
stability of saddle points via explicit
coderivatives of pointwise subdifferentials

Christian Clason∗ Tuomo Valkonen†

February 5, 2017

Abstract We derive stability criteria for saddle points of a class of nonsmooth optimiza-

tion problems in Hilbert spaces arising in PDE-constrained optimization, using metric

regularity of in�nite-dimensional set-valued mappings. A main ingredient is an explicit

pointwise characterization of the regular coderivative of the subdi�erential of convex inte-

gral functionals. This is applied to several stability properties for parameter identi�cation

problems for an elliptic partial di�erential equation with non-di�erentiable data �tting

terms.

1 introduction

This work is concerned with optimization problems of the form

(1.1) min

u ∈X
G(u) + F (K(u))

for proper, convex and lower semicontinuous functionalsG : X → R := R∪{∞} and F : Y → R

and a Fréchet-di�erentiable operator K : X → Y between two Hilbert spaces X and Y , in

particular for integral functionals on L2(Ω) of the form F (u) =
∫
Ω
f (u(x))dx for a convex

integrand f : R→ R. Under suitable regularity assumptions, a minimizer ū ∈ X satis�es

(1.2)

{
−p̄ ∈ ∇K(ū)∗(∂F (K(ū))),
p̄ ∈ ∂G(ū),

for some p̄ ∈ X ∗. Here, ∂F denotes the convex subdi�erential of F and ∇K(u)∗ the adjoint of the

Fréchet derivative of K at u. Using convex duality, one can characterize the primal-dual pair

(ū, p̄) via the saddle point (ū, v̄) of the Lagrangian

(1.3) L(u,v) := G(u) + 〈K(u),v〉 − F ∗(v),

where F ∗ : Y ∗ → R denotes the Fenchel conjugate of F ; in this case, p̄ and v̄ are related via

p̄ = ∇K(ū)∗v̄ .
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To �x ideas, a prototypical example is the L1
�tting problem [9]

(1.4) min

u
‖S(u) − yδ ‖L1 +

α

2

‖u‖2L2
.

Here, G(u) = α
2
‖u‖2L2

, K(u) = S(u) − yδ , where S maps u to the solution y of −∆y + uy = f for

given f , and F (y) = ‖y ‖L1 . This formulation is appropriate if the given data yδ is corrupted by

impulsive noise. Here, F ∗(v) = ι { |v(x ) |≤1}(v), where ιA denotes the indicator function of the setA
in the sense of convex analysis [23]. A second example is the Morozov (constrained) formulation

of inverse problems appropriate for data subject to uniformly distributed noise [8],

(1.5) min

u

α

2

‖u‖2L2
s. t. |S(u)(x) − yδ (x)| ≤ δ a. e. in Ω.

Here, G and K are as before, while F (y) = ι { |y (x ) |≤δ }(y) and hence F ∗(v) = δ ‖v ‖L1 . A similar

problem arises in optimal control of partial di�erential equations with state constraints.

As we show in Section 4.1, critical points of the saddle point problem (1.1) may be characterized

concisely through the variational inclusion

0 ∈ R0(u,v),

where we de�ne the set-valued mapping R0 : X × Y ⇒ X × Y by

R0(u,v) B
(
∂G(u) + ∇K(u)∗v
∂F ∗(v) − K(u)

)
.

Our goal then is to study the stability of solutions to (1.1) resp. (1.2) through set-valued analysis

of this mapping. The main tool is a form of Lipschitz continuity of R−1

0
known as the Aubin

property (or pseudo-Lipschitz or Lipschitz-like property). This is also called the metric regularity
of R0; see, e.g., [14, 24, 36, 37, 45]. In contrast, second-order stability analysis for PDE-constrained

optimization problems is usually focused on the stability of the optimal values and of minimizers

(as opposed to saddle-points) and is based on su�cient second-order conditions based on direc-

tional derivatives, often in stronger topologies; nonsmoothness typically arises from pointwise

constraints or, more recently, sparsity penalties. We refer to [5, 6] as well as the literature cited

therein.

Since the problem (1.1) is nonsmooth, the �rst-order conditions involve proper subdi�erential

inclusions and hence the second-order analysis required for showing metric regularity involves

set-valued derivatives. Considerable e�ort has been expended on obtaining explicit representa-

tions of these derivative, although up to now primarily in the �nite-dimensional setting, e.g.,

in [18, 20, 21, 39, 40], with a focus on normal cones arising from inequality constraints. The

di�culty in the in�nite-dimensional setting stems from the fact that there exists a variety of

more or less abstract de�nitions of such objects, see, e.g., [37], although more explicit character-

izations can be obtained in some concrete situations [22]. Here, by exploiting the fact that the

nonsmooth functionals are de�ned pointwise via convex integrands, we are able to explicitly

compute regular coderivatives pointwise using the �nite-dimensional theory from [45]; see

also [37] for further developments on their calculus. One of the main contributions of this work
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is therefore to further narrow the gap between the concrete �nite-dimensional and the abstract

in�nite-dimensional settings.

Besides being of inherent interest, e.g., for showing stability of the solution of the inverse

problem with respect to δ , metric regularity is also relevant to convergence of optimization

methods. In the context of the saddle point problem for the Lagrangian (1.3), it is required for the

nonlinear primal-dual hybrid gradient method of [47]. More widely, through the equivalence

[4] of the Aubin property to the recently eminent Kurdyka-Łojasiewicz property [30, 41, 42],

metric regularity is relevant to the convergence of a wide range of descent methods [1]. It can

also be used to directly characterize the convergence of certain basic optimization methods [4,

26, 27]. Metric regularity is also closely related to the concept of tilt-stability, mainly studied in

�nite dimensions, see, e.g., [15, 16, 32, 34, 43], but recently also in in�nite dimensions [38, 40].

An extended concept incorporating tilt stability is that of full stability [31, 33].

We also note that when the non-linear saddle-point problem can be written as the minimiza-

tion of a di�erence of convex functions – as anyC2
objective can [46] – detailed characterizations

exist in the �nite-dimensional case of local minima [48] and sensitivity [47]. Moreover, a set-

valued analysis of the solvability of such programs with further symmetric cone structure

is performed in [49]. In certain cases, with a �nite-dimensional control u in an otherwise

in�nite-dimensional problem, it is also possible to do away with the regularizer G [12].

This work is organised as follows. In Section 2, we derive pointwise characterizations of

second-order subdi�erentials or generalized Hessians of integral functionals on L2
and give ex-

amples for several functionals commonly occurring in variational methods for inverse problems,

image processing, and PDE-constrained optimization. These results are used in Section 3 to give

an explicit form of the Mordukhovich criterion for set-valued mappings in Hilbert spaces, in

particular for those arising from subdi�erentials of the integral functionals considered in the

preceding section. Section 4 further specializes this to the case of set-valued mappings arising

from the �rst-order optimality conditions (1.2) and gives su�cient conditions for several stability

properties such as stability with respect to perturbation of the data. Finally, Section 5 discusses

the satis�ability of these conditions in the speci�c case of the model parameter identi�cation

problems (1.4) and (1.5), where it will turn out that stability can only be guaranteed after either

introducing a Moreau–Yosida regularization or a projection to a �nite-dimensional subspace

in F .

2 derivatives and coderivatives in L2(Ω)

Sadly, we cannot as in [50] directly use the clean �nite-dimensional theory from [45] to show

the Aubin property of R−1

0
through the Mordukhovich criterion [35]. We have to delve into the

various complications of the in�nite-dimensional setting as presented in [37]. The �rst one is the

multitude of di�erent de�nitions of set-valued generalized derivatives. Luckily however, as it will

turn out, because of the pointwise nature of the non-smooth functionals whose second derivatives

we require, we will be able to compute the pointwise di�erentials using the �nite-dimensional

theory, and limit ourselves to the regular coderivative in in�nite dimensions. Although the

results of this section hold for integral functionals on Lp for any 1 ≤ p < ∞, we restrict the

presentation to the Hilbert space L2
for simplicity (and since we will make use of the Hilbert
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space structure of the saddle-point problem (1.2) later anyway).

2.1 set-valued mappings and coderivatives

We �rst collect some notations and de�nitions for set-valued mappings in Hilbert spaces,

following [37, 45] and simplifying the setting of the latter to Hilbert spaces. The symbolsX ,Y ,Q ,

andW generally stand for (in�nite-dimensional) Hilbert spaces, which we identify throughout

with their duals via the Riesz isomorphism. With x ∈ X , we then denote by B(x , r ) the open ball

of radius r > 0. The closure of a set A we denote by clA.

Definition 2.1. Let U ⊂ X for X a Hilbert space. Then we de�ne the set of Fréchet (or regular)
normals to U at u ∈ U by

N̂ (u;U ) B
{
z ∈ X

���� lim sup

U 3u′→u

〈z,u ′ − u〉
‖u ′ − u‖ ≤ 0

}
and the set of tangent vectors by

(2.1) T (u;U ) B
{
z ∈ X

���� exist τ i ↘ 0 and ui ∈ U such that z = lim

i→∞
ui − u
τ i

}
.

For a convex set U , these coincide with the usual normal and tangent cones of convex analysis.

For our general results, we will need to impose some geometric regularity assumptions.

Definition 2.2. We say that a tangent vector z ∈ T (u;U ) is derivable if there exists an ε > 0 and

a curve ξ : [0, ε] → U such that

ξ ′+(0) B lim

t↘0

ξ (t) − ξ (0)
t

exists with ξ ′+(0) = z and ξ (0) = u. We say that U is geometrically derivable if for every u ∈ U ,

every z ∈ T (u;U ) is derivable.

It is easy to see that (cf. [45, Prop. 6.2]) U is geometrically derivable if and only if T (u;U )
for each u ∈ U is de�ned by a full limit, i.e., we replace in (2.1) the existence of τ i ↘ 0 by the

requirement of the existence of ui for any sequence τ i ↘ 0.

For any cone V ⊂ X , we also de�ne the polar cone

(2.2) V ◦ B {z ∈ X | 〈z, z ′〉 ≤ 0 for all z ′ ∈ V }.

We use the notation R : Q ⇒W to denote a set-valued mapping R from Q toW ; i.e., for every

q ∈ Q holds R(q) ⊂W . For R : Q ⇒W , we de�ne the domain domR B {q ∈ Q | R(q) , ∅} and

graph GraphR B {(q,w) ⊂ Q ×W | w ∈ R(q)}. The regular coderivatives of such maps are

de�ned graphically with the help of the normal cones.
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Definition 2.3. Let Q andW be Hilbert spaces, and R : Q ⇒W with domR , ∅. We then de�ne

the regular coderivative D̂∗R(q |w) : W ⇒ Q of R at q ∈ Q for w ∈W as

(2.3) D̂∗R(q |w)(∆w) B
{
∆q ∈ Q | (∆q,−∆w) ∈ N̂ ((q,w); GraphR)

}
.

We also de�ne the graphical derivative DR(q |w) : Q ⇒W by

DR(q |w)(∆q) B {∆w ∈W | (∆q,∆w) ∈ T ((q,w); GraphR)} .

The graphical derivative may also be written as [37, 45]

(2.4) DR(q |w)(∆q) = lim sup

t↘0, ∆q′→∆q

R(q + t∆q′) −w
t

.

Here lim supt ′→t At ′ stands for the outer limit of a sequence of sets {At ⊂W }t ∈T over an index

set T , de�ned as

lim sup

t→∞
At B

{
w ∈W

��
for each i ∈ N exist t i ∈ T , w i ∈ At i , s.t. t i → t and w i → w

}
.

Observe that DR(q |w) : Q ⇒W whereas D̂∗R(q |w) : W ⇒ Q . Indeed, if R(q) = Aq for a linear

operator A between Hilbert spaces, then for w = Aq holds

DR(q |w) = A and D̂∗R(q |w) = A∗.

The former is immediate from (2.4) (see also, e.g., [45, Ex. 8.34]), while the latter is contained in

[37, Cor. 1.39].

We say that GraphR is locally closed at (q,w), if there exists a closed setU ⊂ Q ×W such that

GraphR ∩U is closed. For any convex lower semicontinuous function f : Q → R‚ the graph

of the subdi�erential ∂ f , considered as a set-valued mapping, is closed. This is an immediate

consequence of the de�nition of the convex subdi�erential. Finally,R is called proto-di�erentiable
if GraphR is geometrically derivable.

2.2 second-order derivatives of pointwise functionals

Let X = L2(Ω;Rm) for an open domain Ω ⊂ Rn
and G : X → R be given by

(2.5) G(u) =
∫
Ω
д(x ,u(x))dx

for some integrand д : Ω ×Rm → (−∞,∞]. Here we assume that

(i) д is normal, i.e., the epigraphical mapping x 7→ epiд(x , ·) ⊂ Rm ×R is closed-valued and

measurable,

(ii) д is proper and convex, i.e., the mapping z 7→ д(x , z) is proper and convex for each �xed

x ∈ Ω.
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(iii) ∂д is pointwise a. e. proto-di�erentiable, i.e., the mapping z 7→ ∂zд(x , z) is proto-di�erentiable

for a. e. x ∈ Ω.

We call an integrand satisfying (i–iii) regular. Note that (i) already implies that the mapping

z 7→ д(x , z) is lower semicontinuous for each �xed x ∈ Ω and that д(x ,u(x)) is measurable for

each u ∈ X [45, Prop. 14.28]. Examples of normal integrands are �nite-valued Carathéodory

functions [45, Ex. 14.29] and indicator functions of a closed-valued Borel-measurable mapping

C : Ω ⇒ Rm
[45, Ex. 14.32]. For a normal integrand, (2.5) is well-de�ned, and G(u) < ∞ if and

only if u(x) ∈ domд(x , ·) almost everywhere [45, Prop. 14.58].

Proto-di�erentiability is more restrictive but holds for a large class of practically relevant

examples. In particular, under the present assumptions that д(x , ·) is a proper, convex, lower

semicontinuous function on a �nite-dimensional domain, (iii) is equivalent to д(x , ·) being

twice epi-di�erentiable; see [45, Def. 13.6] for the (technical) de�nition as well as [45, Prop. 8.41,

Ex. 13.30, Thm. 13.40]. It is therefore satis�ed, e.g., for the maximum of a �nite number of C2

functions [45, Ex. 13.16] and for proper, convex and piecewise linear-quadratic functions [45,

Prop. 13.9]. More general ways to verify the proto-di�erentiability of ∂д(x , ·) even without

convexity include the concepts of full amenability [45, Def. 10.23 & Cor. 13.41] and prox-regularity
[45, Def. 13.27 & Thm. 13.40].

Since X = L2(Ω;Rm) is decomposable, it su�ces to have existence of at least one u0 ∈ domG
to be able to compute pointwise the Fenchel conjugate

G∗(u) =
∫
Ω
д∗(x ,u(x))dx

and the convex subdi�erential

(2.6) ∂G(u) = {ξ ∈ X | ξ (x) ∈ ∂д(x ,u(x)) for a. e. x ∈ Ω},

where conjugate and subdi�erential of д(x , z) are understood as taken with respect to z for x
�xed; see [44, Thm. 3C] and [44, Cor. 3F], respectively.

In order to calculate D̂∗∂G(x), we observe that

Graph[∂G] = {(u, ξ ) ∈ X × X | ξ (x) ∈ ∂д(x ,u(x)) for a. e. x ∈ Ω}.

Since д is normal and convex, Graph ∂д is measurable and closed-valued [44, Prop. 14.56]. Thus,

in the de�nition of N̂ (û, ˆξ ; Graph[∂G]), we are dealing with a sequence in

X × X = [L2(Ω;Rm)]2 ' L2(Ω;R2m).

To derive an expression for D̂∗∂G, it therefore su�ces to prove the following result.

Proposition 2.1. LetU ⊂ L2(Ω;Rm) have the form

U =
{
u ∈ L2(Ω;Rm) | u(x) ∈ C(x) for a. e. x ∈ Ω

}
for a Borel-measurable mapping C : Ω ⇒ Rm with C(x) ⊂ Rm geometrically derivable for almost
every x ∈ Ω. Then for every u ∈ U we have

(2.7) N̂ (u;U ) =
{
z ∈ L2(Ω;Rm) | z(x) ∈ N̂ (u(x);C(x)) for a. e. x ∈ Ω

}
,
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and

(2.8) T (u;U ) =
{
z ∈ L2(Ω;Rm) | z(x) ∈ T (u(x);C(x)) for a. e. x ∈ Ω

}
.

Proof. We start with (2.7). Recalling the de�nition of N̂ (u;U ), we have to �nd all z ∈ L2(Ω;Rm)
satisfying

lim sup

U 3u′→u

〈z,u ′ − u〉
‖u ′ − u‖ ≤ 0,

where the inner product and norm are now in L2(Ω;Rm), and the convergence is strong con-

vergence in this space, within the subset U .

Let us take a sequenceui → u, (i = 1, 2, 3, . . .) and let ε > 0 be arbitrary. We denotevi B ui−u.

Then,

Li B
〈z,ui − u〉
‖ui − u‖ =

∫
Ω
〈z(x),vi (x)〉 dx(∫
Ω
|vi (x)|2 dx

)
1/2 .

We let Z1 = Z i
1
, Z2 and Z3 be sets with Lebesgue measure Lm(Ω \ Z j ) ≤ ε/3 for each j = 1, 2, 3

and satisfying, respectively, the conditions

|vi (x)| ≤ 3ε−1‖vi ‖ (x ∈ Z i
1
),(2.9)

z is bounded on Z2,(2.10)

and (∫
Ω\Z3

|z(x)|2 dx
)

1/2
≤ ε/3.(2.11)

To see how (2.9) can hold, we take Z̃ i
1

as the set of x ∈ Ω satisfying (2.9). Then

‖vi ‖2 ≥
∫
Ω\Z̃ i

1

|vi (x)|2 dx ≥ 3ε−1Lm(Ω \ Z̃ i
1
)‖vi ‖2,

which gives

ε/3 ≥ Lm(Ω \ Z̃ i
1
).

We may therefore takeZ i
1
= Z̃ i

1
. The proofs that (2.10) and (2.11) can hold are similarly elementary.

With

Z i B Z i
1
∩ Z2 ∩ Z3,

we have

Lm(Ω \ Z i ) ≤ ε .
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We calculate

Li =

∫
Ω\Z i 〈z(x),vi (x)〉 dx

‖vi ‖ +

∫
Z i 〈z(x),vi (x)〉 dx

‖vi ‖

≤
‖χΩ\Z iz‖‖vi ‖
‖vi ‖ +

∫
Z i

〈z(x),vi (x)〉
|vi (x)| · |v

i (x)|
‖vi ‖ dx

≤ ‖χΩ\Z iz‖ + 3ε−1

∫
Z i

max

{
0,
〈z(x),vi (x)〉
|vi (x)|

}
dx .

≤ ‖χΩ\Z i ‖‖z‖ + 3ε−1

∫
Z2

max

{
0,
〈z(x),vi (x)〉
|vi (x)|

}
dx .

≤ ε1/2‖z‖ + 3ε−1

∫
Z2

max

{
0,
〈z(x),vi (x)〉
|vi (x)|

}
dx .

If now for almost every x ∈ Ω we have that z(x) ∈ N̂ (u(x);C(x)), then we deduce using the

boundedness of z on Z2 and reverse Fatou’s inequality that

lim sup

i→∞
Li ≤ ε1/2‖z‖.

Since ε > 0 was arbitrary, we deduce

N̂ (u;U ) ⊃ {z ∈ L2(Ω;Rm) | z(x) ∈ N̂ (u(x);C(x)) for a. e. x ∈ Ω}.

This proves one direction of (2.7), which therefore holds even without geometric derivability.

Now we have to prove the other direction, where we do need this assumption.

So, let z ∈ N̂ (u;U ). We have to show that z(x) ∈ N̂ (u(x);C(x)) for a. e. x ∈ Ω. Suppose this

does not hold. Using the standard polarity relationship N̂ (u(x);C(x)) = [T (u(x);C(x))]◦, e.g.,

from [45, Thm. 6.28], we can �nd δ > 0 and a Borel set E ⊂ Ω of �nite positive Lebesgue

measure such that for each x ∈ E there exists w(x) ∈ T (u(x);C(x)) with ‖w(x)‖ = 1 and

〈z(x),w(x)〉 ≥ δ . We may without loss of generality take C(x) geometrically derivable for each

x ∈ E. By De�nition 2.2 there then exists for each x ∈ E a curve ξ ( · ,x) : [0, ε(x)] → C(x) such

that ξ ′+(0,x) = w(x) and ξ (0,x) = u(x). Let us pick c ∈ (0,δ ). By replacing E by a subset of

positive measure, we may by Egorov’s theorem assume the existence of ε > 0 such that

|ξ (t ,x) − ξ (0,x) −w(x)t | ≤ ct (t ∈ [0, ε], x ∈ E).

Let us de�ne

ũt (x) B
{
ξ (t ,x), x ∈ E,
u(x), x ∈ Ω \ E.

With vt B ũt − u, we have vt (x) = ξ (t ,x) − ξ (0,x) for x ∈ E, and vt (x) = 0 for x ∈ Ω \ E.

Therefore, for t ∈ (0, ε] and some c ′ > 0 there holds

‖vt ‖ =
(∫

E
|ξ (t ,x) − ξ (0,x)|2 dx

)
1/2
≤

(∫
E
(|w(x)|t + ct)2 dx

)
1/2
≤ c ′t .

Likewise

〈z(x),vt (x)〉 ≥ 〈z(x),w(x)〉t − |z(x)| · |ξ (t ,x) − ξ (0,x) −wt | ≥ δt − ct .
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It follows

lim sup

t↘0

∫
E

〈z(x),vt (x)〉
‖vt ‖ dx ≥ lim sup

t↘0

Lm(E)(δt − ct)
c ′t

=
Lm(E)(δ − c)

c ′
> 0.

With ui B ũ1/i
for i ∈ N, it follows that limi→∞ Li > 0. This provides a contradiction to

z ∈ N̂ (u;U ). Thus z(x) ∈ N̂ (u(x);C(x)) for a. e. x ∈ Ω, �nishing the proof of (2.7).

We still have to show (2.8). The inclusion

T (u;U ) ⊂
{
z ∈ L2(Ω;Rm) | z(x) ∈ T (u(x);C(x)) for a. e. x ∈ Ω

}
follows from the de�ning equation (2.1) and the fact that a sequence convergent in L2(Ω)
converges, after possibly passing to a subsequence, pointwise almost everywhere.

For the other direction, we take for almost every x ∈ Ω a tangent vector z(x) ∈ T (u(x);C(x))
at u(x) ∈ C(x). For the inclusion (2.8), we only need to consider the case z ∈ L2(Ω;Rm). By

geometric derivability, we may �nd for a. e. x ∈ Ω an ε(x) > 0 and a curve ξ ( · ,x) : [0, ε(x)] →
C(x) such that ξ (0,x) = u(x) and ξ ′+(0,x) = z(x). In particular, for any given c > 0, we may �nd

εc (x) ∈ (0, ε(x)] such that

(2.12)

|ξ (t ,x) − ξ (0,x) − z(x)t |
t

≤ c (t ∈ (0, εc (x)], a. e. x ∈ Ω).

For t > 0, let us set

Ec,t B {x ∈ Ω | εc (x) ≥ t}.

If we de�ne

ũc,t (x) B
{
ξ (t ,x), x ∈ Ec,t ,
u(x), x ∈ Ω \ Ec,t ,

then by (2.12), |ũc,t (x) − u(x)| ≤ t(c + |z(x)|) for a. e. x ∈ Ω, so that

(2.13) ‖ũc,t − u‖ ≤
(∫

Ω
t2(c + |z(x)|)2

)
1/2
≤ t(c

√
Lm(Ω) + ‖z‖).

Moreover, (2.12) also gives

(2.14)

‖ũc,t − u − zt ‖
t

≤ 1

t

(∫
Ec,t
|ξ (t ,x) − ξ (0,x) − z(x)t |2 dx

)
1/2
+

1

t

(∫
Ω\Ec,t

|z(x)t |2 dx
)

1/2

≤ c
√
Lm(Ω) + ‖zχΩ\Ec,t ‖.

For each i ∈ N we can �nd ti > 0 such that ‖zχΩ\E
1/i,ti
‖ ≤ 1/i . This follows from Lebesgue’s

dominated convergence theorem and the fact that Lm(Ω \ Ec,t ) → 0 as t → 0. The estimates

(2.13) and (2.14) thus show that ui B u1/i,ti
satisfy ui → u and (ui − u)/ti → z. Therefore

z ∈ T (u;U ), �nishing the proof of (2.8). �

As a corollary, we may calculate D̂∗∂G(u |w) for G of the form (2.5).
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Corollary 2.2. Let G : L2(Ω;Rm) → R have the form (2.5) for some regular integrand д. Then the
regular coderivative of ∂G at u for ξ in the direction ∆ξ , where u, ξ ,∆ξ ∈ L2(Ω;Rm), is given by

D̂∗[∂G](u |ξ )(∆ξ ) =
{
∆u ∈ L2(Ω;Rm)

���� ∆u(x) ∈ D̂∗[∂д(x , ·)](u(x)|ξ (x))(∆ξ (x))
for a. e. x ∈ Ω

}
.

Likewise, the graphical derivative at u for ξ in the directon ∆u is given by

D[∂G](u |ξ )(∆u) =
{
∆ξ ∈ L2(Ω;Rm)

���� ∆ξ (x) ∈ D[∂д(x , ·)](u(x)|ξ (x))(∆u(x))
for a. e. x ∈ Ω

}
.

Proof. As we have already remarked in the beginning of the present Section 2.2, the sets

C(x) B {(z, ξ ) ∈ Rm ×Rm | ξ ∈ ∂д(x , z)}

are by [45, Prop. 8.41, Ex. 13.30, Thm. 13.40] geometrically derivable for regular integrands д. The

present result therefore follows by direct application of Proposition 2.1 to the setU = Graph ∂G
with ∂G given in (2.6). �

More generally, we have the following.

Corollary 2.3. Let P : Q ∼ L2(Ω;Rm)⇒W ∼ L2(Ω;Rk ) have the form

P(q) = {w ∈ L2(Ω;Rm) | w(x) ∈ p(x ,q(x)) for a. e. x ∈ Ω}

for some Borel-measurable and pointwise a. e. proto-di�erentiable set-valued functionp : Ω×Rm ⇒
Rk . Then the regular coderivative of P at q forw in the direction ∆w , where q ∈ L2(Ω;Rm), and
w,∆w ∈ L2(Ω;Rk ), is given by

D̂∗P(q |w)(∆w) =
{
∆q ∈ L2(Ω;Rm)

���� ∆q(x) ∈ D̂∗[p(x , ·)](q(x)|w(x))(∆w(x)),
for a. e. x ∈ Ω

}
.

Likewise,

DP(q |w)(∆q) =
{
∆w ∈ L2(Ω;Rm)

���� ∆w(x) ∈ D[p(x , ·)](q(x)|w(x))(∆q(x)),
for a. e. x ∈ Ω

}
.

Corollary 2.4. Let P be a pointwise set-valued functional as in Corollary 2.3, and let h : Q →W
be single-valued and Fréchet di�erentiable. Then

(2.15) D̂∗(P + h)(q |w)(∆w) = D̂∗P(q |w − h(q))(∆w) + [∇h(q)]∗∆w,

and

(2.16) D(P + h)(q |w)(∆q) = DP(q |w − h(q))(∆q) + ∇h(q)∆q.

Proof. Similarly to the �nite-dimensional case in [45, Ex. 10.43], the rule (2.16) follows immedi-

ately from the de�ning equation (2.4). The rule (2.15) is immediate consequence of the sum rule

for regular coderivatives [37, Thm. 1.62]. �
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Remark 2.5. Using (2.7), it is not di�cult to obtain the characterization

(2.17) N (u;U ) =
{
z ∈ L2(Ω;Rm) | z(x) ∈ N (u(x);C(x)) for a. e. x ∈ Ω

}
of the limiting normal cone N (u;U ) B lim supU 3u′→u N̂ (u ′;U ). The proof is based on L2 conver-
gence giving pointwise a. e. convergence for a subsequence, and in the other direction, reindexing
�nite-dimensional sequences to get sequences convergent in L2. The expression (2.17) then allows
obtaining corresponding versions of the corollaries above for the limiting coderivative D∗ (which
enjoys a richer calculus) in place of the regular coderivative D̂∗.

However, the stability analysis which is the focus of this work rests on the relation between the
regular coderivative and the graphical derivative, discussed in the following section, which does
not hold for the limiting coderivative (which has a similar relation with the regular derivative). In
particular, we cannot work in the same way with the convexi�ed graphical derivative which is a
key step in our analysis (see Section 3.2 below). Hence, we do not treat this case in detail here.

2.3 the finite-dimensional coderivative in terms of the graphical derivative

Corollary 2.2 and Corollary 2.3 give us computable expressions for the coderivative for pointwise

set-valued mappings in in�nite dimensions in terms of the coderivative in �nite dimensions. It

is, however, often easier to work with the graphical derivative (2.4). From [45, Prop. 8.37] we

�nd for R : Rm ⇒ Rn
that

(2.18) D̂∗R(q |w) = [DR(q |w)]∗+.

Here, for a general set-valued mapping J : Q ⇒W , the upper adjoint J ∗+ : W ⇒ Q is de�ned

via

J ∗+(∆w) B {∆q ∈ Q | 〈∆q,∆q′〉 ≤ 〈∆w,∆w ′〉 when ∆w ′ ∈ J (∆q′)}.
In general, the graph of the regular coderivative need not be a convex set. It is often more

convenient – and for our analysis su�cient – to work with its convexi�cation. To see this,

observe �rst that by de�nition of the upper adjoint, and minding the negative sign of ∆w ′ in

(2.3), the relation (2.18) is equivalent to

N̂ ((q,w); GraphR) = T ((q,w); GraphR)◦.

In particular – simply through the de�nitions of polarity and convexity, – the convex hull of

the tangent cone satis�es

N̂ ((q,w); GraphR) = [convT ((q,w); GraphR)]◦.

De�ning D̃R(q |w) via

Graph D̃R(q |w) = conv Graph[DR(q |w)],
we therefore deduce

(2.19) D̂∗R(q |w) = [DR(q |w)]∗+ = [D̃R(q |w)]∗+,

where the �rst equality holds due to the �nite-dimensional setting, while the second equality

holds generally due to the properties of convex hulls and polars.

The following central results shows that for the pointwise functionals that are the focus of

this work, both equalities hold even in the in�nite-dimensional setting.
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Theorem 2.6. Let P : Q ∼ L2(Ω;Rm)⇒W ∼ L2(Ω;Rk ) have the form

P(q) = {w ∈ L2(Ω;Rm) | w(x) ∈ p(x ,q(x)) for a. e. x ∈ Ω}.

with proto-di�erentiablep(x , ·) : Rm ⇒ Rk (a. e. x ∈ Ω) having locally closed graph at (q(x),w(x))
for a. e. x ∈ Ω. Then

D̂∗P(q |w) = [DP(q |w)]∗+ = [D̃P(q |w)]∗+,

i.e.,

∆q ∈ D̂∗P(q |w)(∆w) ⇐⇒ 〈∆q,∆q′〉 ≤ 〈∆w,∆w ′〉 when ∆w ′ ∈ DP(q |w)(∆q′)
⇐⇒ 〈∆q,∆q′〉 ≤ 〈∆w,∆w ′〉 when ∆w ′ ∈ D̃P(q |w)(∆q′).

Proof. Let us de�ne px B p(x , ·). From Corollary 2.3, we have the equivalence

∆w(x) ∈ Dpx (q(x)|w(x))(∆q(x)) for a. e. x ∈ Ω ⇐⇒ ∆w ∈ DP(q |w)(∆q).

Provided that Graphpx is locally closed for a. e. x ∈ Ω, we may thus calculate

(2.20) ∆q ∈ D̂∗P(q |w)(∆w) ⇐⇒ ∆q(x) ∈ D̂∗px (q(x)|w(x))(∆w(x)) for a. e. x ∈ Ω
⇐⇒ 〈∆q(x),∆q′(x)〉 ≤ 〈∆w(x),∆w ′(x)〉 for a. e. x ∈ Ω

when ∆w ′(x) ∈ Dpx (q(x)|w(x))(∆q′(x)) for a. e. x ∈ Ω
⇐⇒ 〈∆q(x),∆q′(x)〉 ≤ 〈∆w(x),∆w ′(x)〉 for a. e. x ∈ Ω

when ∆w ′ ∈ DP(q |w)(∆q′).

Here we are still computing the upper adjoint pointwise. Clearly (2.20) however implies

(2.21) ∆q ∈ D̂∗P(q |w)(∆w) =⇒ 〈∆q,∆q′〉 ≤ 〈∆w,∆w ′〉 when ∆w ′ ∈ DP(q |w)(∆q′).

Further, if there exists a set E ⊂ Ω with Lm(Ω \ E) > 0 and

〈∆q(x),∆q′(x)〉 > 〈∆w(x),∆w ′(x)〉 (x ∈ E),

then by constructing

∆q′′(x) B (1 + t χE (x))∆q(x), ∆w ′′(x) B (1 + t χE (x))∆w(x),

we observe for su�cient large t the condition

〈∆q,∆q′′〉 > 〈∆w,∆w ′′〉.

Moreover, by the pointwise character of P , also ∆w ′′ ∈ DP(q |w)(∆q′′). Thus the implication in

(2.21) actually holds both ways, which is exactly what we set out to prove.

Finally, [DP(q |w)]∗+ = [D̃P(q |w)]∗+ always holds, as we have already observed in (2.19). �

Similarly to Corollary 2.4, we have the following immediate corollary.
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Corollary 2.7. Let P be a pointwise set-valued functional as in Theorem 2.6, and let h : Q →W be
single-valued and Fréchet di�erentiable. Then

(2.22) D̂∗(P + h)(q |w) = [D(P + h)(q |w)]∗+.

Proof. Let us set R B P + h, and recall from Corollary 2.4 that

∆q ∈ D̂∗R(q |w)(∆w) = D̂∗P(q |w − h(q))(∆w) + [∇h(q)]∗∆w .

This is the same to say as that ∆q̄ B ∆q − [∇h(q)]∗∆w ∈ D̂∗P(q |w ′)(∆w) for w ′ B w − h(q). By

Theorem 2.6 this holds if and only if

〈∆q̄,∆q′〉 ≤ 〈∆w,∆w ′〉 when ∆w ′ ∈ DP(q |w ′)(∆q′),

or equivalently

〈∆q,∆q′〉 ≤ 〈∆w,∆w ′ + ∇h(q)∆q′〉 when ∆w ′ ∈ DP(q |w ′)(∆q′),

which is just the same as

〈∆q,∆q′〉 ≤ 〈∆w,∆w ′〉 when ∆w ′ ∈ DP(q |w ′)(∆q′) + ∇h(q)∆q′.

Now we just use (2.16) to derive (2.22). �

Corollary 2.8. Let G : L2(Ω;Rm) → R have the form (2.5) for some regular integrand д. Then the
graphical derivative of ∂G at u for ξ in the direction ∆u, where u, ξ ,∆u ∈ L2(Ω;Rm), is given by

(2.23) D[∂G](u |ξ )(∆u) =
{
∆ξ ∈ L2(Ω;Rm)

���� ∆ξ (x) ∈ D[∂д(x , ·)](u(x)|ξ (x))(∆u(x))
for a. e. x ∈ Ω

}
.

Moreover,
D̂∗[∂G](u |ξ ) = [D[∂G](u |ξ )]∗+.

Proof. The claim follows directly from Theorem 2.6 with p(x , z) = ∂д(x , z). Local closedness of

Graph ∂д(x , ·) is a consequence of the lower semicontinuity of д. �

2.4 examples

We now study speci�c cases of the �nite- and in�nite-dimensional second-order generalized

derivatives, relevant to our model problems (1.4) and (1.5). Other examples satisfying the as-

sumptions are the piecewise linear-quadratic “multi-bang” and switching penalties introduced

in [10] and [11], respectively.
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2.4.1 squared L2(Ω;Rm ) norm

The following result is standard; see, e.g., [45, Ex. 8.34].

Lemma 2.9. With z ∈ Rm , let д(z) = 1

2
‖z‖2. Then ∂д is proto-di�erentiable with

D(∂д)(z |ζ )(∆z) =
{
∆z, ζ = z,

∅, otherwise.

From Corollary 2.8, we immediately obtain

Corollary 2.10. With д(z) = 1

2
‖z‖2 and Ω ⊂ Rn an open bounded domain, let

G(u) B
∫
Ω
д(u(x))dx (u ∈ L2(Ω;Rm)).

Then
D(∂G)(u |ξ )(∆u) = ∆u and D̂∗(∂G)(u |ξ )(∆ξ ) = ∆ξ .

2.4.2 indicator function

The following lemma is useful for computing D[∂F ∗](v |η) for the problem (1.4). Its claim in the

one-dimensional case (m = 1) is illustrated in Figure 1.

Lemma 2.11. With z ∈ Rm , let f (z) = ιB(0,α )(z). Then ∂ f is proto-di�erentiable with

(2.24) D(∂ f )(z |ζ )(∆z) =



‖ζ ‖∆z/α +Rz, ‖z‖ = α , ζ ∈ (0,∞)z, 〈z,∆z〉 = 0,

[0,∞)z, ‖z‖ = α , ‖ζ ‖ = 0, 〈z,∆z〉 = 0,

{0}, ‖z‖ = α , ‖ζ ‖ = 0, 〈z,∆z〉 < 0,

{0}, ‖z‖ < α , ‖ζ ‖ = 0,

∅, otherwise.

In particular, ifm = 1, then

D(∂ f )(z |ζ )(∆z) =



R, |z | = α , ζ ∈ (0,∞)z, ∆z = 0,

[0,∞)z, |z | = α , ζ = 0, ∆z = 0,

{0}, |z | = α , ζ = 0, z∆z < 0,

{0}, |z | < α , ζ = 0,

∅, otherwise,

(2.25)

as well as

�D(∂ f )(z |ζ )(∆z) =

R, |z | = α , ζ ∈ (0,∞)z, ∆z = 0,

[0,∞)z, |z | = α , ζ = 0, z∆z ≤ 0,

{0}, |z | < α , ζ = 0,

∅, otherwise.

(2.26)
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(iv)

(ii)

(iii)

(i)

(a) D(∂ f )(z |ζ ) (b) �D(∂ f )(z |ζ ) (c) D̂∗(∂ f )(z |ζ )

Figure 1: Illustration of the graphical derivative and regular coderivative for ∂ f with f = ι[−1,1].
The dashed line is Graph ∂ f . The dots indicate the base points (z, ζ )where the graphical

derivative or coderivative is calculated, and the thick arrows and gray areas the direc-

tions of (∆z,∆ζ ) relative to the base point. The labels (i) etc. indicate the corresponding

case of (2.25).

Proof. The proto-di�erentiability of ∂ f follows from the fact that f is twice epi-di�erentiable;

see [45, Ex. 13.17 & Thm. 13.40], writing B(0,α) = {x ∈ Rn | ‖x ‖2 ∈ (−∞,α]} for the twice

continuously di�erentiable mapping x 7→ ‖x ‖2 and the polyhedral set (−∞,α] satisfying the

contraint quali�cation.

For the full proof of (2.24), using second-order subgradient theory from [45], we refer to [50].
1

For completeness, we provide here an elementary proof of the one-dimensional case (2.25). We

have

(2.27) ∂ f (z) =


[0,∞)z, |z | = α ,
{0}, |z | < α ,
∅, otherwise.

If ζ ∈ ∂ f (z) and ∆ζ ∈ D(∂ f )(z |ζ )(∆z), there exists by (2.4) sequences t i ↘ 0, ∆zi → ∆z, and

ζ i ∈ ∂ f (z + t i∆zi ) such that

(2.28) ∆ζ = lim

i→∞
1

t i
(ζ i − ζ ).

We proceed by case distinction.

(i) If |z | = α , ∆z = 0, and ζ ∈ (0,∞)z, choosing zi = 0, we can for any ∆ζ ∈ R and large

enough i take ζ i = t i∆ζ + ζ ∈ [0,∞)z = ∂ f (z). Thus we obtain the �rst case in (2.25).

1
There is a small omission in [50, Lemma 4.2], that actually causes

�D(∂ f )(z |ζ )(∆z) instead to be calculated. In

calculating the subdi�erential of (4.18) therein, at the end of the proof of the lemma, the cases 〈y ,w〉 = 0 and

〈y,w〉 < 0 need to be calculated separately to give the two di�erent sub-cases of (‖z‖ = α and ‖ζ ‖ = 0) in our

expression (2.24).
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(ii) Let us then suppose |z | = α , ∆z = 0, but ζ = 0. In this case, choosing zi = 0, we have

by (2.27) free choice of ζ i ∈ [0,∞)z. Picking ∆ζ ∈ [0,∞)z and setting ζ i B t i∆ζ , we

deduce that ζ i ∈ [0,∞)z ⊂ D(∂ f )(z |ζ )(∆z). Since −(0,∞)z is clearly not approximable

from [0,∞)z, we obtain the second case of (2.25).

(iii) If |z | = α and z∆z > 0, then ∂ f (z + t i∆zi ) = ∅ for large i . Therefore it must hold that

z∆z ≤ 0. If ∆z , 0, it follows that ζ i = 0 (for large i). Since ζ is �xed, the limit (2.28)

does not exist unless ζ = 0, in which case also ∆ζ = 0. This is covered by the third case

of (2.25).

(iv) If |z | < α , then ζ i = ζ = 0, so we get the fourth case in (2.25).

(v) If |z | = α and ∆z = 0, but ζ ∈ −(0,∞)z, we see that

sign ζ
1

t i
(ζ i − ζ ) > 1

t i
|ζ |,

so the limit (2.28) cannot exist. Therefore the coderivative is empty.

Likewise, we obtain the empty coderivative if |z | > α , since even ∂ f (z) is empty and ζ
does not exist. Together, we obtain the �nal case in (2.25).

Finally, regarding
�D(∂ f )(z |ζ ) with m = 1, we see that only the case |z | = α and ζ = 0 is split

into two sub-cases in (2.25), yielding an altogether non-convex Graph[D(∂ f )(z |ζ )]. Taking the

convexi�cation of this set yields (2.26); cf. Figure 1. �

Corollary 2.12. Let f ∗(z) B ι[−α,α ](z) and

F ∗(v) B
∫
Ω
f ∗(v(x))dx (v ∈ L2(Ω)).

Then

�D[∂F ∗](v |η)(∆v) = {
V∂F ∗(v |η)◦, ∆v ∈ V∂F ∗(v |η) and η ∈ ∂F ∗(v),
∅, otherwise,

and

D̂∗[∂F ∗](v |η)(∆η) =
{
V∂F ∗(v |η)◦, −∆η ∈ V∂F ∗(v |η) and η ∈ ∂F ∗(v),
∅, otherwise,

for the cone

V∂F ∗(v |η) = {z ∈ L2(Ω) | z(x)v(x) ≤ 0 if |v(x)| = α and z(x)η(x) ≥ 0}

and its polar

V∂F ∗(v |η)◦ = {ν ∈ L2(Ω) | ν (x)v(x) ≥ 0 if η(x) = 0 and ν (x) = 0 if |v(x)| < α }.
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Proof. The claim about the graphical derivative follows from Corollary 2.8 and Lemma 2.11, using

the fact that the indicator function of a closed convex set is normal. The regular coderivative

formula follows from the more general Proposition a.1 in the appendix. Here, in the derivation of

the explicit form of the polar coneV∂F ∗(v |η)◦, we use the fact thatD[∂F ∗](v |η)(∆v) is non-empty

if and only if

�(2.29) η(x)v(x) = |η(x)| and |v(x)| ≤ α (x ∈ Ω).

Remark 2.13. If (v,η) satisfy the strict complementarity condition |v(x)| < α or |η(x)| > 0 for
a. e. x ∈ Ω, the degenerate second and third case in (2.25) (corresponding to the gray areas in
Figure 1) do not occur, and the cone simpli�es to

V∂F ∗(v |η) B {z ∈ L2(Ω) | z(x) = 0 if |v(x)| = α , x ∈ Ω}.

Note that points x ∈ Ω where a degenerate case occurs are precisely those where there is no graphical

regularity of ∂ f at (v(x),η(x)). We refer to [45, Thm. 8.40] for the de�nition of this concept, which
we do not require in the present work.

2.4.3 L1(Ω;Rm ) norm

The following lemma is useful for computing D[∂F ∗] for the problem (1.5). Its claim in the

one-dimensional case (m = 1) is illustrated in Figure 2.

Lemma 2.14. With z ∈ Rm , let f ∗(z) = ‖z‖2. Then ∂ f ∗ is proto-di�erentiable with

(2.30) D(∂ f ∗)(z |ζ )(∆z) =



(
I−(z⊗z)/‖z ‖2

‖z ‖2
)
∆z, z , 0, ζ ‖z‖ = z,

{ζ }⊥, z = 0, ∆z , 0, ζ ‖∆z‖ = ∆z,

{ζ }◦, z = 0, ∆z = 0, ‖ζ ‖ = 1,

Rm , z = 0, ∆z = 0, ‖ζ ‖ < 1,

∅, otherwise.

In particular, ifm = 1, then

D(∂ f ∗)(z |ζ )(∆z) =



{0} z , 0, ζ = sign z,

{0}, z = 0, ∆z ∈ (0,∞)ζ ,
(−∞, 0]ζ , z = 0, ∆z = 0, |ζ | = 1,

R, z = 0, ∆z = 0, |ζ | < 1,

∅, otherwise,

(2.31)

as well as

�D(∂ f ∗)(z |ζ )(∆z) =

{0} z , 0, ζ = sign z,

(−∞, 0]ζ , z = 0, ∆z ∈ [0,∞)ζ , |ζ | = 1,

R, z = 0, ∆z = 0, |ζ | < 1,

∅, otherwise.

(2.32)
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(iv)

(iii)

(ii)

(i)

(a) D(∂ f ∗)(z |ζ ) (b) �D(∂ f ∗)(z |ζ ) (c) D̂∗(∂ f ∗)(z |ζ )

Figure 2: Illustration of the graphical derivative and regular coderivative for ∂ f ∗ with f ∗ =
| · |. The dashed line is Graph ∂ f . The dots indicate the base points (z, ζ ) where the

graphical derivative or coderivative is calculated, and the thick arrows and gray areas

the directions of (∆z,∆ζ ) relative to the base point. The labels (i) etc. indicate the

corresponding case of (2.31).

Proof. In the case m = 1, the proto-di�erentiability of ∂ f ∗ follows from the fact that f ∗ is

piecewise linear and hence twice epi-di�erentiable; see [45, Prop. 13.9 & Thm. 13.40]. For general

m ∈ N, we may use the twice epi-di�erentiability of f (x) = ιB(0,1)(x) established in the proof of

Lemma 2.11 and the conjugate relationship in [45, Thm. 13.21] together with [45, Thm. 13.40].

It remains to verify the expressions (2.30)–(2.32). We have for anym ∈ N that

∂ f ∗(z) =
{{

z
‖z ‖

}
, z , 0

clB(0, 1), z = 0.

We again proceed by case distinction.

(i) For z , 0 necessarily therefore D(∂ f ∗)(z |ζ ) = ∅ unless ζ = z/‖z‖, which yields the last

case.

(ii) If z , 0 and ζ = z/‖z‖, for any

z ′ = z + t∆z ′/‖∆z ′‖

with z ′ → z and t ↘ 0, we have also ∂ f ∗(z ′) = z ′/‖z ′‖. The �rst case in (2.30) now

follows immediately from computing the outer limit

lim sup

t↘0,∆z′→∆z

∂ f ∗(z ′) − ζ
t

= lim sup

t↘0,∆z′→∆z

z ′/‖z ′‖ − ζ
t

= ∇
(
z

‖z‖

)
∆z.

(iii) If z = 0, and ∆z , 0, then z ′ , 0 and z ′/‖z ′‖ = ∆z ′/‖∆z ′‖. Therefore

lim sup

t↘0,∆z′→∆z

∂ f ∗(z ′) − ζ
t

= lim sup

t↘0,∆z′→∆z

∆z ′/‖∆z ′‖ − ζ
t
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will only have limits if ζ lies on the boundary of B(0, 1), and indeed ζ = ∆z/‖∆z‖. This

gives the limit {ζ }⊥, i.e., the second case.

(iv) If z = 0 and ∆z = 0, then we may pick ζ ∈ clB(0, 1) arbitrarily by choosing also ∆z ′ = 0.

If ‖ζ ‖ = 1, then we obtain the limit

lim sup

t→∞

1

t
(B(0, 1) − ζ ) = {∆ζ ∈ Rm | 〈∆ζ , ζ 〉 ≤ 0} = {ζ }◦

and hence the third case.

(v) In the same situation, choosing ‖ζ ‖ < 1 gives the limit Rm
and hence the fourth case.

Finally, (2.31) is a trivial specialization of (2.30), while regarding
�D(∂ f ∗)(z |ζ ) with m = 1, we

see that only the case z = 0 and |ζ | = 1 is split into two sub-cases in (2.31). These produce an

altogether non-convex Graph[D(∂ f ∗)(z |ζ )]. Taking the convexi�cation of this set yields (2.32);

cf. Figure 2. �

Corollary 2.15. Let f ∗(z) B δ |z | and

F ∗(v) B
∫
Ω
f ∗(v(x))dx (v ∈ L2(Ω)).

Then

�D[∂F ∗](v |η)(∆v) = {
V∂F ∗(v |η)◦, ∆v ∈ V∂F ∗(v |η) and η ∈ ∂F ∗(v),
∅, otherwise,

and

D̂∗[∂F ∗](v |η)(∆η) =
{
V∂F ∗(v |η)◦, −∆η ∈ V∂F ∗(v |η) and η ∈ ∂F ∗(v),
∅, otherwise,

for the cone

V∂F ∗(v |η) = {z ∈ L2(Ω) | z(x)η(x) ≥ 0 if v(x) = 0 and (δ − |η(x)|)z(x) = 0},

and its polar

V∂F ∗(v |η)◦ = {ν ∈ L2(Ω) | ν (x)η(x) ≤ 0 if |η(x)| = δ and v(x)ν (x) = 0}.

Proof. The claim about the graphical derivative follows from Corollary 2.8 and Lemma 2.14,

using the fact that д(z) = |z | is �nite-valued and Lipschitz continuous and hence normal. The

regular coderivative formula follows from the more general Proposition a.1 in the appendix. To

derive the explicit form of the polar cone V∂F ∗(v |η)◦, we employ the fact that D[∂F ∗](v |η)(∆v)
is non-empty if and only if

�(2.33) |η(x)| ≤ δ and v(x)η(x) = |v(x)|.
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Remark 2.16. If (v,η) satisfy the strict complementarity condition v(x) , 0 or |η(x)| < δ for
a. e. x ∈ Ω, the degenerate second and third case in (2.31) (corresponding to the gray areas in
Figure 2) do not occur, and the cone simpli�es to

V∂F ∗(v |η) B {z ∈ L2(Ω) | z(x) = 0 if v(x) = 0, x ∈ Ω}.

Again, points x ∈ Ω where a degenerate case occurs are precisely those where graphical regularity
fails to hold for ∂ f ∗ at (v(x),η(x)).

2.4.4 spatially varying integrands

Let α , β ∈ L2(Ω) with α(x) < β(x) for a. e. x ∈ Ω. De�ne

f (x , z) B ι[α (x ),β (x )](z) (x ∈ Ω; z ∈ R).

This example is useful for spatially or temporally varying “tube” constraints, which arise in the

regularization of inverse problems subject to variable noise levels [13]. The indicator function

of temporally variable constraints also appears in Moreau’s sweeping process, which is a model

for several phenomena from nonsmooth mechanics such as elastoplasticity [29].

Due to the measurability of α and β , the integrand f is proper, convex and normal [45,

Ex. 14.32], such that the subdi�erential ∂ f (x , ·) can be computed pointwise. Furthermore, f is

a. e. proto-di�erentiable as the indicator function of the convex polyhedral set [α(x), β(x)]; see

again [45, Ex. 13.17 & Thm. 13.40]. By simple pointwise application of Lemma 2.11 we can thus

compute D[∂ f (x , ·)]. We therefore deduce the applicability of Corollary 2.8 to

F (v) =
∫
Ω
f (x ,v(x))dx ,

and obtain a pointwise characterization of D(∂F ) similar to Corollary 2.12.

Clearly, we can analogously modify Corollary 2.10 (squared L2(Ω;Rm) norm) and Corol-

lary 2.15 (L1(Ω;Rm) norm) by, e.g., introducing a spatially varying weight in each norm.

3 stability of variational inclusions

To pave the way towards studying the stability of saddle point systems in the following section,

we now recall general concepts for the study of variational inclusions and develop general

results that quickly specialize to saddle point systems in L2
.

3.1 metric regularity and the mordukhovich criterion

Our stability analysis is based on the following set-valued Lipschitz property [2, 37, 45], also

known as the Aubin property of R−1
.

Definition 3.1. We say that the set-valued mapping R : Q ⇒W is metrically regular at ŵ for q̂ if

GraphR is locally closed and there exist ρ,δ , ` > 0 such that

(3.1) inf

p :w ∈R(p)
‖q − p‖ ≤ `‖w − R(q)‖ for any q,w such that ‖q − q̂‖ ≤ δ , ‖w − ŵ ‖ ≤ ρ .
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We denote the in�mum over valid constants ` by `R−1(ŵ |q̂), or `R−1 for short when there is no

ambiguity about the point (ŵ, q̂).

A simpli�ed view, indicating why this concept is useful, can be seen by taking q̂ satisfying

0 ∈ R(q̂). Setting q = q̂ and ŵ = 0 in (3.1), we then obtain

(3.2) inf

p :w ∈R(p)
‖q̂ − p‖ ≤ `R−1(0|q̂)‖w ‖ for any w such that ‖w ‖ ≤ ρ .

Therefore, if we perturb the variational inclusion 0 ∈ R(q̂) – typically an optimality condition –

by a small linear perturbation w , we will still �nd a nearby solution to the perturbed problem.

We will later see that for our problems of interest, we can encode variations in data and in

an additional Moreau-Yosida regularization parameter into w . We therefore need to estimate

`R−1 , for which the following Mordukhovich criterion [35] will be useful. It is also contained in

[37, Thm. 4.7] and simpli�ed here to our Hilbert space setting from the original Asplund space

setting.

Theorem 3.1. Let R : Q ⇒W be a set-valued mapping between Hilbert spaces Q andW . Suppose
GraphR is locally closed around (q,w) ∈ GraphR. Then

`R(q |w) = inf

t>0

sup

{
‖D̂∗R(q′ |w ′)‖

���q′ ∈ B(q, t), w ′ ∈ R(q′) ∩ B(w, t)} .
Here, for positively homogeneous M : W ⇒ Q , we have de�ned

‖M ‖ B sup{‖q‖ | q ∈ M(w), ‖w ‖ ≤ 1}.

If R satis�es the regularity assumption D̂∗R(q |w) = [DR(q |w)]∗+ (which is the case for point-

wise mappings due to Theorem 2.6), we may translate Theorem 3.1 to be expressed in terms of

the graphical derivative DR, where by the second equation in (2.19) it su�ces to consider the

convexi�cation D̃R. This is the content of the next proposition.

Proposition 3.2. Let R : Q ⇒W be a set-valued mapping between Hilbert spacesQ andW . Suppose
GraphR is locally closed around (q,w) ∈ GraphR and

(3.3) D̂∗R(q |w) = [DR(q |w)]∗+.

Then
`R−1(w |q) = inf

t>0

sup

{˜̀R−1(w ′ |q′)
���w ′ ∈ B(w, t), q′ ∈ B(q, t), w ′ ∈ R(q′)} ,

with

(3.4) ˜̀R−1(w ′ |q′) B sup

{
‖∆w ‖

���� ∆q ∈ Q, ∆w ∈W , ‖∆q‖ ≤ 1, satisfying
〈∆q,∆q′〉 ≤ 〈∆w,∆w ′〉 when ∆w ′ ∈ D̃R(q′ |w ′)(∆q′)

}
.

Proof. From the De�nition 2.3 of D̂∗R(q |w) and D̂∗R−1(w |q) through N̂ ((w, 1); GraphR), we

observe from the de�nitions that

∆w ∈ D̂∗R(w |q)(∆q) ⇐⇒ −∆q ∈ D̂∗R−1(q |w)(−∆w).
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Applied to R−1
, Theorem 3.1 therefore gives

(3.5) `R−1(w |q) = inf

t>0

sup

{
‖D̂∗R−1(w ′ |q′)‖

���w ′ ∈ B(w, t), q′ ∈ R−1(w ′) ∩ B(q, t)
}

= inf

t>0

sup

{
‖[D̂∗R(q′ |w ′)]−1‖

���w ′ ∈ B(w, t), q′ ∈ B(q, t), w ′ ∈ R(q′)}
= inf

t>0

sup

{
‖∆w ‖

���� ∆q ∈ D̂∗R(q′ |w ′)(∆w), ‖∆q‖ ≤ 1,

w ′ ∈ B(w, t), q′ ∈ B(q, t), w ′ ∈ R(q′)

}
= inf

t>0

sup

{˜̀R−1(w ′ |q′)
���w ′ ∈ B(w, t), q′ ∈ B(q, t), w ′ ∈ R(q′)} ,

where ˜̀R−1(w ′ |q′) B sup

{
‖∆w ‖

���∆q ∈ D̂∗R(q′ |w ′)(∆w), ‖∆q‖ ≤ 1

}
.

Referral to (3.3) and the fact that

[DR(q |w)]∗+ = [D̃R(q |w)]∗+,
now establishes the claim with the expression (3.4) for ˜̀R−1(w ′ |q′). �

3.2 graphical derivatives expressed with linear operators and cones

We now derive necessary and su�cient conditions for the Aubin property to hold for variational

inclusions involving second-order set-valued derivatives of pointwise functionals. As seen in

Section 2.4, these commonly have the structure of a sum of a linear operator and a cone. In fact,

for the following analysis, it su�ces that the graphical derivatives merely contain such a sum

in order to derive upper bounds; this will be important for treating discretization by projection

in Section 5.3. We therefore assume therefore thatW = Q = L2(Ω;RN ) and that

(3.6) D̃R(q |w)(∆q) ⊃
{
Tq∆q +V (q |w)◦, ∆q ∈ V (q |w),
∅, ∆q < V (q |w),

for some linear operatorT B Tq : Q → Q , dependent on q but notw , and a coneV B V (q |w) ⊂
Q , dependent on both q andw . Here we recall from (2.2) thatV ◦ is the polar cone ofV . Although

it will not be needed in our analysis, an explicit characterization of the regular coderivatives of

set-valued mappings satisfying (3.6) (with equality) is derived in Appendix a for completeness.

Following the reasoning in [50, Prop. 4.1], we may, using the structural assumption (3.6),

continue from Proposition 3.2 to derive

(3.7) ˜̀R−1(w |q) ≤ sup

‖∆w ‖
������ ∆q ∈ Q, ∆w ∈ Q, ‖∆q‖ ≤ 1, satisfying

〈∆w,T∆q′ + ∆p ′〉 ≤ 〈∆q,∆q′〉
for ∆q′ ∈ V , ∆p ′ ∈ V ◦


= sup

{
‖∆w ‖

���� ∆q ∈ Q, ∆w ∈ V , ‖∆q‖ ≤ 1, satisfying

〈∆w,T∆q′〉 ≤ 〈∆q,∆q′〉 for ∆q′ ∈ V

}
= sup

{
‖∆w ‖

���� ∆q ∈ Q, ∆w ∈ V , ‖∆q‖ ≤ 1, satisfying

〈T ∗∆w − ∆q,∆q′〉 ≤ 0 for ∆q′ ∈ V

}
= sup {‖∆w ‖ | ∆q ∈ Q, ∆w ∈ V , ‖∆q‖ ≤ 1, T ∗∆w − ∆q ∈ V ◦}

= sup

{
‖∆w ‖

����∆w ∈ V , inf

z∈V ◦
‖T ∗∆w − z‖ ≤ 1

}
.
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V

V ◦
T ∗V

˜`−1

Figure 3: A geometric illustration of the distance ˜̀R−1 computed in (3.7) for (3.6). The dashed

line indicates the transformed cone T ∗V . Without loss of generality, we restrict ∆w to

lie on the unit sphere (dotted), in which case the distance between points on the unit

sphere between the polar V ◦ and T ∗V gives the inverse Lipschitz constant.

We illustrate this expression geometrically in Figure 3. Observe also that if (3.6) holds as an

equality, then so does the �rst inequality in (3.7). That is, in this case

˜̀R−1(w |q) = sup

{
‖∆w ‖

����∆w ∈ V , inf

z∈V ◦
‖T ∗∆w − z‖ ≤ 1

}
.

Remark 3.3. If V is a closed subspace, then V ◦ = V⊥, and (3.7) reduces to˜̀R−1(w |q) ≤ sup {‖∆w ‖ | ∆w ∈ V , ‖PVT ∗∆w ‖ ≤ 1}
= sup {‖PV∆w ‖ | ∆w ∈ Q, ‖PVT ∗PV∆w ‖ ≤ 1} .

We can use (3.7) and the expansions above to estimate ˜̀R−1(w ′ |q′) for R = Hū and R = R0. To

study stability and metric regularity, we however still need to pass to

`R−1(w |q) = inf

t>0

sup

{˜̀R−1(w ′ |q′)
���w ′ ∈ B(w, t), q′ ∈ B(q, t), w ′ ∈ R(q′)} .

This in essence involves a uniform c > 0 in the condition

inf

z∈V (q′ |w ′)◦
‖T ∗q′∆w − z‖ ≥ c‖∆w ‖ (∆w ∈ V (q′ |w ′))

for all (q′,w ′) close to (q,w).
If we assume continuity of the mapping q′ 7→ Tq′ , we can simplify this condition. The

following lemma prepares the way for the stability analysis of saddle points in the next section

(cf. (4.9) below).
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Lemma 3.4. Let q,w ∈ Q = W = X × Y , and suppose that for (q′,w ′) in a neighborhood U of
(q,w), GraphR ∩U is closed, (3.3) holds, and we have

(3.8) D̃R(q′ |w ′)(∆q) ⊃
{
Tq′∆q +V (q′ |w ′)◦, ∆q ∈ V (q′ |w ′),
∅, ∆q < V (q′ |w ′),

for a cone V (q′ |w ′) ⊂ Y . In addition to these structural assumptions, assume the continuity at q of
q′ 7→ Tq′ , and for some c > 0 the bound

(3.9) a(q |w ;R) B sup

t>0

inf

(∆w,z)∈W t
R (q |w ),

∆w,0

‖T ∗q∆w − z‖
‖∆w ‖ ≥ c,

where

W t
R (q |w) B

⋃
{V (q′ |w ′) ×V (q′ |w ′)◦ |w ′ ∈ R(q′), ‖q′ − q‖ < t , ‖w ′ −w ‖ < t} ⊂ Y 2.

Then

(3.10) `R−1(w |q) ≤ c−1.

Moreover, if (3.8) holds as an equality, then `R−1(w |q) < ∞ if and only if a(q |w ;R) > 0.

Proof. Suppose (3.9) holds, and pick c1 ∈ (0, c). Whenever t > 0 is small enough and w ′ and q′

satisfy

w ′ ∈ R(q′), ‖q − q′‖ < t and ‖w −w ′‖ < t ,

the bound (3.9), the continuity of q′ 7→ Tq′ , and the inclusion

V (q′ |w ′) ×V (q′ |w ′)◦ ⊂W t
R (q |w),

guarantee the estimate

‖Tq′∆w − z‖ ≥ c1‖∆w ‖ (∆w ∈ V (q′ |w ′), z ∈ V (q′ |w ′)◦).

The latter says that ˜̀R−1(w ′ |q′) ≤ c−1

1
.

By (3.7) and (3.5), therefore

`R−1(w ′ |q′) = sup{˜̀R−1(w ′ |q′) | w ′ ∈ R(q′), ‖q − q′‖ < t , ‖w −w ′‖ < t} ≤ c−1

1
.

Since c1 ∈ (0, c) was arbitrary, this proves (3.10).

If (3.9) does not hold, and (3.8) holds as an equality, we can, given ε > 0, �nd for every t > 0

a pair (∆w, z) ∈W t
R (q |w) \ {0} × Y , such that

‖T ∗q∆w − z‖ ≤ ε ‖∆w ‖.

Thus, by the de�nition ofW t
R (q |w), we can also �nd q′ and w ′ satisfying

w ′ ∈ R(q′), ‖q − q′‖ < t and ‖w −w ′‖ < t
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such that

∆w ∈ V (q′ |w ′) and z ∈ V (q′ |w ′)◦.

Recalling (3.7), which holds as an equality under the present assumption that (3.8) holds as an

equality, this implies that ˜̀R−1(w ′ |q′) ≥ ε−1.

Since t > 0 was arbitrary, we have as well that

`R−1(w |q) ≥ ε−1.

Finally, since ε > 0 was arbitrary, it follows that `R−1(w |q) = ∞ if (3.9) does not hold. �

4 stability of non-linear saddle point systems

We now apply the results of the preceding section to saddle points characterizing minimizers of

nonsmooth optimization problems of the form (1.1). In particular, we assume that

(4.1) F ∗(v) =
∫
Ω
f ∗(v(x))dx

for a proper, convex, lower semicontinuous f ∗ and, motivated by the problems considered in

the next section,

(4.2) G(u) =
∫
Ω
д(u(x))dx for д(z) = α

2

|z |2.

4.1 non-linear saddle point systems as variational inclusions

We �rst write the �rst-order optimality conditions (1.2) for the problem (1.1) as an inclusion for

a set-valued mapping and compute its derivative.

For q̂ = (û, v̂) to be a saddle point of (1.3), the Lagrangian L has to satisfy

L(û,v) ≤ L(û, v̂) ≤ L(u, v̂) (u ∈ X , v ∈ Y ).

Since −L(u, ·) is convex, proper, and lower semicontinuous for any u ∈ X , we deduce from the

necessary and su�cient �rst-order optimality condition 0 ∈ ∂(−L(u, ·))(v̂) for convex functions

together with the sum rule [17, Prop. 5.6] that K(û) ∈ ∂F ∗(v̂). We also see that

û ∈ arg min

u
G(u) + 〈K(u), v̂〉.

SinceG is convex and K ∈ C1(X ;Y ), we can apply the calculus of Clarke’s generalized derivative

(which reduces to the Fréchet derivative and convex subdi�erential for di�erentiable and convex

functions, respectively; see, e.g., [7, Chap. 2.3]) to deduce the overall system of critical point

conditions

(4.3)

{
K(û) ∈ ∂F ∗(v̂),

−[∇K(û)]∗v̂ ∈ ∂G(û).
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This may be rewritten concisely as

(4.4) 0 ∈ Hû (q̂)

for the monotone operator

(4.5) Hū (u,v) B
(
∂G(u) + ∇K(ū)∗v
∂F ∗(v) − ∇K(ū)u − cū

)
, where cū B K(ū) − ∇K(ū)ū .

This is de�ned at an arbitrary base point ū ∈ X for the linearization of K . Here and generally

we use the notation

q = (u,v) ∈ X × Y and w = (ξ ,η) ∈ X × Y

for combining (primal, dual) and (co-primal, co-dual) variable pairs, respectively. This nomen-

clature stems from v being the dual variable in the original saddle-point problem, whereas the

co-primal and co-dual variables generally satisfy w ∈ Hū (q).
Alternatively, we may rewrite the critical point conditions (4.3) as

0 ∈ R0(q̂)

for

(4.6) R0(u,v) B Hu (u,v) =
(
∂G(u) + ∇K(u)∗v
∂F ∗(v) − K(u)

)
.

The mapping R0 will be useful for general stability analysis, while Hū is critical for the primal-

dual algorithm of [50].

We can prove the following about these mappings.

Proposition 4.1. Let G : X = L2(Ω;Rm) → (−∞,∞] and F ∗ : Y = L2(Ω;Rn) → (−∞,∞] have
the form (2.5) for some regular integrands д and f ∗, respectively. Let K ∈ C1(X ;Y ). Then GraphHū
is locally closed, and

(4.7) DHū (q |w)(∆q) =
(

D[∂G](u |ξ − ∇K(ū)∗v)(∆u) + ∇K(ū)∗∆v
D[∂F ∗](v |η + ∇K(ū)u + cū )(∆v) − ∇K(ū)∆u

)
,

with D[∂G] and D[∂F ∗] given by (2.23). Moreover (3.3) holds, i.e.,

D̂∗Hū (q |w) = [DHū (q |w)]∗+.

Proof. That GraphHū is locally closed is an immediate consequence of the lower semicontinuity

of the convex functionalsG and F ∗ and the continuity of∇K . The expression (4.7) is an immediate

consequence of Corollary 2.7, where we set

h(u,v) B
(
∇K(ū)∗v

−∇K(ū)u − cū

)
and P(u,v) B

(
∂G(u)
∂F ∗(v)

)
,

and observe that h is not only smooth but linear with

∇h(u,v) =
(

0 ∇K(ū)∗
−∇K(ū)u 0

)
. �
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Proposition 4.2. Let G : X = L2(Ω;Rm) → (−∞,∞] and F ∗ : Y = L2(Ω;Rn) → (−∞,∞] have
the form (2.5) for some regular integrands д and f ∗, respectively. Let K ∈ C2(X ;Y ). Then GraphR0

is locally closed, and

(4.8) DR0(q |w)(∆q) =
(
D[∂G](u |ξ − ∇K(ū)∗v)(∆u) + ∇u [∇K(u)∗v]∆u + ∇K(u)∗∆v

D[∂F ∗](v |η + K(u))(∆v) − ∇K(u)∆u

)
,

with D[∂G] and D[∂F ∗] given by (2.23). Moreover (3.3) holds, i.e.,

D̂∗R0(q |w) = [DR0(q |w)]∗+.

Proof. Again, the fact that GraphR0 is locally closed is an immediate consequence of the lower

semicontinuity of the convex functionals G and F ∗ and the continuity of ∇K . The expression

(4.8) is also again an immediate consequence of Corollary 2.7, where we set

h0(u,v) B
(
∇K(u)∗v
−K(u)

)
and P(u,v) B

(
∂G(u)
∂F ∗(v)

)
,

and observe that

∇h0(u,v) =
(
∇u [∇K(u)∗v] ∇K(u)∗
−∇K(u) 0

)
,

where we denote ∇u [∇K(u)∗v] B ∇(ũ 7→ [∇K(ũ)∗v])(u), using the assumption that K is twice

di�erentiable. �

Remark 4.3. Observe from (4.7) and (4.8) that if ū = u,

DR0(q |w) = DHu (q |w) +
(
∇u [∇K(u)∗v]∆u

0

)
.

Comparing (4.5) and (4.6) also shows that in this case R0(q) = Hu (q).

Recalling (3.1) and (3.2), as well as Proposition 3.2, we see that in order to analyze the stability

of (1.2), resp. (4.4), we have to compute ˜̀
R−1

0

(w ′ |q′) in a neighborhood of (q̂, 0). We will later see

that this will be necessary both for ū = û and ū = u ′.

4.2 lipschitz estimates for saddle points

We now derive su�cient conditions for the Aubin property to hold for saddle points of (4.3).

We proceed in several steps. First, we observe that provided that if both
�D[∂G] and

�D[∂F ∗] have

individually the form (3.6), then the convexi�ed graphical derivative D̃Hū (q |w)(∆q) also has

the form (3.6). More precisely

(4.9) Tq =

(
Ḡq K̄∗ū
−K̄ū F̄q

)
for some linear operators Ḡq : X → X and F̄q : Y → Y and K̄ū = ∇K(ū), as well as the cone

V (q |w) = V∂G (u |ξ − K̄∗ūv) ×V∂F ∗(v |η + K̄ūu + cū ) ⊂ X × Y .
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Since G is assumed to be quadratic, we have V∂G (u |ξ ′) ≡ X , which gives the more speci�c

structure

D[∂G](u |ξ ′)(∆u) = Ḡq∆u

and

�D[∂F ∗](v |η′)(∆v) = {
F̄q∆v +V∂F ∗(v |η′)◦, ∆v ∈ V∂F ∗(v |η′),
∅, ∆v < V∂F ∗(v |η′).

We make, of course, the implicit assumption that ξ ′ ∈ ∂G(u) and η′ ∈ ∂F ∗(v); if this does not

hold, then the respective graphical derivatives are empty.

As we will see, it is di�cult in general to guarantee the Aubin property. One way of doing so

is to consider a Moreau–Yosida regularization of F , that is to replace F ∗ by

F ∗γ (v) B F ∗(v) + γ
2

‖v ‖2

for some parameter γ > 0; see, e.g., [3, Chap. 12.4]. The regular coderivative of the regularized

subdi�erential satis�es at least at non-degenerate points for some coneV∂F ∗(v |η) the expression

(4.10)
�D[∂F ∗γ ](v |η)(∆v) = {

γ∆v +V∂F ∗(v |η)◦, ∆v ∈ V∂F ∗(v |η),
∅, ∆v < V∂F ∗(v |η).

We denote the corresponding operator Hû by Hγ ,û .

From Proposition 4.2, we observe that D̃R0(q |w)(∆q) also has the form (3.6) with (4.9), albeit

with a di�erent term K̄ū and with Ḡq including the second-order term ∇u [∇K(u)∗v] from K .

We now specialize the results of Section 3 to the speci�c setting considered in this section.

We therefore assume that F̄q = γ I for some γ ≥ 0 and that V∂G = X . For the statement of the

next lemma, we drop many of the subscripts and denote for short T B Tq , K̄ B K̄ū , Ḡ B Ḡq ,

and Ṽ B V∂F ∗(v |η).

Lemma 4.4. Let V = X × Ṽ ⊂ X × Y be a cone, and let Ḡ : X → X and K̄ : X → Y be bounded
linear operators. For γ ≥ 0, de�ne

T B

(
Ḡ K̄∗

−K̄ γ I

)
.

Suppose Ḡ is self-adjoint and positive de�nite, i.e., there exists cG > 0 such that

(4.11) 〈Ḡξ , ξ 〉 ≥ c2

G ‖ξ ‖2 (ξ ∈ X ).

Then, there exists c > 0 such that

(4.12) inf

z∈V ◦
‖T ∗w − z‖2 ≥ c ‖w ‖2 (w ∈ V )

if and only if either of the following conditions hold:
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(i) γ > 0, in which case c = c(γ , cG );

(ii) there exists cK,V > such that

(4.13) inf

ν ∈Ṽ ◦
‖K̄Ḡ−1K̄∗η − ν ‖2 ≥ cK,V ‖η‖2 (η ∈ Ṽ ),

in which case c = c(‖K̄ ‖, cG , cK,V ) ≤ cK,V .

Proof. We �rst prove the su�ciency of (i) and (ii). With w = (ξ ,η) ∈ V = X × V∂F ∗ , and

z = (0,ν ) ∈ V ◦ = {0} ×V ◦
∂F ∗ , we calculate

‖T ∗w − z‖2 = ‖Ḡξ − K̄∗η‖2 + ‖K̄ξ + γη − ν ‖2

= ‖Ḡξ ‖2 + ‖K̄∗η‖2 − 2〈Ḡξ , K̄∗η〉
+ ‖K̄ξ ‖2 + γ 2‖η‖2 + ‖ν ‖2 + 2γ 〈K̄ξ ,η〉 − 2〈K̄ξ ,ν〉 − 2γ 〈η,ν〉
= ‖Ḡξ ‖2 + ‖K̄∗η‖2 − 2〈Ḡξ , K̄∗η〉 + ‖K̄ξ − ν ‖2 + γ 2‖η‖2 + 2γ 〈K̄ξ ,η〉 − 2γ 〈η,ν〉.

Assume �rst that γ > 0. For arbitrary λ ∈ [0,γ ], we can insert the productive zero and use

(λ − γ )〈ν ,η〉 ≥ 0 for all ν ∈ Ṽ ◦ and η ∈ Ṽ to obtain

‖T ∗w − z‖2 = ‖Ḡξ ‖2 + ‖K̄∗η‖2 − 2〈(Ḡ + λI − γ I )ξ , K̄∗η〉
+ 2λ〈K̄ξ ,η〉 + ‖K̄ξ − ν ‖2 + γ 2‖η‖2 − 2γ 〈η,ν〉
≥ ‖Ḡξ ‖2 + ‖K̄∗η‖2 − 2〈(Ḡ + λI − γ I )ξ , K̄∗η〉
+ 2λ〈K̄ξ − ν ,η〉 + ‖K̄ξ − ν ‖2 + γ 2‖η‖2.

This we further estimate by application of Young’s inequality for any ρ1, ρ2 > 0 as

(4.14) ‖T ∗w − z‖2 ≥ ‖Ḡξ ‖2 + ‖K̄∗η‖2 − 2〈(Ḡ + λI − γ I )ξ , K̄∗η〉
+ (γ 2 − λρ−1

1
)‖η‖2 + (1 − λρ1)‖K̄ξ − ν ‖2

≥ ‖Ḡξ ‖2 − ρ−1

2
‖(Ḡ + λI − γ I )ξ ‖2 + (1 − ρ2)‖K̄∗η‖2

+ (γ 2 − λρ−1

1
)‖η‖2 + (1 − λρ1)‖K̄ξ − ν ‖2.

Let us choose ρ1 = λ
−1

and ρ2 = 1. Then (4.14) becomes

‖T ∗w − z‖2 ≥ ‖Ḡξ ‖2 − ‖(Ḡ + λI − γ I )ξ ‖2 + (γ 2 − λ2)‖η‖2.

Now,

‖Ḡξ ‖2 − ‖(Ḡ + λI − γ I )ξ ‖2 = 2(γ − λ)〈Ḡξ , ξ 〉 − (γ − λ)2‖ξ ‖2,
so that by (4.11) we therefore require that

2(γ − λ)cG − (γ − λ)2 > 0.

This holds if λ < γ is large enough, verifying case (i) including the relationship c = c(γ , cG ).
Suppose next thatγ = 0. To verify the su�ciency of (ii), we proceed by contradiction, assuming

(4.12) not to hold for

c =
cK,V

1 + ‖K̄Ḡ−1‖
.
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Thus, for some c ′ ∈ (0, c), we can �nd w ∈ X × Ṽ and ν ∈ Ṽ ◦ satisfying

‖T ∗w − (0,ν )‖2 ≤ c ′‖w ‖2.

We may assume that ‖w ‖ = 1. Thus,

T ∗w − (0,ν ) = (e1, e2) where ‖e1‖2 + ‖e2‖2 ≤ c ′,

which means

Ḡξ − K̄∗η = e1 and K̄ξ − ν = e2.

Since Ḡ is invertible by (4.11), this shows that

K̄Ḡ−1K̄∗η − ν = e2 − K̄Ḡ−1e1.

Thus

‖K̄Ḡ−1K̄∗η − ν ‖2 ≤ 2(1 + ‖K̄Ḡ−1‖)c ′ < cK,V ,

in contradiction to (4.13). Therefore (ii) is su�cient for (4.12). We also estimate

‖Ḡξ ‖ ≥ cG ‖ξ ‖.

Using the standard relation

sup

‖ξ ‖=1

‖Ḡ−1ξ ‖ = sup

ξ,0

‖ξ ‖
‖Ḡξ ‖

,

we therefore have

‖K̄Ḡ−1‖ ≤ c−1

G ‖K̄ ‖.

This veri�es c = c(‖K ‖, cG , cK,V ).
Having dealt with the su�cient conditions, let us now verify the necessity of (4.13) when

γ = 0. We expand

(4.15) ‖T ∗w − z‖2 = ‖Ḡξ − K̄∗η‖2 + ‖K̄ξ − ν ‖2.

Using the invertibility of Ḡ from (4.11), let us choose ξ = Ḡ−1K̄∗η. Then (4.15) gives

‖T ∗w − z‖2 = ‖K̄Ḡ−1K̄∗η − ν ‖2,

immediately showing the necessity of (4.13) and cK,V ≥ c . �

Remark 4.5. It is easily seen that if γ = 0, then existence of a c > 0 such that

‖K̄∗η‖ ≥ c ‖η‖ (η ∈ V∂F ∗)

is necessary for the satisfaction of (4.12).

We now combine the above low-level lemma with Lemma 3.4.
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Lemma 4.6. Let q,w ∈ Q = W = X × Y and suppose that for (q′,w ′) in a neighborhood U of
(q,w), GraphR ∩U is closed, (3.3) holds, and we have

(4.16) D̃R(q′ |w ′)(∆q) ⊃
{
Tq′∆q +VR(q′ |w ′)◦, ∆q ∈ VR(q′ |w ′),
∅, ∆q < VR(q′ |w ′),

for

Tq′ =

(
Ḡq′ K̄∗u′
−K̄u′ γ I

)
,

and

(4.17) VR(q′ |w ′) = X × Ṽ (v ′ |η′) ⊂ X × Y .

In addition to these structural assumptions, suppose that the mappings q′ 7→ Ḡq′ and u ′ 7→ K̄u′

are continuous at q and u, respectively. Assume, moreover, that each Ḡq′ is self-adjoint and positive
de�nite, i.e., there exists cG > 0 such that

〈Ḡqξ , ξ 〉 ≥ cG ‖ξ ‖2 (ξ ∈ X ).(4.18)

De�ne further

(4.19) b(q |w ;R) B sup

t>0

inf

((0,∆η),(0,ν ))∈W t
R (q |w ),

∆η,0

‖K̄uḠ
−1

u K̄∗u∆η − ν ‖
‖∆η‖ .

Then

(4.20) `R−1(w |q) < ∞

provided

max{γ ,b(q |w ;R)} > 0.(4.21)

If (4.16) holds as an equality, then (4.20) holds if and only if (4.21) holds.

Proof. If γ > 0, we may directly apply Lemma 3.4. So we take γ = 0. Suppose �rst that (4.21)

holds. Then b(q |w ;R) =: cK,V > 0, and (4.19) gives

(4.22)

‖K̄uḠ
−1

u K̄∗u∆η − ν ‖
‖∆η‖ ≥ cK,V

for every ∆η , 0 and ν satisfying

((0,∆η), (0,ν )) ∈W t
R (q |w).

That is, using the facts that 0 ∈ X and 0 ∈ X ◦, as well as the expression (4.17), we see that (4.22)

holds whenever

∆η ∈ Ṽ (v ′ |η′) and ν ∈ Ṽ (v ′ |η′)◦
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for some q′ = (u ′,v ′) and w ′ = (ξ ′,η′) satisfying

w ′ ∈ R(q′), ‖q′ − q‖ < t , ‖w ′ −w ‖ < t .

With q′ and w ′ �xed, Lemma 4.4 now shows the existence of a constant c > 0 such that

(4.23) ‖T ∗∆w − z‖2 ≥ c ‖∆w ‖2

for all

(∆w, z) ∈ (X × Ṽ (v ′ |η′)) × (X × Ṽ (v ′ |η′))◦,

with c depending only on ‖K̄ ‖, cG , and cK,V . Therefore (4.23) holds for all

(∆w, z) ∈W t
R (q |w).

Applying (4.23) in the expression for a in (3.9) now shows that

a(q |w ;R) ≥ c .

Finally, an application of Lemma 3.4 shows that `R−1(w |q) < ∞.

In the other direction, to show that `R−1(w |q) = ∞ if b(q |w ;R) = 0, we assume to the contrary

that `R−1(w |q) < ∞. Then a(q |w ;R) ≥ c for some constant c > 0. Now we perform the above

steps in the opposite direction to show that b(q |w ;R) > 0, in contradiction to the premise. �

The following theorem, which specializes Lemma 4.6 to the speci�c structure assumed in

this section and estimates the lower bounds slightly to derive easier conditions, is one of the

main results of this work.

Theorem 4.7. Let q,w ∈ Q =W = X × Y and letU be a neighborhood of (q,w). Suppose that

R(q′) = P(q′) + h(q′) for P(q′) =
(
∇G(u ′)
∂F ∗(v ′)

)
and h(q′) =

(
∇ ¯h(u ′)∗v ′
−¯h(u ′)

)
for G and F ∗ of the form (2.5) for some regular integrands д and f ∗, respectively. Assume further
that ¯h ∈ C1(X ;Y ) and G ∈ C2(X ), and that F ∗ satis�es for some γ ≥ 0 the inclusion

(4.24)
�D[∂F ∗](v ′ |η′)(∆v) ⊃ {

γ∆v +V∂F ∗(v ′ |η′)◦, ∆v ∈ V∂F ∗(v ′ |η′),
∅, ∆v < V∂F ∗(v ′ |η′).

In addition to these structural assumptions, suppose that there exists a constant cG > 0 such that

〈∇2G(u)ξ + ∇u [∇ ¯h(u)∗v]ξ , ξ 〉 ≥ cG ‖ξ ‖2 (ξ ∈ X ).(4.25)

De�ne for
B̄ B ∇ ¯h(u)

(
∇2G(u) + ∇u [∇ ¯h(u)∗v]

)−1∇ ¯h(u)∗

and

W t
∂F ∗(v |η) B

⋃
{V∂F ∗(v ′ |η′) ×V∂F ∗(v ′ |η′)◦ | η′ ∈ ∂F ∗(v ′), ‖v ′ −v ‖ < t , ‖η′ − η‖ < t}
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the quantity

(4.26)
¯b(q |w ;R) B sup

t>0

inf

{
‖B̄z − ν ‖
‖z‖

���� (z,ν ) ∈W t
∂F ∗(v |η + ¯h(u)), z , 0

}
.

Then

(4.27) `R−1(w |q) < ∞

provided

(4.28) max{γ , ¯b(q |w ;R)} > 0.

If (4.24) holds as an equality, then (4.27) holds if and only if (4.28) holds.

Proof. Similarly to Proposition 4.2, we compute

DR(q′ |w ′)(∆q) =
(
∇2G(u ′)(∆u) + ∇u [∇ ¯h(u ′)∗v ′]∆u + ∇ ¯h(u ′)∗∆v

D[∂F ∗](v ′ |η′ + ¯h(u ′))(∆v) − ∇ ¯h(u ′)∆u

)
,

and

D̃R(q′ |w ′)(∆q) =
(∇2G(u ′)(∆u) + ∇u [∇ ¯h(u ′)∗v ′]∆u + ∇ ¯h(u ′)∗∆v�D[∂F ∗](v ′ |η′ + ¯h(u ′))(∆v) − ∇ ¯h(u ′)∆u

)
,

where we denote

∇u [∇ ¯h(u ′)∗v ′]∆u B ∇
(
ũ 7→ [∇ ¯h(ũ)∗v ′]∆u

)
(u ′).

The structural assumptions of Lemma 4.6 are thus satis�ed with

Ḡq′ B ∇2G(u ′) + ∇u [∇ ¯h(u ′)∗v ′], K̄u′ B ∇ ¯h(u ′), and Ṽ (q′ |w ′) B V∂F ∗(v ′ |η′ + ¯h(u ′)).

Moreover, Graph R ∩ U is closed due to the assumptions on
¯h and G and to G and F ∗ being

convex. Further, (4.6) holds by Corollary 2.7.

Condition (4.18) is guaranteed by (4.25), while for (4.21), we �rst of all observe that

B̄ = K̄uḠ
−1

u K̄∗u∆η,

so (4.19) becomes

(4.29) b(q |w ;R) = sup

t>0

inf

((0,∆η),(0,ν ))∈W t
R (q |w ),

∆η,0

‖B̄∆η − ν ‖
‖∆η‖ .

Here

W t
R (q |w) =

⋃ {
(X ×V ) × ({0} ×V ◦) | V ∈ �W t

R (q |w)
}

with

�W t
R (q |w) =

{
V∂F ∗(v ′ |η′ − ¯h(u ′))

���� ξ ′ = ∇G(u ′) + ∇ ¯h(u ′)∗v ′, ‖q′ − q‖ < t ,
η′ ∈ ∂F ∗(v ′) − ¯h(u ′), ‖w ′ −w ‖ < t

}
.
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We derive for small t > 0 and some constant C > 1 (depending on (q,w)) the inclusion�W t
R (q |w) =

{
V∂F ∗(v ′ |η′)

���� ‖u ′ − u‖2 + ‖v ′ −v ‖2 < t2, η′ ∈ ∂F ∗(v ′),
‖∇G(u ′) + ∇ ¯h(u ′)∗v ′ − ξ ‖2 + ‖η′ − ¯h(u ′) − η‖2 < t2

}
⊂

{
V∂F ∗(v ′ |η′)

���� ‖u ′ − u‖2 + ‖v ′ −v ‖2 < t2, η′ ∈ ∂F ∗(v ′),
‖η′ − ¯h(u ′) − η‖2 < t2

}
⊂

{
V∂F ∗(v ′ |η′)

���� ‖u ′ − u‖ < t , ‖v ′ −v ‖ < t , η′ ∈ ∂F ∗(v ′),
‖η′ − ¯h(u) − η‖ − ‖ ¯h(u ′) − ¯h(u)‖ < t

}
⊂

{
V∂F ∗(v ′ |η′)

���� ‖v ′ −v ‖ < t , η′ ∈ ∂F ∗(v ′),
‖η′ − ¯h(u) − η‖ < Ct

}
=: VC .

In the �nal step we have used the fact that
¯h ∈ C1(X ;Y ) is Lipschitz on B(u, t) for small t > 0.

Now ⋃
{V ×V ◦ | V ∈ VC } ⊂W Ct

∂F ∗(v |η + ¯h(u)).
Since we take the supremum over t > 0 in (4.19), the scaling factor C > 0 disappears, and we

deduce from (4.26) and (4.29) that

b(u |w ;R) ≥ ¯b(u |w ;R).

Thus (4.26) guarantees (4.19). Similarly, retracing the steps, we verify that

W t
∂F ∗(v |η − ¯h(u)) =

⋃
{V ×V ◦ | V ∈ V1} and V1 ⊂ �W C2t

R (q |w)

for some C2 > 1. Indeed, using

∇G(u) + ∇ ¯h(u)∗v = ξ ,
we compute for some C1 > 1 that

V1 =

{
V∂F ∗(v ′ |η′)

���� ‖v ′ −v ‖ < t , η′ ∈ ∂F ∗(v ′),
‖η′ − ¯h(u) − η‖ < t

}
=

{
V∂F ∗(v ′ |η′)

���� ‖v ′ −v ‖ < t , η′ ∈ ∂F ∗(v ′),
‖∇G(u) + ∇ ¯h(u)∗v − ξ ‖ + ‖η′ − ¯h(u) − η‖ < t

}
⊂

{
V∂F ∗(v ′ |η′)

���� ‖v ′ −v ‖ < t , η′ ∈ ∂F ∗(v ′),
‖∇G(u) + ∇ ¯h(u)∗v ′ − ξ ‖ + ‖η′ − ¯h(u) − η‖ < C1t

}
⊂

{
V∂F ∗(v ′ |η′)

���� ‖u ′ − u‖ + ‖v ′ −v ‖ < t , η′ ∈ ∂F ∗(v ′),
‖∇G(u ′) + ∇ ¯h(u ′)∗v ′ − ξ ‖2 + ‖η′ − ¯h(u ′) − η‖2 < C2t

2

}
⊂ �W C2t

R (q |w).
Hence,

¯b(u |w ;R) ≥ b(u |w ;R),
and in particular, (4.19) guarantees (4.26). Our claims now follow from an application of Lemma 4.6,

since its continuity requirements on Ḡ and K̄ follow from the assumptions on Ḡ and
¯h. �

In the remainder of this section, we apply Theorem 4.7 to show several stability properties of

saddle points to (1.3).
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4.3 metric regularity of the linearized variational inclusion

We begin with the simplest example of verifying `Hγ ,ū (0|q̂) < ∞ with �xed ū = û for q̂ solving

0 ∈ Hγ ,û (q̂). This is useful for showing convergence of the primal-dual algorithm of [50]. By

Proposition 4.1, we are in the setting of Theorem 4.7. Indeed, for R = Hγ ,ū , we obtain an instance

of (4.16) with

¯h(u ′) = ∇K(ū)u ′ + cū .

Furthermore, we also have

∇2G(u)ξ + ∇u [∇ ¯h(u)∗v]ξ = α I ,

so we may take cG = α in (4.25). Ifγ > 0, (4.28) is trivially satis�ed. By Theorem 4.7, we therefore

obtain

`H−1

γ ,û
(0|q̂) < ∞.

Thus H−1

γ ,û has the Aubin property at (0, q̂) provided γ > 0. We summarize these �ndings in the

following proposition.

Proposition 4.8. LetG be as in (4.2), K ∈ C1(X ;Y ), and let F ∗ satisfy (4.1) and (4.10). Suppose that
q̂ solves 0 ∈ Hγ ,û (q̂) for some γ ≥ 0. Then w 7→ H−1

γ ,û (w) has the Aubin property at (0|q̂) if and
only if γ > 0 or ¯b(q̂ |0;Hγ ,û ) > 0.

If γ = 0, we have to prove existence of a lower bound cK,V > 0 through
¯b. This is signi�cantly

more di�cult. With ū = û, we use (4.5) to compute

¯h(û) = ∇K(û)û + cū = K(û) and ∇ ¯h(û) = ∇K(û).

Consequently, (4.26) can be expressed in the setting of this proposition as

(4.30)

¯b(q̂ |0;Hû ) = sup

t>0

inf

{
‖α−1∇K(û)∇K(û)∗z − ν ‖

‖z‖

���� (z,ν ) ∈W t
∂F ∗(v̂ |K(û)), z , 0

}
= α−1

sup

t>0

inf


‖∇K(û)∇K(û)∗z − ν ‖

‖z‖

������ 0 , z ∈ V∂F ∗(v ′ |η′), ν ∈ V∂F ∗(v ′ |η′)◦,
η′ ∈ ∂F ∗(v ′), ‖v ′ − v̂ ‖ < t ,
‖η′ − K(û)‖ < t

 .
We will return to the issue of verifying – or disproving – the lower bound on

¯b with speci�c

examples in Section 5.

4.4 stability with respect to data

We now want to study the stability of the condition 0 ∈ Hû (q̂) with respect to perturbation of

the data yδ . This of course only makes sense if we equate the base point ū in Hū to the solution

û. Therefore, we de�ne for variations ∆y in the data

J∆y (u,v) B P(u,v) + h∆y (u,v)
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with

h∆y (u,v) B
(
∇K(u)∗v
∆y − K(u)

)
and P(u,v) B

(
∇G(u)
∂F ∗(v)

)
.

We remark that due to the linear dependence of the optimality conditions 0 ∈ J∆y (u,v) on ∆y ,

the stability with respect to ∆y can be seen as a form of tilt-stability [15, 16, 31–34, 38, 43] for

saddle-point systems.

Observe now that

J∆y (q) = R0(q) +
(

0

∆y

)
,

and in particular that J0 = R0. Thus (3.2) with R = R0 and w = (0,∆y) yields

inf

q : 0∈J∆y (q)
‖q̂ − q‖ ≤ `R−1

0

(0|q̂)‖∆y ‖ whenever ‖∆y ‖ ≤ ρ.

If K ∈ C2(X ;Y ), by Proposition 4.2, we can compute DR0(q |w). In fact, with

¯h(u) = K(u),

we see that R0 is an instance of the class covered by Theorem 4.7. Its application directly yields

the following proposition.

Proposition 4.9. Let K ∈ C2(X ;Y ) and suppose that F ∗ satis�es (4.1) and (4.10). Denote by q̂∆y a
solution to the optimality conditions (1.2) for the problem

min

u
max

v

α

2

‖u‖2 + 〈K(u) − ∆y,v〉 − F ∗γ (v).

Suppose that a solution q̂ = q̂0 exists, and there exists a constant cG > 0 such that

(4.31) α ‖ξ ‖2 + 〈∇u [∇K(û)∗v̂]ξ , ξ 〉 ≥ cG ‖ξ ‖2 (ξ ∈ X ).

If γ > 0 or ¯b(q̂ |0;R0) > 0, then for some ρ, ` > 0 there exist solutions q̂∆y with

‖q̂ − q̂∆y ‖ ≤ `‖∆y ‖ whenever ‖∆y ‖ ≤ ρ.

Note that for
¯b(q̂ |0;R0), we obtain from (4.26) exactly the same expression as for

¯b(q̂ |0;Hû )
in (4.30), i.e.,

(4.32)

¯b(q̂ |0;R0) = α−1
sup

t>0

inf


‖∇K(û)∇K(û)∗z − ν ‖

‖z‖

������ 0 , z ∈ V∂F ∗(v ′ |η′), ν ∈ V∂F ∗(v ′ |η′)◦,
η′ ∈ ∂F ∗(v ′), ‖v ′ − v̂ ‖ < t ,
‖η′ − K(û)‖ < t

 .
4.5 stability with respect to the moreau–yosida parameter

Finally, we study the stability of the regularized optimality condition 0 ∈ Hû,γ (q̂) with respect

to the Moreau–Yosida parameter γ . With P as in the previous section, we now set

Jγ (u,v) B Pγ (u,v) + hγ (u,v),
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with

hγ (u,v) B
(
∇K(u)∗v
γv − K(u)

)
and Pγ (u,v) B

(
∇G(u)
∂F ∗γ (v)

)
.

Observe that J0 = R0. Let q̂ solve 0 ∈ R0(q̂). Now (3.1) applied to Jγ at q̂ and ŵ ∈ Jγ (q̂) gives

with w = 0 and q = q̂ the estimate

(4.33) inf

p : 0∈Jγ (p)
‖p − q̂‖ ≤ `J−1

γ
(ŵ |q̂)‖ Jγ (q̂)‖ whenever ‖ŵ ‖ ≤ ρ .

Since 0 ∈ R0(q̂), we deduce that ŵγ B (0,γv̂) ∈ Jγ (q̂). This quickly leads to the following

proposition.

Proposition 4.10. Let K ∈ C2(X ;Y ), and suppose F ∗ satis�es (4.1) and (4.10). Denote by q̂γ a
solution to the optimality conditions (1.2) for the problem

min

u
max

v

α

2

‖u‖2 + 〈K(u),v〉 − F ∗γ (v).

Suppose a solution q̂ = q̂0 exists, ¯b(q̂ |0;R0) > 0, and (4.31) holds. Then for some ρ, ` > 0 there exist
solutions q̂γ with

(4.34) ‖q̂ − q̂γ ‖ ≤ `γ whenever 0 ≤ γ ≤ ρ.

Proof. We may assume that ‖v̂ ‖ , 0, because otherwise q̂γ = q̂. With ŵγ = (0,γv̂), as above,

we expand (4.33) into

inf

p : 0∈Jγ (p)
‖p − q̂‖ ≤ γ `J−1

γ
(ŵγ |q̂)‖v̂ ‖, whenever 0 ≤ γ ≤ ‖v̂ ‖−1ρ.

In order to derive (4.34), we only need to show the existence of a �nite constant `J−1

γ
(ŵγ |q̂) < ∞

and integrate ‖v̂ ‖ into the constant. For this, we simply apply Theorem 4.7 to R = Jγ with

¯h(u ′) = K(u ′), and observe that
¯b(q̂ |ŵγ ; Jγ ) = ¯b(q̂ |0;R0). This follows from the fact that the

expression (4.26) only depends on γ through the base point η + ¯h(u), which in this case is

γv̂ + (−γv̂ + K(û)) = K(û). Observe that (4.31) is equally independent of γ . We can thus bound

`J−1

γ
(ŵγ |q̂) from above uniformly in γ ∈ [0, ρ]. �

5 application to parameter identification problems

We now discuss the possibility of satisfying the assumptions of the preceding propositions in

the context of the motivating parameter identi�cation problems (1.4) and (1.5). Since this will

depend on the speci�c structure of the parameter-to-observation mapping S , we consider as a

concrete example the problem of recovering the potential term in an elliptic equation.

Let Ω ⊂ Rd
be an open bounded domain with a Lipschitz boundary ∂Ω. For a given parameter

u ∈ {v ∈ L∞(Ω) : v ≥ ε} C U ⊂ X B L2(Ω), denote by S(u) B y ∈ H 1(Ω) ⊂ L2(Ω) C Y the

weak solution of

〈∇y,∇v〉 + 〈uy ,v〉 = 〈f ,v〉 (v ∈ H 1(Ω)).

This operator has the following useful properties [28]:
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(a1) The operator S is uniformly bounded in U ⊂ X and completely continuous: If for u ∈ U ,

the sequence {un} ⊂ U satis�es un ⇀ u in X , then

S(un) → S(u) in Y .

(a2) S is twice Fréchet di�erentiable.

(a3) There exists a constant C > 0 such that

‖∇S(u)h‖L2 ≤ C‖h‖X (u ∈ U ,h ∈ X ).

(a4) There exists a constant C > 0 such that

‖∇2S(u)(h,h)‖L2 ≤ C‖h‖2X (u ∈ U ,h ∈ X ).

Furthermore, from the implicit function theorem, the directional Fréchet derivative ∇S(u)h for

given h ∈ X can be computed as the solution w ∈ H 1(Ω) to

(5.1) 〈∇w,∇v〉 + 〈uw,v〉 = 〈−yh,v〉 (v ∈ H 1(Ω)).

Similarly, the directional adjoint derivative ∇S(u)∗h is given by yz, where z ∈ H 1(Ω) solves

〈∇z,∇v〉 + 〈uz,v〉 = 〈−h,v〉 (v ∈ H 1(Ω)).

Similar expressions hold for ∇2S(u)(h1,h2) and ∇(∇S(u)∗h1)h2. Hence, assumptions (a3–a4) hold

for ∇S∗ and ∇u (∇S(u)∗v) for given v as well.

Other operators satisfying the above assumptions are mappings from a Robin or di�usion

coe�cient to the solution of the corresponding elliptic partial di�erential equation [9].

5.1 L1 fitting

Let us �rst consider the L1
�tting problem (1.4). We are in the setting of (4.1)–(4.2). More

speci�cally now

F ∗(v) =
∫
Ω
f ∗(v(x))dx for f ∗(z) = ι[−1,1](z),

where we allow the integral to be possibly in�nite if the integrand does not satisfy f ∗◦v ∈ L1(Ω).
We also have

G(u) =
∫
Ω
д(u(x))dx for д(z) = α

2

|z |2,

as well as

K(u) = S(u) − yδ .

Thus, the saddle-point conditions (4.4) for (1.4) are given by

0 ∈
(

αû + ∇S(û)v̂
∂ι[−1,1](v̂) + S(û) − yδ

)
.
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Metric regularity We �rst address metric regularity of Hû (Proposition 4.8) when γ = 0. Recall

from Proposition 4.8 that in this case we need to show that

(5.2)

¯b(q̂ |0;Hû ) = sup

t>0

inf

{
‖α−1∇S(û)∇S(û)∗z − ν ‖

‖z‖

���� (z,ν ) ∈W t
∂F ∗(v̂ |y

δ − S(û)), z , 0

}
= α−1

sup

t>0

inf


‖∇S(û)∇S(û)∗z − ν ‖

‖z‖

������ 0 , z ∈ V∂F ∗(v ′ |η′), ν ∈ V∂F ∗(v ′ |η′)◦,
η′ ∈ ∂F ∗(v ′), ‖v ′ − v̂ ‖ < t ,
‖η′ − (yδ − S(û))‖ < t


> 0.

Let us try to force z(x) , 0 as much as possible in (5.2). From Corollary 2.12, we obtain that

z ∈ V∂F ∗(v ′ |η′) satis�es

(5.3) z(x) ∈


{0}, |v ′(x)| = 1 and η′(x) , 0,

− signv ′(x)[0,∞), |v ′(x)| = 1 and η′(x) = 0,

R, |v ′(x)| < 1 and η′(x) = 0,

while ν ∈ V∂F ∗(v ′ |η′)◦ satis�es

(5.4) ν (x) ∈


R, |v ′(x)| = 1 and η′(x) , 0,

signv ′(x)[0,∞), |v ′(x)| = 1 and η′(x) = 0,

{0}, |v ′(x)| < 1 and η′(x) = 0.

Therefore, z(x) , 0 can only happen if η′(x) = 0. If

η̂ B yδ − S(û) , 0 (x ∈ Ω),

that is, if the data is reached almost nowhere, then the condition ‖η̂ − η′‖ < t gives for any

ε > 0 for small enough t > 0 the estimate

Ld ({x ∈ Ω | η′(x) = 0}) < ε .

In consequence,

Ld ({x ∈ Ω | z(x) , 0}) < ε .
With this, we deduce that

‖z‖L1(Ω) ≤ ‖χ {z,0}‖L2(Ω)‖z‖L2(Ω) ≤
√
ε ‖z‖L2(Ω).

We furthermore have that

‖∇S(û)∗z‖ ≤ C‖z‖L1(Ω);

this follows from the fact that ∇S(û) : W −1,s ′(Ω) → C(Ω) for any s ′ > d due to the regularity of

∂Ω and û (see, e.g., [19, Thm. 6.3]) and hence that ∇S(û)∗ : C(Ω)∗ →W 1,s (Ω) for s < d together

with the embeddings L1(Ω) ↪→ C(Ω)∗ andW 1,s (Ω) ↪→ L2(Ω) for s ≥ 1 (d = 2) or s ≥ 6/5 (d = 3).

An application of these estimates with ν = 0 in (5.2) yields

¯b(q̂ |0;Hû ) ≤ α−1C ‖∇S(û)‖
√
ε .

39



Letting ε ↘ 0, we deduce that

¯b(q̂ |0;Hû ) = 0.

If, on the other hand, the data is reached on a set E of positive measure, i.e., η̂ = 0 on E, we

may choose z freely on E. However, the lower bound

‖∇S(û)∗z‖ ≥ c ‖z‖ (z ∈ L2(E)),

does not hold in general (take any orthonormal basis of L2(E), which converges weakly but not

strongly to zero, and use the fact that ∇S(u) is a compact operator from L2(Ω) to L2(Ω) due to

the Rellich–Kondrachev embedding theorem). Again,
¯b(q̂ |0;Hû ) = 0.

Therefore by Proposition 4.8, there is no metric regularity without some sort of regularization.

On the other hand, with Moreau–Yosida regularization, i.e., for γ > 0, we always have metric

regularity of Hû at (q̂, 0) by the same proposition.

Data stability The situation is very similar for stability with respect to data (Proposition 4.9)

when γ = 0. Comparing (4.30) and (4.32), we see that we have to study whether

¯b(q̂ |0;R0) = ¯b(q̂ |0;Hû ) > 0.

Hence, we again cannot have data stability without Moreau–Yosida regularization. With regu-

larization, i.e., for γ > 0, we still need to prove (4.31). Using the reverse triangle inequality, the

boundedness of the dual variable v̂(x) ∈ [−1, 1] due to the choice of F ∗, and assumption (a4), we

have that

α ‖ξ ‖2 + 〈∇u [∇S(û)∗v̂]ξ , ξ 〉 ≥ (α −C)‖ξ ‖2 ≥ cG ‖ξ ‖2

for α su�ciently large and hence data stability.

Stability with respect to γ Since Proposition 4.10 holds under exactly the same conditions

as Proposition 4.9, we deduce that there is no stability with respect to the Moreau–Yosida

parameter at γ = 0. This is to be expected, as any addition of regularization will, whenever

η̂(x) = 0, immediately force v(x) = 0. At a point γ > 0, the stability can be proved similarly to

the arguments in Proposition 4.10.

5.2 L∞ fitting

Let us now consider the L∞ �tting problem (1.5). We are again in the setting of (4.1)–(4.2), this

time with

F ∗(v) =
∫
Ω
f ∗(v(x))dx for f ∗(z) = δ |z |,

and G and K as in the previous subsection. Hence, the saddle-point conditions (4.4) are now

given by

0 ∈
(

αû + ∇S(û)v̂
δ sign(v̂) + S(û) − yδ

)
.
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Metric regularity Again, for metric regularity of Hû (Proposition 4.8) we need to show

¯b(q̂ |0;Hû ) > 0.

Let us force again z(x) , 0. From Corollary 2.15, we obtain that z ∈ V∂F ∗(v ′ |η′) satis�es

(5.5) z(x) ∈


{0}, |η′(x)| , δ ,
signη′(x)[0,∞), |η′(x)| = δ and v ′(x) = 0,

R, |η′(x)| = δ and v ′(x) , 0,

while ν ∈ V∂F ∗(v ′ |η′)◦ satis�es

(5.6) ν (x) ∈


R, |η′(x)| , δ and v ′(x) = 0,

signv ′(x)(−∞, 0], |η′(x)| = δ and v ′(x) = 0,

{0}, v ′(x) , 0,

If v̂(x) = 0 a. e., and ess supx ∈Ω |η̂(x)| < δ holds – meaning the constraint

(5.7) |S(û)(x) − yδ (x)| ≤ δ

is almost never active – then we can proceed as in Section 5.1 to show for any ε > 0 for small

enough t > 0 the estimate

Ld ({x ∈ Ω | |η′(x)| = δ }) ≤ ε .
In consequence, z ∈ V∂F ∗(v |η′) satis�es

Ld ({x ∈ Ω | z(x) , 0}) ≤ Ld ({x ∈ Ω | |η′(x)| = δ }) ≤ ε,

and we deduce following Section 5.1 that

¯b(q̂ |0;Hû ) = ¯b(q̂ |0;R0) = 0.

Therefore, by Proposition 4.8, we have no metric regularity if the constraint (5.7) is almost never
active. (Any small change could force it to be active, and hence cause a large change in the dual

variable.) However, also if the constraint (5.7) is active on an open set E, we may reason as in

Section 5.1 to show instability. The only way to obtain stability is therefore with Moreau–Yosida

regularization.

Data stability Stability with respect to data (Proposition 4.9) again requires that

¯b(q̂ |0;R0) = ¯b(q̂ |0;Hû ) > 0.

Hence, we cannot have data stability without Moreau–Yosida regularization. If γ > 0, we

additionally need to prove (4.31). Using the reverse triangle inequality and assumption (a4), we

have that

α ‖ξ ‖2 + 〈∇u [∇S(û)∗v̂]ξ , ξ 〉 ≥ (α −C)‖ξ ‖2 ≥ cG ‖ξ ‖2

for α su�ciently large and hence data stability. Since in this case we do not have an a priori

bound on v̂ , the choice of α depends on v̂ and hence on the data yδ .
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Stability with respect to γ As in the case of L1
-�tting, stability with respect to the Moreau–

Yosida parameter only holds at γ > 0.

5.3 regularization through projection

Discretization provides an alternative to regularization. Indeed, in practice, the data yδ lies in a

�nite-dimensional subspace Y ′ ⊂ Y = L2(Ω). With P the orthogonal projection from Y into Y ′,
we then replace the �tting term F by FP B F ◦P. We then have withy = y ′+y⊥ ∈ Y ′⊕(Y ′)⊥ = Y
that

F ∗P(v) = sup

y⊥
〈y⊥,v〉 + (sup

y ′
〈y ′,v〉 − F (y ′)) =

{
F ∗(v), v ∈ ((Y ′)⊥)⊥ = Y ′,
∞, v < Y ′.

We emphasize that in this approach we only discretize the �tting term, while the nonlinear

operator S and the regularizer G remain in�nite-dimensional.

Hence,

∂F ∗P(v) =
{
∂F ∗(v) + (Y ′)⊥, v ∈ Y ′,
∅, v < Y ′.

From the de�nition (2.4) of the graphical derivative, we calculate that if eitherv < Y ′ or ∆v < Y ′,
then D[∂F ∗P](v |η)(∆v) = ∅. Whenv ∈ Y ′ and ∆v ∈ Y ′, we have for any η̃ ∈ ∂F ∗(v)∩ (η+ (Y ′)⊥)
the inclusion

D[∂F ∗P](v |η)(∆v) = D[P∂F ∗](v |η)(∆v) + (Y ′)⊥

⊃ PD[∂F ∗](v |η̃)(∆v) + (Y ′)⊥

= D[∂F ∗](v |η̃)(∆v) + (Y ′)⊥.

Consequently, by basic properties of convex hulls, we also have the inclusion

�D[∂F ∗P](v |η)(∆v) ⊃ {�D[∂F ∗](v |η̃)(∆v) + (Y ′)⊥, v,∆v ∈ Y ′, η ∈ ∂F ∗(v) + (Y ′)⊥,
∅, otherwise.

Suppose now that DF ∗ satis�es (4.24), that is,

�D[∂F ∗](v ′ |η′)(∆v) ⊃ {
γ∆v +V∂F ∗(v ′ |η′)◦, ∆v ∈ V∂F ∗(v ′ |η′),
∅, ∆v < V∂F ∗(v ′ |η′).

Since any cone V and subspace Y ′ satisfy the easily veri�ed identity

(V ∩ Y ′)◦ = V ◦ + (Y ′)⊥,

it follows for v,∆v ∈ Y ′ and η ∈ ∂F ∗(v) + (Y ′)⊥ that

(5.8)
�D[∂F ∗P](v ′ |η′)(∆v) ⊃ {

γ∆v +V∂F ∗(v ′ |η̃)◦ + (Y ′)⊥, ∆v ∈ V∂F ∗(v ′ |η̃) ∩ Y ′,
∅, otherwise.

This holds for arbitrary η̃ ∈ ∂F ∗(v) ∩ (η + (Y ′)⊥). In fact, in the following, we let η̃ ∈ ∂F ∗(v) be

the free parameter, and take, for example, η = η̃.
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Let now Hû,P and R0,P be de�ned by (4.5) and (4.6), respectively, with FP in place of F . An

application of Theorem 4.7 to the inclusion (5.8) then gives the lower bound

(5.9)
¯b(q̂ |0;Hû,P) = ¯b(q̂ |0;R0,P)

≥ α−1
sup

t>0

inf


‖∇S(û)∇S(û)∗z − ν ‖

‖z‖

��������
0 , z ∈ V∂F ∗(v ′ |η̃) ∩ Y ′,
ν ∈ V∂F ∗(v ′ |η̃)◦ + (Y ′)⊥,
η̃ ∈ ∂F ∗(v ′), v ′ ∈ Y ′,
‖v ′ − v̂ ‖ < t , ‖P(η̃ − η̂)‖ < t


= α−1

sup

t>0

inf


‖P∇S(û)∇S(û)∗z − Pν̃ ‖

‖z‖

��������
0 , z ∈ V∂F ∗(v ′ |η̃) ∩ Y ′,
ν̃ ∈ V∂F ∗(v ′ |η̃)◦,
η̃ ∈ ∂F ∗(v ′), v ′ ∈ Y ′,
‖v ′ − v̂ ‖ < t , ‖P(η̃ − η̂)‖ < t

 .
Let {e1, . . . , eN } be an orthonormal basis for Y ′, and for any v ∈ Y ‚ denote vi B 〈ei ,v〉. Then

(5.9) forces

(5.10)

N∑
i=1

|v ′i − v̂i |2 ≤ t2
and

N∑
i=1

|η̃i − η̂i |2 ≤ t2.

Suppose there exist for each i = 1, . . . ,N closed sets Ai ,Bi ⊂ R satisfying for each η̃ and v ′

with η̃ ∈ ∂F ∗(v ′) the conditions

either (v ′i < Ai and η′i ∈ Bi ) or (v ′i ∈ Ai and η′i < Bi ),(5.11a)

η̃i < Bi and z ∈ V∂F ∗(v ′ |η̃) ∩ Y ′ =⇒ zi = 0,(5.11b)

v ′i < Ai and ν̃ ∈ V∂F ∗(v ′ |η̃)◦ =⇒ ν̃i = 0.(5.11c)

Observe that the condition (5.11a) is a type of strict complementarity condition. We observe the

following two situations.

(i) If v̂i < Ai , (5.10) for small enough t > 0 forces v ′i < Ai , and through (5.11a), η̃i ∈ Bi . Thus

by (5.11c), ν̃i = 0.

(ii) Likewise, if η̂i < Bi , (5.10) gives η′i < Ai . Thus by (5.11b), zi = 0, and by (5.11a), vi ∈ Ai .

Thus the situations are mutually exclusive, and, by (5.11a), one of them has to occur. Importantly,
therefore, ν̃i = 0 has to hold when we do not have the constraint zi = 0. Therefore, letting ν̃i
vary freely whenever we have the constraint zi = 0, and zi vary freely whenever we have the

constraint ν̃i = 0, we obtain from (5.9) the lower estimate

(5.12)
¯b(q̂ |0;Hû,P) = ¯b(q̂ |0;R0,P)

≥ α−1
inf

{
‖P∇S(û)∇S(û)∗Pz‖

‖z‖

���� z ∈ Y ′, zi = 0 if v̂i ∈ Ai

}
≥ α−1

inf

{
‖P∇S(û)∇S(û)∗Pz‖

‖z‖

���� z ∈ Y ′} .
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Since ∇S(û) is invertible (as the inverse of a linear partial di�erential operator; cf. (5.1)) and the

orthogonal projection P is self-adjoint, the restriction of P∇S(û)∇S(û)∗P to Y ′ is a self-adjoint

positive de�nite operator on the �nite-dimensional space Y ′ and therefore boundedly invertible.

This implies the existence of a constant c > 0 such that

‖P∇S(û)∇S(û)∗Pz‖ ≥ c‖z‖ (z ∈ Y ′),

which yields
¯b(q̂ |0;Hû,P) = ¯b(q̂ |0;R0,P) ≥ α−1c > 0 and therefore metric regularity.

It remains to verify the conditions (5.11). For this, let us further assume that the discretization

is piecewise constant, that is ei = |Ωi |−1χΩi , for some subdomains Ωi ⊂ Ω with

∑N
i=1

χΩi = χΩ .

For the L1
-�tting example, (2.29) then gives

|v ′i | < 1 =⇒ η̃χΩi = 0.

For t > 0 small enough, (5.3) and (5.4) therefore give

|v ′i | < 1 =⇒ ν̃i = 0 and zi ∈ R.

This suggests to take Ai = {−1, 1} to satisfy (5.11c). Then, for (5.11a) to be satis�ed, the condition

(2.29) gives the only possibility of Bi = {0}. Further, for the strict complementarity within (5.11a)

to hold, it is necessary to impose that the middle two cases in (5.3) and (5.4) do not occur. This

strict complementary condition may also be stated as

(5.13) (1 − |v̂i |)η̂i = 0 and 0 < (1 − |v̂i |) + |η̂i |.

To verify (5.11b), suppose that η̃i < Bi . It may happen that η̃χΩi behaves wildly. Nevertheless,

by η̃i < Bi , there are points x ∈ Ωi where necessarily η̃(x) , 0. Hence the condition (2.29)

forces 0 , v ′(x) = sign η̃(x). Thus z(x) = 0, which through z ∈ Y ′ forces zi = 0, proving (5.11b).

Thus (5.11) and the estimate in (5.12) hold for projection-regularized L1
�tting under the strict

complementarity condition (5.13).

For L∞-�tting, still using piecewise constant discretization, studying (2.33), (5.5), and (5.6),

we see that we can take Ai = {0} and Bi = {−δ ,δ } to obtain the same results under the strict

complementarity condition

(5.14) v̂i (δ − |η̂i |) = 0 and 0 < |v̂i | + (δ − |η̂i |).

Note that the strict complementarity conditions (5.13) and (5.14) can always be satis�ed after

a small perturbation of v̂ , if necessary. Indeed, if η̂i is active (η̂i = 0 resp. |η̂i | = δ ), then by

(2.29) resp. (2.33), v̂i can be made inactive – in which case the strict complementarity condition

is satis�ed – while maintaining the optimality condition η̂ ∈ ∂FP(v̂). This change in v̂ can,

however, alter the constant in (4.31).

Observe further that for the original in�nite-dimensional problem, similar strict comple-

mentarity conditions (pointwise almost everywhere) could be derived, but these would not

be su�cient to obtain metric regularity since we still have the problem that the inverse of

∇S(û)∇S(û)∗ is unbounded on L2(Ω). Further, in the L2
topology, even a strong complementarity
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condition (with ε lower bound in the inequality) would not be su�cient to transport it from the

optimal solution to the perturbed variables v ′ and η′.

For stability with respect to perturbations of the data, condition (4.31) is also required. Since

this condition is independent of F , it will hold under discretization whenever it holds for the

original problem (with a possibly di�erent constant cG since now v̂ ∈ Y ′ ⊂ Y ).

6 conclusion

The purpose of this work was to derive explicit stability criteria for solutions to saddle-point

problems in Hilbert spaces, in particular those arising from the minimization of nonsmooth

nonlinear functionals commonly occurring in parameter identi�cation, image processing, or

PDE-constrained optimization problems. Our main results are a pointwise characterization of

regular coderivatives of convex subdi�erentials of integral functionals and explicit conditions

for metric regularity of the corresponding variational inclusions. These make it possible to verify

the Aubin property for concrete problems. While the results for our model problems are mostly

negative (no regularity unless regularization or discretization is introduced), they are still useful:

Our function-space analysis provides a uni�ed framework for any conforming regularization;

in particular, it shows that the stability properties are independent of the discretization of the

unknown parameter. Furthermore, for arbitrary small �xed Moreau–Yosida parameters, the

properties are also independent of the discretization of the data; this is especially important for

the convergence of numerical algorithms, where this translates in a discretization-independent

number of iterations required to reach a given tolerance.

This work can be extended in a number of directions. In a follow-up paper, we will apply our

results on the Aubin property of pointwise set-valued mappings to the convergence analysis

of the nonlinear primal-dual extragradient method from [50] in function spaces. We also plan

to investigate the possibility of obtaining partial stability results with respect to only the

primal variable without regularization or discretization. An alternative would be to exploit the

uniform stability with respect to regularization for �xed discretization, and with respect to

discretization for �xed regularization, to obtain a combined convergence for a suitably chosen

net (γ ,h) → (0, 0); this is related to the adaptive regularization and discretization of inverse

problems [25]. Furthermore, it would be of interest to extend our analysis to include nonsmooth

regularizersG , which were excluded in the current work for the sake of the presentation. It would

also be worthwhile to try to adapt the stability analysis to make use of the limiting coderivative

and its richer calculus; in particular to remove the geometric derivability assumption by directly

working with the limiting coderivative. Finally, the pointwise characterization of coderivatives

could be useful in deriving more explicit optimality conditions for bilevel optimization problems.

appendix a coderivative formula

In this appendix, we give an explicit characterization of the regular coderivative for a class of

set-valued mapping covering the examples in Section 2.4.
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Proposition a.1. For a set-valued operator R : Q ⇒ Q , on a Hilbert space Q , suppose that

(a.1) D̃R(q |w)(∆q) =
{
Tq∆q +V (q |w)◦, ∆q ∈ V (q |w),
∅, otherwise,

for a linear operator T B Tq : Q → Q , dependent on q but not w , and a cone V (q |w) ⊂ Q ,
dependent on both q andw . Then

(a.2) D̂∗R(q |w)(∆w) =
{
T ∗q∆w +V (q |w)◦, −∆w ∈ V (q |w)◦◦

∅, otherwise.

Note that if the cone V (q |w) is closed and convex – in particular, a closed subspace – then

V (q |w)◦◦ = V (q |w).

Proof. We denote for short V B V (q |w). The expression (a.1) simply says that

conv

(
T ((q,w); GraphDR)

)
= {(∆q,∆w) ∈ Q ×Q | ∆q ∈ V , ∆w ∈ Tq∆q +V ◦}.

We already know from Section 2.3 that

N̂ ((q,w); GraphDR) = T ((q,w); GraphDR)◦ = conv

(
T ((q,w); GraphDR)

)◦
.

Thus,

N̂ ((q,w); GraphDR) =
{
(∆q′,∆w ′) ∈ Q2

���� 〈∆q′,∆q〉 + 〈∆w ′,∆w〉 ≤ 0

for ∆q ∈ V , ∆w ∈ Tq∆q +V ◦
}

=

{
(∆q′,∆w ′) ∈ Q2

���� 〈∆q′ +T ∗q∆w ′,∆q〉 + 〈∆w ′,∆w〉 ≤ 0

for ∆q ∈ V , ∆w ∈ V ◦
}

=
{
(∆q′,∆w ′) ∈ Q2

���∆q′ +T ∗q∆w ′ ∈ V ◦, ∆w ′ ∈ V ◦◦} .
By De�nition 2.3, we have

D̂∗R(q |w)(∆w) B
{
∆q ∈ Q | (∆q,−∆w) ∈ N̂ ((q,w); GraphR)

}
,

from which (a.2) follows. �
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