and let X € & be such that y(X) € dom ¢. Sup-
pose that X is a local minimizer of ¢ o y + V. Then there exist y € dr¢(y(X)) and o € dx such that

-V¥(X) = Ayy.

Proof. Since X € dom(¢ o y + ¥), we derive from the sum rule ([42, Propositions 1.114 and 1.107(i)])
that 0 € k(g oy + ¥)(X) = 3 (¢ o y)(X) + VP(X). Now apply Theorem 4.1 (i). U

Remark 4.5. Corollary 4.4 brings together and extends two commutation principles found in the
literature, while providing a stronger conclusion even in those particular settings:

(i) Consider the normal decomposition system framework Example 2.8. By specializing Corol-
lary 4.4 to the case where X = §, we obtain an extension of [20, Theorem 1.3] (see also [7,
Example 5.7]) to the general nonconvex setting.

(ii) In the Euclidean Jordan algebra framework of Example 2.10, the conclusion of Corollary 4.4
reads: There exist y = (;)1<i<n € F@(A(X)) and a Jordan frame & = (A;)1<i<n € 9 such that

N N
X = Z M(X)A; and —V¥(X) =A,y = Z niA:. (4.9)
i=1 i=1
At the same time, for every i and j in {1, ..., N}, the operators L;:  — 9: Z — A; ® Z and
Li:9—>9H:Z— A;j® Zsatisfy LjoL; = Lj o L; [19, Lemma IV.1.3]. In turn, we deduce that

(VZe$) V¥(X)® (X®Z)=- > L(X)nAe (4e2)

1<i<N
1SN

= Z L(X)nA; @ (A ® 2)
1<i<N
1<j<N

=X (V¥ X)® Z). (4.10)

We thus recover [47, Theorem 7], which states that the operators Z +— V¥(X) ® Z and Z +—
X ® Z commute (with respect to composition).

We end this subsection with a strengthening of the inclusions D in Theorem 4.1. In essence, given
prior knowledge of subgradients of an invariant function at a point x € X, it allows to construct those
of the induced spectral function at the points {A, x}, cy-

Proposition 4.6. Suppose that Assumption 2.2 is in force. Let ¢: X — [—co, +o0] be S-invariant, let x
andy be in X, and let w. € 9. Then the following hold:

(@) y € rp(x) if and only if Ay y € (¢ 0 y)(Agx).
(if) Suppose thaty € d @ (x). Then Agy € d (¢ o y)(Ayx).
Proof. (i): As in the proof of Theorem 4.1, we consider the spectral decomposition system (X @

R,S, 9, (Ag)geq) for $ @ R constructed in Example 2.14. Then epi¢ is an S-invariant subset of
X @ R and y!(epip) = epi(p o y); see (4.3). We derive from (4.2), Proposition 3.2 (applied to
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(X®R, S, v, (A )geqa) and the S-invariant set epi ¢), and the identity ¢ = poyoA,, (Proposition 2.15 (ii))
that

y € kp(x) © p(x) €R and (y,—1) € N¢((x, ¢(x)); epi )
& ¢(x) € R and A, (y, 1) € Ne(Aq (x, ¢(x)):y " (epig))
& ¢(x) €R and (A,y, —1) € Ne((Aox, ¢(x)); epi(p o y))
& (poy)(Aux) € R and (Agy,—1) € Ne((Aax, (¢ 0 y)(Aux));epi(p oy))
© Ay € k(g oy)(Agx), (4.11)

as announced.
(ii): Use the definition of limiting subdifferentials, (i), and the identity ¢ o y o A, = ¢ (Proposi-
tion 2.15(i1)). 0O

Remark 4.7. Here are several noteworthy instances of Proposition 4.6 (i) found in the literature.

(i) Consider the setting of Example 2.11, where K is either R or C, and let ¢: RN — [~00, +0] be
PN-invariant, that is, permutation-invariant. Then Proposition 4.6 (i) yields

(Vx € RN)(Yy € RN) (YU € UN(K))
y€aop(x) = U(Diagy)U" € (¢ o A)(U(Diagx)U"), (4.12)

which is precisely [31, Theorem 5]. In [31], this implication serves as a key step in deriving
the subdifferential formula (3.1) within the setting of Example 2.11, and its proof relies on a
technically involved result concerning directional derivatives of the eigenvalue mapping A.

(ii) Likewise, in the setting of Example 2.12, Proposition 4.6 (i) yields [34, Theorem 6.10]. As in
the case of [31], this implication is a key ingredient in the derivation of the corresponding
subdifferential formula in [34], and its proof draws on technically involved properties of the
singular value mapping.

(iii) Inthe Euclidean Jordan algebra framework of Example 2.10, Proposition 4.6 (i) yields [37, Propo-
sition 15], which - in line with the approaches of [31, 34] — plays a key role in the derivation
of (3.1) within that setting.

4.2. Fréchet differentiability of spectral functions

The results of Section 4.1 allow us to fully characterize the Fréchet differentiability of a spectral func-
tion through that of the associated invariant function. Recall that, given a Euclidean space H, a func-
tion f: H — [—oo, +00] is Fréchet differentiable at a point x € H in which f(x) € R if there exists a
unique point in H, denoted by Vf(x), such that

@) £~ e x | VG|
m =

X llz — x|

0; (4.13)

moreover, a characterization of Fréchet differentiability in terms of Fréchet subdifferentiability is
f is Fréchet differentiable at x &  J(£f)(x) # @; (4.14)

see, e.g., [42, Proposition 1.87].
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Corollary 4.8. Suppose that Assumption 2.2 is in force and let ¢ : X — [—00, +00] be S-invariant.

(i) Letx € X and o € 9. Suppose that p(x) € R. Then ¢ o y is Fréchet differentiable at Ay x if and
only if ¢ is Fréchet differentiable at x, in which case

V(poy)(Agx) = Ay (Vo(x)). (4.15)

(ii) Let X € & and suppose that p(y(X)) € R. Then ¢ oy is Fréchet differentiable at X if and only if
@ is Fréchet differentiable at y(X), in which case

(Ve edyx) V(poy)(X)=A.(Vo(r(X))). (4.16)

Proof. (i): If ¢ o y is Fréchet differentiable at A, x, then the Fréchet differentiability of ¢ at x follows

from the identity ¢ = (poy)oA, (Proposition 2.15 (ii)) and the chain rule. Now assume that ¢ is Fréchet

differentiable at x. Then V¢ (x) € dr(x¢)(x) [48, Exercise 8.8(a)]. Hence, applying Proposition 4.6 (i)

to the functions +¢ and using the linearity of A,, we obtain +A, (V¢(x)) € o (£ o y)(Agx). Thus,

we conclude via (4.14) that ¢ oy is Fréchet differentiable at A, x and that V(@ oy)(Agx) = Ae (Ve(x)).
(ii): Apply (i) with x = y(X). O

Remark 4.9. Let us relate Corollary 4.8 to existing results on the Fréchet differentiability of spectral
functions.

(i) Inthe Euclidean Jordan algebra framework of Example 2.10, we recover at once [1, Theorem 38]
and [52, Theorem 4.1] from Corollary 4.8 (ii).

(ii) In the case of Hermitian matrices (Example 2.11), Corollary 4.8 (i) yields [28, Theorem 2.4 and
Corollary 2.5], while Corollary 4.8 (ii) yields [28, Theorem 1.1].

4.3. Clarke subdifferentials of spectral functions

For locally Lipschitz continuous functions, the Clarke subdifferential (or generalized gradient) is es-
pecially useful in optimization due to its strong calculus and (at least in finite dimensions) explicit
characterization. In particular, it serves as a unifying framework both for convex and for strictly dif-
ferentiable functionals and covers, e.g., the composition of nonsmooth convex functionals and contin-
uously differentiable operators common in nonsmooth optimal control of differential equations; see
[10, Chapter 2]. In finite dimensions, the Clarke subdifferential also furnishes generalized derivatives
that can be used in superlinearly convergent semismooth Newton methods; see [40, 45, 46] as well as
[11, Chapter 14].

We first recall the definition. Let H be a Euclidean space and let f: H — [—o0, +00] be locally
Lipschitz continuous near a point x € H, thatis, f(x) € R and there exist ¢ € |0, 1[ and k € R, such
that

(Vy € B(x;))(Yz € B(x;¢))  If(y) = f(2)] < klly -z, (4.17)

where B(x;¢) = {y € H | |lx — yll < ¢}. Given u € H, the Clarke generalized directional derivative
of f at x in the direction u is

fo(xu) =limsup LET A =S

zZ—X (04
al0

(4.18)
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In turn, the Clarke subdifferential of f at x is

acf(x) = {y eH| VYueH) (uly) < fo(x;u)}, (4.19)

which is always nonempty, compact, and convex [10, Proposition 2.1.2 (a)]. The following character-
ization of Clarke subdifferentials will be crucial in our analysis of this section and Section 5.

Lemma 4.10. Let H be a Euclidean space, let f: H — [—oco, +o0] be locally Lipschitz continuous near
a point x € H, and denote by Sy the set of points at which f is Fréchet differentiable. Then the following
hold:

(1) S #+ 2.

(ii) Let Q c H be a Lebesgue null set, i.e., a Lebesgue measurable subset of H of Lebesgue measure
0, and let D be the set of all y € H for which there exists a sequence (xp)nen in Sp \ Q such that
Xp — x and Vf(x,) — y. Then ocf(x) = convD # 2.

Proof. (i): This is a consequence of Rademacher’s theorem.
(ii): See [10, Theorem 2.5.1]. [

We can now state and prove the main result of this subsection.

Proposition 4.11. Suppose that Assumption 2.2 is in force, and let ¢: X — [—00, +00] be S-invariant
and locally Lipschitz continuous near the spectrum y(X) of a point X € §). Then

ac(poy)(X) = conV{A@y |y € dco(y(X)) and « € sﬂx}. (4.20)
Proof. Denote by D the set of all y € X for which there exists a sequence (x,,)nen in X such that
Xn — }/(X)

for every n € N, ¢ is Fréchet differentiable at x, (4.21)
Vo(xn) = .

In the light of Lemma 4.10, dc¢(y(X)) = conv D # @, which leads to
conv{Ago | v € D and 6 € gy} = conv{Asv | v € dce(y(X)) and 6 € dly}. (4.22)

The nonexpansiveness of y (Proposition 2.15 (i)) entails that ¢ o y is locally Lipschitz continuous near
X.Now let Y € $ be a point for which there exists a sequence (X,,)nen in § such that

X, — X
for every n € N, ¢ o y is Fréchet differentiable at X, (4.23)
Vigoy)(Xn) =Y

(such a point exists thanks to Lemma 4.10 (ii)). Since y is nonexpansive,
Y (Xn) = y(X). (4.24)
Next, for every n € N, take «, € dy,. By Corollary 4.8 (ii),

¢ is Fréchet differentiable at y(X,)

4.25
V(g oy)(Xn) = Aa, (Vo(y(Xn))). (4.25)

(Vn e N) {
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Hence, because (A, )nen are linear isometries,
sup||Ve (y(Xa))|| = sup|[V (¢ 0 y) (Xn)|| < +co. (4.26)
neN neN

Therefore, appealing to Proposition 2.18, we obtain a strictly increasing sequence (ky)nen in N, a point
y € X, and an element « € ¢ such that

Vo(y(Xi,)) =y and A, — A, (4.27)
In turn, we derive from (4.23) and (4.25) that
Y =limV(p o y)(Xg,) =limA,, (Vo(y(Xg,))) = Acy. (4.28)

At the same time, combining (4.24), (4.25), and (4.27) yields y € D, while (4.23) and Proposition 2.17
ensure that @ € 9x. Thus, we deduce from Lemma 4.10 (ii) and (4.22) that

ac(poy)(X) C conv{A@v |veDand6 e sﬂx}
= conv{As0 | v € dcep(y(X)) and 6 € dy}. (4.29)

We now establish the converse inclusion. Toward this end, take v € D and 6 € dx, and let (z,),en be
a sequence in X such that

zn — y(X)
for every n € N, ¢ is Fréchet differentiable at z, (4.30)
Vo(zn) — 0.

Then Agz, — Agy(X) = X and A4(Vo(z,)) — Agv. On the other hand, for every n € N, Corol-
lary 4.8 (i) asserts that ¢ oy is Fréchet differentiable at Az, with V(@ oy)(Asz,) = As (Ve(z,)). Thus,
Lemma 4.10 (ii) implies that Az0 € dc(¢ o y)(X), and we conclude the proof by invoking (4.22) and
the convexity of oc(p o y)(X). 0O

Remark 4.12. In Proposition 4.11, we do not know whether the convex hull operation on the right-
hand side of (4.20) can be omitted. However, this is indeed the case for the particular instances of
spectral decomposition systems in Example 2.10, Example 2.11, Example 2.12 (with K € {R,C}),
and was established in [37, Theorem 21(ii)], [31, Theorem 8] (see also [28, Theorem 1.4]), and [34,
Theorems 3.7 and 4.2], respectively.

5. A generalization of Lidskii’s theorem

A pivotal result in the perturbation analysis of Hermitian matrices is Lidskil’s theorem [36] which
quantifies how eigenvalues vary under additive perturbations. More precisely, using the notation of
Example 2.11, it asserts that

(VX € HN(Q)) (VY e HN(C)) A(X +Y) = A(X) € conv(PN - A(Y)); (5.1)

see also [6, Corollary II1.4.2 and Theorem II.1.10]. This type of majorization has been established be-
yond the Hermitian setting to encompass a range of algebraic frameworks, including Lie-theoretic
framework [5], Eaton triples [21, Theorem 6.4], singular values of rectangular matrices [22, Theo-
rem 3.4.5], and eigenvalues in Euclidean Jordan algebras [25, Theorem 5.1]. However, as illustrated
earlier, these settings can be viewed as spectral decomposition systems. This thus motivates the fol-
lowing generalization of Lidskii’s theorem, which brings together these results under the umbrella of
our framework.
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Theorem 5.1. Suppose that Assumption 2.2 is in force and, in addition, that S is a finite group. Then
(VX €H)(VY €H) y(X+Y)—y(X) €conv(S-y(Y)). (5.2)

Proof. We employ the techniques of [30]. Let 7 be the spectral-induced ordering mapping of the system
(X,S,y, (Ag)aes) (see property [A] in Definition 2.1), and set

K =ranger. (5.3)

Then K is a closed convex cone in X [7, Proposition 3.5 (ii)]. Furthermore, we get from (2.3) that

X:US.K’ (5.4)

seS

where we adopt the notation
(VD € 2%) (Vs € S) s-D={s-x|xeD} (5.5)

Hence, applying [3, Lemma 1.44 (i)] to the finite family (s - K)ses of closed subsets of X, we obtain

int(s-K) =int| |s-K =X. (5.6)
U U

seS seS

Since, for every s € S, the mapping x — s - x is a homeomorphism, we must have
intK # @. (5.7)
In turn, since [7, Proposition 3.3 (iv) and (i)] give

(Vx € K)(Vy € K)  max(s x|} = (x| y), (5.8)

we infer from [43, Lemma 2.1] (applied to the finite subgroup {x Hs-x|se S} of O(X) and the set
K) that

(VseS)(VteS) (s-intK)N({t-K)+o@ = [(VxEK) s-x:t-x]. (5.9)
This and (5.4) yield
XN U int(s - K) = ﬂ(x \int(s - K)) = U bdry(s - K), (5.10)
seS s€S s€S

where bdry D denotes the boundary of a subset D of X. At the same time, for every s € S, [27,
Theorem 1] implies that bdry(s - K) is a Lebesgue null set. Thus, since S is finite,

X\ U int(s - K) is a Lebesgue null set. (5.11)

seS

Now let X and Y be in . In the light of [7, Proposition 3.8], the desired assertion is equivalent to
(VzeX) (y(X+Y)-y(X)|2) <(y(V)[2(2)). (5.12)
To prove this, take z € X and define an S-invariant function ¢: X — R via

(Vx e X) o(x) =(r(x)]|2). (5.13)
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It follows from [7, Proposition 3.3 (v)] that ¢ is Lipschitz continuous on X. Therefore, since y is non-
expansive, ¢ o y is Lipschitz continuous on $. To proceed further, define

D= U int(s - K). (5.14)

s€eS

We claim that
¢ is Fréchet differentiable on D with (Vx € D) Vo(x) € S - z. (5.15)

Toward this end, fix temporarily s € S and set D = int(s - K). Since x — s - x is a homeomorphism,
Dq is open and Ds = s - int K. Let us verify that

(Vx € Ds) x=s-1(x). (5.16)

Indeed, fix temporarily x € D; and let t € S be such that x =t - 7(x). Then x € (s-intK) N (t-K) and
it thus results from (5.9) that s - 7(x) =t - 7(x) = x. In turn, it follows from (5.16) and [7, Lemma 3.2]
that

(Vx € Ds) o(x)=(s"-x|2) =(x|s-z). (5.17)

Hence, (5.15) holds. On the other hand, the set conv(S - z) is compact as the convex hull of the finite
set S - z. Therefore, combining (5.11) and (5.15), we deduce from Lemma 4.10 (ii) that

(Vx € X) dce(x) C conv(S - z). (5.18)

Next, we learn from Lebourg’s mean value theorem Lemma 4.10 (ii) that there exist V € {(1 —a)X +aY |
a € [0, 1]} and W € ac(¢ o y)(V) such that

YX+Y)-y(X)|2) =(poy)(X+Y) = (poy)(X) =(W[Y), (5.19)

where the first identity follows from [7, Proposition 3.5 (i)]. However, Proposition 4.11 asserts that
there exist finite families (w;);er in dc@(y(V)), (wi)ier in Ay, and (@;);er in 0, 1] such that

Z ;=1 and W = Z ail\g, wi. (5.20)
i€l i€l
By (5.18) and (2.3), {r(w;) };c; C conv(S - z), and we thus derive from [7, Propositions 3.8 and 3.5 (i)]
that

(Viel) (z(w)|y(Y)) < {r(2)|z(r(V))) = (z(2) [y (V). (5.21)

Hence, by properties [C] and [A] in Definition 2.1,
(X +Y)-y(X)|2) = ZI i Ag,wi | V)
< ZI i (y (Ag,wi) | y(Y))
= _lzlaxr(wi) YY)
< iai<r<z> ly(Y))

=(y(Y) [7(2)), (5.22)

which completes the proof. [
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Remark 5.2. We now substantiate the claim made at the beginning of this section that Theorem 5.1
unifies several existing results.

(i) In the context of Hermitian matrices of Example 2.11, Theorem 5.1 reads
(VX € HN(K)) (VY € HY(K)) AX +Y) = A(X) € conv(PY - A(Y)), (5.23)

and we thus recover Lidskil’s theorem [36].

(ii) In the Euclidean Jordan algebra framework of Example 2.10, Theorem 5.1 reduces to [25, The-
orem 5.1], that is,

(VX € H)(VY € H) AX +7Y) - A(X) € conv(PY - A(Y)). (5.24)

(iii) By specializing Theorem 5.1 to Example 2.12 with K = C, we obtain the version of Lidskii’s
theorem for singular values [6, Theorem IV.3.4 and Exercise 11.2.10], that is,

(VX € CN)(vy e CN)  6(X +Y) — 0(X) € conv(PT - o(Y)). (5.25)
(iv) Consider the Eaton triple framework of Example 2.9 and suppose additionally that
L=FX-X. (5.26)

We show that S is a finite group. On the one hand, (2.20) and the very definition of y ensure that
(VX € X) X N (S-X) # @. On the other hand, since 7 = y|q is the spectral-induced ordering
mapping of the spectral decomposition system & and since range 7 = ¥, we deduce from [7,
Proposition 3.3 (iv) and (i)] that (VX € X)(VY € ¥) maxses(X |s(Y)) = (X |Y). Hence, [43,
Theorem 3.2] (applied to the Eaton triple (£, G, ) and the reduced triple (X, S, X)) implies
that S is a finite group. Thus, Theorem 5.1 is applicable and reduces to [21, Theorem 6.4] in
this context. This result encompasses, in particular, the Lie-theoretic majorization result due to
Berezin and Gel’'fand [5].

6. Conclusion

Continuing from our previous work [7], we have derived results on variational geometry and analysis
in the abstract framework of spectral decomposition systems that covers a wide range of related set-
tings such as eigenvalue or singular value decompositions of real, complex, and quaternion matrices,
or Euclidean Jordan algebras. Specifically, we have derived representations of Fréchet and limiting
normal cones to spectral sets and, based on that, Fréchet and limiting subdifferentials of spectral
functions. These results further allowed deriving characterizations of Fréchet derivatives and Clarke
generalized gradients. Using the latter, we generalized Lidskii’s theorem on the spectrum of additive
perturbations of Hermitian matrices to arbitrary spectral decomposition systems.

This work can be extended in a number of directions. First, the representations of generalized
subdifferentials can be used to obtain explicit necessary optimality conditions for concrete matrix
optimization problems such as low-rank matrix completion via nonconvex Schatten p-norm penal-
ization in a suitably general setting. In the context of variational analysis, an important open question
is on characterizations of Lipschitz-like properties of solution mappings such as metric regularity or
subregularity, cf. [11, Chapter 27] and the literature cited therein. Such properties can then be used
to generalize results on second-order variational analysis of spectral functions such as [41].
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