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1. Introduction

Many practically relevant optimization problems involve minimizing over spaces or cones of matri-
ces instead of vectors; by way of example we only mention non-negative matrix factorization [28],
matrix completion [10], low-rank approximation [21, 39], or operator learning [32]. Particularly –
but not only – in the last example, one is actually interested in optimizing over (finite-dimensional)
linear operators and not their particular matrix representations. This implies that the functions to
be minimized should be invariant under basis changes. It is a well-known fact from linear algebra
that, under appropriate assumptions, such functions are fully characterized by their dependence on
the eigenvalues (or singular values) of its argument; the most well-known example is probably the
nuclear norm of a matrix. Correspondingly, examples of such spectral functions are ubiquitous in ap-
plications areas as diverse as robust matrix estimation [8], signal processing [11], conic programming
[16], semi-definite programming [29], nonlinear elasticity [48], and brain network analysis [56].

Of particular interest in this context are nonsmooth convex problems, e.g., nuclear norm mini-
mization or problems with rank constraints. Here the main question is to relate the convexity of the
spectral function to that of the invariant function of the eigenvalues (or singular values), and to char-
acterize the fundamental objects of convex analysis such as subdifferentials, Fenchel conjugates, and
proximal operators of the former in terms of the latter. The central challenge in this is the fact that
the invariant function only depends on the set of eigenvalues but not their ordering.

Correspondingly, this problem has received significant attention the last years; see, e.g., [6, 7, 42]
and the literature cited therein. In particular, [33] studied absolutely symmetric functions of singular
values of rectangular matrices, [34] studied spectral functions on the space of Hermitian matrices,
and [35] studied spectral functions in normal decomposition systems (which encompass in particular
the spaces of rectangular and Hermitian matrices; see also [36] for applications to Cartan subspaces).
In a related direction, convexity and conjugation of a certain type of invariant functions of signed
singular values of a matrix was addressed in [18], while [1] investigated the convexity, conjugate, and
subdifferentiability of spectral functions in the context of Euclidean Jordan algebras; see also [49] for
a special case. Regarding convex geometry, [30] treated operations (such as closure and convex hull)
and properties (such as closedness, compactness, convexity) of spectral sets in Euclidean Jordan alge-
bras. Finally, [8] was concerned with Bregman proximity operators of lower semicontinuous convex
spectral functions in the context of symmetric matrices.

However, each of these works treated a specific setting in isolation. The aim of this work is therefore
to develop a general framework that covers all these settings and –more importantly – allows deriving
results more easily for settings and objects not covered so far. In a nutshell, we introduce a spectral
decomposition system consisting of

(i) a family of spectral decompositions that generalize constructing a matrix with given eigenvalues
(e.g., via a basis of eigenvectors);

(ii) a spectral mapping that generalizes computing the eigenvalues from a given matrix;
(iii) an ordering mapping that generalizes sorting eigenvalues in decreasing order;

that satisfy some natural compatibility conditions such as a generalization of von Neumann’s trace
inequality; see Definition 2.1 for a precise definition. We will show that this definition covers all
previously considered settings in uniform generality (applying, for instance, in each case to matrices
over the real, complex, or quaternion fields) and give a full characterization of the convexity of spectral
functions in this framework. Along the way, we establish a generalization of the well-known Ky
Fan’s majorization theorem (Theorem 3.9). Our main technical contribution is then to establish a
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general “reduced minimization principle” (Theorem 5.1), which in particular allows us to compute
Fenchel conjugates, subdifferentials, and Fréchet derivatives of convex spectral functions in spectral
decomposition systems.We then further apply these results to compute Bregman proximity operators,
which generalize the classical proximity (or proximal point) operators that are the basic building
blocks of modern first-order nonsmooth optimization algorithms [6, 7, 15] and which to the best of
our knowledge are new even in some of the classical settings studied in the literature so far.

This work is structured as follows. In the next Section 2, we give a precise definition of spectral
decomposition systems and show how it covers previously studied settings. Section 3 collects a num-
ber of technical results on spectral mappings and spectral ordering mappings that are crucial for the
following analysis, including the above-mentioned generalization of the Ky Fan majorization theorem
(Theorem 3.9). In Section 4, we then define the class of spectral functions studied in this work and
characterize their fundamental properties such as lower semicontinuity (Proposition 4.5) and con-
vexity (Theorem 4.6). We also derive fundamental properties of spectral sets. Section 5 is devoted to
the reduced minimization principle (Theorem 5.1) and its application to Fenchel conjugates and con-
vex subdifferentials of spectral functions (Corollary 5.3 and Proposition 5.5, respectively). Finally, we
study Bregman proximity operators of (not necessarily convex) spectral functions in Section 6.

2. Spectral decomposition systems

Tomotivate our definition, recall from the introduction that various important optimization problems
involve a function 𝛷 acting on a Euclidean (i.e., finite-dimensional Hilbert) space ℌ whose values
depend only on a “spectral mapping” 𝛾 : ℌ → X on some “smaller” Euclidean space X, in the sense
that 𝛷 (𝑋 ) = 𝛷 (𝑌 ) for 𝑋,𝑌 ∈ ℌ whenever 𝛾 (𝑋 ) = 𝛾 (𝑌 ). For example, in the context of symmetric
matrices, ℌ = S𝑁 is the space of 𝑁 × 𝑁 real symmetric matrices, X = R𝑁 , and 𝛾 is the mapping
that outputs the eigenvalues of a matrix 𝑋 ∈ ℌ in decreasing order. Under suitable assumptions, such
a function 𝛷 can be “decomposed” as 𝛷 = 𝜑 ◦ 𝛾 for some function 𝜑 : X → [−∞,+∞]. A closer
inspection of the literature cited in the introduction reveals three additional important ingredients to
such decomposition results:

(i) A family (𝛬a)a∈A of linear isometries from X to ℌ that allows for a “spectral decomposition”
of elements of ℌ through the spectral mapping 𝛾 in the sense that every 𝑋 ∈ ℌ can be written
as 𝑋 = 𝛬a𝛾 (𝑋 ) for some a ∈ A. For instance, in the motivating example ℌ = S𝑁 and X = R𝑁 ,
this is the eigenvalue decomposition of matrices in ℌ given by

𝛬𝑈 : X → ℌ : 𝑥 ↦→ 𝑈 (Diag𝑥)𝑈T, (2.1)

where𝑈 is an orthogonal matrix and Diag𝑥 is the diagonal matrix with elements given by those
of the vector 𝑥 .

(ii) A von Neumann-type inequality relating the scalar product of elements in ℌ to that of their
spectra in X.

It turns out that these must satisfy some natural invariance conditions with respect to the action of
a certain group S on X (of permutations, in the example of symmetric matrices) in order to allow the
desired decomposition. Making these precise requires introducing some notation that will be used
throughout this work. First, the scalar product and the associated norm of a Euclidean (i.e., finite-
dimensional Hilbert) space are denoted by ⟨ · | · ⟩ and ∥ · ∥, respectively. Given a Euclidean space H
and a group G acting on H , we will denote the composition of two elements g ∈ G and h ∈ G by gh
and use the symbol · to denote the group action. Furthermore:
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• The orbit of an element 𝑥 ∈ H is defined by G · 𝑥 =
{
g · 𝑥 | g ∈ G

}
.

• Given a setU, a mapping𝛷 : H → U is said to be G-invariant if (∀𝑥 ∈ H)(∀g ∈ G) 𝛷 (g ·𝑥) =
𝛷 (𝑥).

• A subset 𝐶 ofH is said to be G-invariant if its indicator function

𝜄𝐶 : H → ]−∞,+∞] : 𝑥 ↦→
{
0 if 𝑥 ∈ 𝐶,
+∞ otherwise,

(2.2)

is G-invariant or, equivalently, (∀𝑥 ∈ 𝐶) (∀g ∈ G) g · 𝑥 ∈ 𝐶 .
• We say thatG acts onH by linear isometries if, for every g ∈ G, the mappingH → H : 𝑥 ↦→ g ·𝑥
is a linear isometry.

We are now ready to introduce the abstract framework we will work in.

Definition 2.1 (spectral decomposition system). Let ℌ and X be Euclidean spaces, let S be a group
which acts on X by linear isometries, let 𝛾 : ℌ → X, and let (𝛬a)a∈A be a family of linear operators
from X to ℌ. We say that the tuple𝔖 = (X, S, 𝛾, (𝛬a)a∈A) is a spectral decomposition system for ℌ if
the following are satisfied:

[A] For every a ∈ A, 𝛬a is an isometry.
[B] There exists an S-invariant mapping 𝜏 : X → X such that{

(∀𝑥 ∈ X) 𝜏 (𝑥) ∈ S · 𝑥
(∀a ∈ A) 𝛾 ◦ 𝛬a = 𝜏 .

(2.3)

[C] (∀𝑋 ∈ ℌ) (∃a ∈ A) 𝑋 = 𝛬a𝛾 (𝑋 ).
[D] (∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ) ⟨𝑋 |𝑌 ⟩ ⩽ ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩.

Here:

• The mapping 𝛾 is called the spectral mapping of the system𝔖.
• The mapping 𝜏 in property [B] is called the spectral-induced ordering mapping of the system𝔖.
(The motivation for this term will become apparent from the concrete scenarios described in
Examples 2.5, 2.6, 2.7, and 2.8.)

• We set

(∀𝑋 ∈ ℌ) A𝑋 =
{
a ∈ A | 𝑋 = 𝛬a𝛾 (𝑋 )

}
. (2.4)

Note that property [C] ensures that the sets (A𝑋 )𝑋∈ℌ are nonempty.
• Given 𝑋 ∈ ℌ, the vector 𝛾 (𝑋 ) is called the spectrum of 𝑋 with respect to 𝔖 and, for every
a ∈ A𝑋 , the identity

𝑋 = 𝛬a𝛾 (𝑋 ) (2.5)

is called a spectral decomposition of 𝑋 with respect to𝔖.

The remainder of this section is concerned with examples that illustrate the breadth of the proposed
abstract definition of a spectral decomposition system through a broad range of concrete settings
found in the literature. To this end, we first collect some further notation that will be used in these
examples, also in the following section.
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Notation 2.2. Let𝑀 and 𝑁 be strictly positive integers.

• K denotes one of the following: the field R of real numbers, the field C of complex numbers,
or the skew-field H of Hamiltonian quaternions (we refer the reader to [47] for background on
quaternions).

• The canonical involution on K is denoted by 𝜉 ↦→ 𝜉 , which fixes only the elements of R, and
the real part of 𝜉 ∈ K is Re 𝜉 = (𝜉 + 𝜉)/2.

• K𝑀×𝑁 denotes the real vector space of𝑀 × 𝑁 matrices with entries in K.
• Given a matrix 𝑋 = [𝜉𝑖 𝑗 ]1⩽𝑖⩽𝑀

1⩽ 𝑗⩽𝑁
∈ K𝑀×𝑁 , its conjugate transpose is 𝑋 ∗ = [𝜉𝑗𝑖]1⩽ 𝑗⩽𝑁

1⩽𝑖⩽𝑀
∈ K𝑁×𝑀 .

• The trace of a matrix 𝑋 ∈ K𝑁×𝑁 is denoted by tra𝑋 .
• H𝑁 (K) denotes the vector subspace of K𝑁×𝑁 which consists of Hermitian matrices, that is,

H𝑁 (K) =
{
𝑋 ∈ K𝑁×𝑁 | 𝑋 = 𝑋 ∗}. (2.6)

• U𝑁 (K) =
{
𝑈 ∈ K𝑁×𝑁 | 𝑈 ∗𝑈 = Id

}
is the group of unitary matrices.

• SO𝑁 =
{
𝑈 ∈ U𝑁 (R) | det𝑈 = 1

}
is the special orthogonal group.

• P𝑁± denotes the multiplicative group of all matrices in R𝑁×𝑁 with entries in {−1, 0, 1} which
contain exactly one nonzero entry in every row and every column. (The elements of P𝑁± are
called signed permutation matrices.)

• P𝑁 denotes the subgroup of P𝑁± which consists of matrices with entries in {0, 1}. (The elements
of P𝑁 are called permutation matrices.)

• For every 𝑥 = (𝜉𝑖)1⩽𝑖⩽𝑁 ∈ R𝑁 , 𝑥↓ denotes the rearrangement vector of 𝑥 with entries listed in
decreasing order, and |𝑥 |↓ denotes the rearrangement vector of ( |𝜉𝑖 |)1⩽𝑖⩽𝑁 with entries listed in
decreasing order.

We begin with a simple example.

Example 2.3. Let 2 ⩽ 𝑁 ∈ N, let the (multiplicative) group {−1, 1} act on R via multiplication, and
set

𝑒 = (1, 0, . . . , 0) ∈ R𝑁 and
(
∀𝑈 ∈ U𝑁 (R)

)
𝛬𝑈 : R → R𝑁 : 𝜉 ↦→ 𝜉𝑈𝑒. (2.7)

Then (R, {−1, 1}, ∥ · ∥2, (𝛬𝑈 )𝑈 ∈U𝑁 (R)) is a spectral decomposition system for R𝑁 .

Proof. One can verify that property [B] in Definition 2.1 is satisfied with 𝜏 = | · |, and recognize at once
that property [D] in Definition 2.1 is precisely the Cauchy–Schwarz inequality. It therefore remains
to verify property [C] in Definition 2.1. To this end, let 𝑥 ∈ R𝑁 ∖ {0} and set

𝑦 =
1

∥𝑥 ∥2
𝑥, 𝑢 =

1
∥𝑒 − 𝑦∥2

(𝑒 − 𝑦), and 𝑈 = Id − 2𝑢𝑢T. (2.8)

Then, a straightforward computation shows that𝑈 ∈ U𝑁 (R) and 𝑥 = 𝛬𝑈 (∥𝑥 ∥2).

Our first nontrivial example is the framework of [35], which subsumes, in particular, the semisimple
real Lie algebra framework of [36, 51, 54].
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Example 2.4 (normal decomposition system). Let (ℌ,G, 𝛾) be a normal decomposition system in the
sense of [35, Definition 2.1], that is, ℌ is a Euclidean space, G is a group which acts on ℌ by linear
isometries, and 𝛾 : ℌ → ℌ is a G-invariant mapping such that{

(∀𝑋 ∈ ℌ) (∃ g ∈ G) 𝑋 = g · 𝛾 (𝑋 )
(∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ) ⟨𝑋 |𝑌 ⟩ ⩽ ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩.

(2.9)

Additionally, let Xbe a vector subspace of ℌ which contains the range of 𝛾 , define a subgroup S of G
by

S =
{
s ∈ G | s · X= X

}
, (2.10)

and set (∀g ∈ G) 𝛬g : X→ ℌ : 𝑋 ↦→ g · 𝑋 . Suppose that

(∀𝑋 ∈ X) (∃ s ∈ S) 𝑋 = s · 𝛾 (𝑋 ). (2.11)

Then𝔖 = (X, S, 𝛾, (𝛬g)g∈G) is a spectral decomposition system for ℌ.

Proof. In fact, property [B] in Definition 2.1 is satisfied with 𝜏 = 𝛾 |X.

The next example concerns the Euclidean Jordan algebra framework of [1, 30, 38, 50], which cap-
tures in particular the spaceH𝑁 (K) of Hermitian matrices (see Example 2.6) that arises in applications
such as robustmatrix estimation [8], semi-definite programming [29], and brain network analysis [56].
As shown in [43], in general Euclidean Jordan algebras cannot be embedded into a normal decompo-
sition system of Example 2.4.

Example 2.5 (Euclidean Jordan algebra). Letℌ be a Euclidean Jordan algebra (also known as formally
real Jordan algebra), that is, ℌ is a finite-dimensional real vector space which is endowed with a
bilinear form

ℌ ×ℌ → ℌ : (𝑋,𝑌 ) ↦→ 𝑋 ⊛ 𝑌 (2.12)

such that the following are satisfied:

[A] (∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ) 𝑋 ⊛ 𝑌 = 𝑌 ⊛ 𝑋 and 𝑋 ⊛ ((𝑋 ⊛ 𝑋 ) ⊛ 𝑌 ) = (𝑋 ⊛ 𝑋 ) ⊛ (𝑋 ⊛ 𝑌 ).
[B] There exists a scalar product ( · | · ) on ℌ such that (∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ) (∀𝑍 ∈ ℌ) (𝑋 ⊛ 𝑌 | 𝑍 ) =

(𝑋 |𝑌 ⊛ 𝑍 ).

(We refer to [22] for background on and concrete examples of Euclidean Jordan algebras.) We equip
ℌ with the scalar product

(∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ) ⟨𝑋 |𝑌 ⟩ = Tra(𝑋 ⊛ 𝑌 ), (2.13)

where Tra𝑋 is the trace in ℌ of an element 𝑋 ∈ ℌ; see [22, Section II.2]. In addition, we denote by 𝐸
the identity element of ℌ and by 𝑁 the rank of ℌ. Additionally, let P𝑁 act on R𝑁 via matrix-vector
multiplication. Following [1], we define a Jordan frame of ℌ as a family (𝐴𝑖)1⩽𝑖⩽𝑁 in ℌ𝑁 ∖ {0} such
that 

(
∀𝑖 ∈ {1, . . . , 𝑁 }

) (
∀𝑗 ∈ {1, . . . , 𝑁 }

)
𝐴𝑖 ⊛ 𝐴𝑗 =

{
𝐴𝑖 if 𝑖 = 𝑗,

0 if 𝑖 ≠,
𝑁∑︁
𝑖=1

𝐴𝑖 = 𝐸.

(2.14)
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(This is equivalent to the standard definition, e.g., on [22, p. 44], of a complete system of orthogonal
primitive idempotents satisfying (2.14) since such a system necessarily is of size 𝑁 and vice versa.)

According to the spectral decomposition theorem for Euclidean Jordan algebras [22, Theorem III.1.2],
for every 𝑋 ∈ ℌ, there exist a unique vector (𝜆1(𝑋 ), . . . , 𝜆𝑁 (𝑋 )) ∈ R𝑁 , the entries of which are called
the eigenvalues of 𝑋 , and a Jordan frame (𝐴𝑖)1⩽𝑖⩽𝑁 such that

𝜆1(𝑋 ) ⩾ · · · ⩾ 𝜆𝑁 (𝑋 ) and 𝑋 =

𝑁∑︁
𝑖=1

𝜆𝑖 (𝑋 )𝐴𝑖 ; (2.15)

this decomposition process thus defines a mapping

𝜆 : ℌ → R𝑁 : 𝑋 ↦→
(
𝜆1(𝑋 ), . . . , 𝜆𝑁 (𝑋 )

)
. (2.16)

Further, let Abe the set of Jordan frames of ℌ and define(
∀a = (𝐴𝑖)1⩽𝑖⩽𝑁 ∈ A

)
𝛬a : R𝑁 → ℌ : 𝑥 = (𝜉𝑖)1⩽𝑖⩽𝑁 ↦→

𝑁∑︁
𝑖=1

𝜉𝑖𝐴𝑖 . (2.17)

Then𝔖 = (R𝑁 , P𝑁 , 𝜆, (𝛬a)a∈A) is a spectral decomposition system for ℌ.

Proof. If 𝐴 is an element of a Jordan frame of ℌ, then it follows from the spectral decomposition
theorem that 𝜆(𝐴) = (1, 0, . . . , 0) and, in turn, from (2.13), (2.14), and [22, Theorem III.1.2] that

∥𝐴∥2 = Tra(𝐴 ⊛ 𝐴) = Tra𝐴 =

𝑁∑︁
𝑖=1

𝜆𝑖 (𝐴) = 1. (2.18)

Therefore, for every a = (𝐴𝑖)1⩽𝑖⩽𝑁 ∈ A, inasmuch as (𝐴𝑖)1⩽𝑖⩽𝑁 is an orthonormal family thanks to
(2.14) and (2.13), we derive from (2.17) that(

∀𝑥 = (𝜉𝑖)1⩽𝑖⩽𝑁 ∈ R𝑁
)

∥𝛬a𝑥 ∥2 =
𝑁∑︁
𝑖=1

𝜉2𝑖 = ∥𝑥 ∥22. (2.19)

This implies that 𝛬a is a linear isometry. Next, define 𝜏 : R𝑁 → R𝑁 : 𝑥 ↦→ 𝑥↓. It is clear that 𝜏 is
P𝑁 -invariant and (∀𝑥 ∈ R𝑁 ) 𝜏 (𝑥) ∈ P𝑁 · 𝑥 . At the same time, invoking the spectral decomposition
theorem once more, we get(

∀a = (𝐴𝑖)1⩽𝑖⩽𝑁 ∈ A
) (
∀𝑥 = (𝜉𝑖)1⩽𝑖⩽𝑁 ∈ R𝑁

)
𝜆(𝛬a𝑥) = 𝜆

( 𝑁∑︁
𝑖=1

𝜉𝑖𝐴𝑖

)
= 𝑥↓ = 𝜏 (𝑥) (2.20)

and

(∀𝑋 ∈ ℌ)
(
∃a = (𝐴𝑖)1⩽𝑖⩽𝑁 ∈ A

)
𝑋 =

𝑁∑︁
𝑖=1

𝜆𝑖 (𝑋 )𝐴𝑖 = 𝛬a𝜆(𝑋 ), (2.21)

where the last equality follows from (2.16) and (2.17). Furthermore, we deduce from (2.13) and [1,
Theorem 23] that

(∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ) ⟨𝑋 |𝑌 ⟩ ⩽
𝑁∑︁
𝑖=1

𝜆𝑖 (𝑋 )𝜆𝑖 (𝑌 ) = ⟨𝜆(𝑋 ) | 𝜆(𝑌 )⟩. (2.22)

Altogether,𝔖 is a spectral decomposition system for ℌ.
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If in Example 2.5 ℌ is the Euclidean Jordan algebra of Hermitian matrices (see [22, Section V.2]),
we obtain the following.

Example 2.6 (eigenvalue decomposition). Let 2 ⩽ 𝑁 ∈ N. We equip H𝑁 (K) with the scalar product

⟨ · | · ⟩ : (𝑋,𝑌 ) ↦→ Re tra(𝑋𝑌 ) (2.23)

and let P𝑁 act on R𝑁 via matrix-vector multiplication. For every 𝑋 ∈ H𝑁 (K), we denote by 𝜆(𝑋 ) =
(𝜆1(𝑋 ), . . . , 𝜆𝑁 (𝑋 )) the vector of the 𝑁 (not necessarily distinct) eigenvalues of𝑋 listed in decreasing
order; see [47, Theorem 5.3.6(c)] for the quaternion case. Additionally, set(

∀𝑈 ∈ U𝑁 (K)
)

𝛬𝑈 : R𝑁 → H𝑁 (K) : 𝑥 ↦→ 𝑈 (Diag𝑥)𝑈 ∗. (2.24)

Then𝔖 = (R𝑁 , P𝑁 , 𝜆, (𝛬𝑈 )𝑈 ∈U𝑁 (K)) is a spectral decomposition system for H𝑁 (K).

We now turn to a setting which has been extensively used in robust principal component analysis
and signal processing; see for instance [10, 11, 12, 31].

Example 2.7 (singular value decomposition). Let 𝑀 and 𝑁 be strictly positive integers and set𝑚 =

min{𝑀, 𝑁 }. Let ℌ be the Euclidean space obtained by equipping K𝑀×𝑁 with the scalar product

(𝑋,𝑌 ) ↦→ Re tra(𝑋 ∗𝑌 ), (2.25)

and let P𝑚± act on R𝑚 via matrix-vector multiplication. Given a matrix𝑋 ∈ ℌ, the vector in R𝑚+ formed
by the 𝑚 (not necessarily distinct) singular values of 𝑋 , with the convention that they are listed in
decreasing order, is denoted by (𝜎1(𝑋 ), . . . , 𝜎𝑚 (𝑋 )); see [47, Proposition 3.2.5(f)] for singular value
decomposition of matrices in H𝑀×𝑁 . This thus defines a mapping

𝜎 : ℌ → R𝑚 : 𝑋 ↦→
(
𝜎1(𝑋 ), . . . , 𝜎𝑚 (𝑋 )

)
. (2.26)

Further, set A= U𝑀 (K) × U𝑁 (K) and(
∀a = (𝑈 ,𝑉 ) ∈ A

)
𝛬a : R𝑚 → ℌ : 𝑥 ↦→ 𝑈 (Diag𝑥)𝑉 ∗, (2.27)

where the operator Diag : R𝑚 → ℌ maps a vector (𝜉𝑖)1⩽𝑖⩽𝑚 to the diagonal matrix in ℌ of which the
diagonal entries are 𝜉1, . . . , 𝜉𝑚 . Then 𝔖 = (R𝑚, P𝑚± , 𝜎, (𝛬a)a∈A) is a spectral decomposition system
for ℌ.

Proof. We derive from (2.25), [47, properties (c) and (d), p. 30], and [22, Proposition V.2.1(i)] that(
∀a = (𝑈 ,𝑉 ) ∈ A

)
(∀𝑥 ∈ R𝑚) ∥𝛬a𝑥 ∥2 = Re tra

(
𝑉

(
Diag𝑥

)∗
𝑈 ∗𝑈

(
Diag𝑥

)
𝑉 ∗

)
= Re tra

(
𝑉 ∗𝑉

(
Diag𝑥

)∗ (Diag𝑥 ) )
= Re tra

( (
Diag𝑥

)∗ (Diag𝑥 ) )
= ∥𝑥 ∥22. (2.28)

This confirms that the linear operators (𝛬a)a∈A are isometries. To verify property [B] in Defini-
tion 2.1, set 𝜏 : R𝑚 → R𝑚 : 𝑥 ↦→ |𝑥 |↓. It is evident that 𝜏 is P𝑚± -invariant and (∀𝑥 ∈ R𝑚) 𝜏 (𝑥) ∈ P𝑚± · 𝑥 .
In addition, it follows from (2.27) and the uniqueness of singular values (see [47, Proposition 3.2.5(f)]
for the quaternion case) that(

∀a = (𝑈 ,𝑉 ) ∈ A
)
(∀𝑥 ∈ R𝑚) 𝜎 (𝛬a𝑥) = 𝜎

(
Diag𝑥

)
= |𝑥 |↓ = 𝜏 (𝑥). (2.29)

8



Finally, observe that, in the present setting, property [C] in Definition 2.1 is precisely the singular
value decomposition of matrices inℌ, and property [D] in Definition 2.1 is precisely the von Neumann
trace inequality; see [27, Theorem 7.4.1.1] for the real and complex cases, and [11, Lemma 3] for the
quaternion case.

We next consider a setting that arises in the study of isotropic stored energy functions in nonlinear
elasticity [2, 17, 48], as well as the study of existence of a matrix with prescribed singular values and
main diagonal elements [53].

Example 2.8 (signed singular value decomposition). Let 2 ⩽ 𝑁 ∈ N and letℌ be the Euclidean space
obtained by equipping R𝑁×𝑁 with the scalar product

(𝑋,𝑌 ) ↦→ tra(𝑋T𝑌 ), (2.30)

let S be the subgroup of P𝑁± which consists of all matrices with an even number of entries equal to −1,
and let S act on R𝑁 via matrix-vector multiplication. As in Example 2.7, 𝜎 (𝑋 ) = (𝜎1(𝑋 ), . . . , 𝜎𝑁 (𝑋 ))
designates the vector of the 𝑁 singular values of a matrix 𝑋 ∈ ℌ, with the convention that 𝜎1(𝑋 ) ⩾
· · · ⩾ 𝜎𝑁 (𝑋 ). Define a mapping

𝛾 : ℌ → R𝑁 : 𝑋 ↦→
(
𝛾1(𝑋 ), . . . , 𝛾𝑁 (𝑋 )

)
(2.31)

by

(∀𝑋 ∈ ℌ)
(
∀𝑖 ∈ {1, . . . , 𝑁 }

)
𝛾𝑖 (𝑋 ) =

{
𝜎𝑖 (𝑋 ) if 1 ⩽ 𝑖 ⩽ 𝑁 − 1,
𝜎𝑁 (𝑋 ) sign(det𝑋 ) if 𝑖 = 𝑁 .

(2.32)

Finally, set A= SO𝑁 × SO𝑁 and(
∀a = (𝑈 ,𝑉 ) ∈ A

)
𝛬a : R𝑁 → ℌ : 𝑥 ↦→ 𝑈 (Diag𝑥)𝑉T. (2.33)

Then𝔖 = (R𝑁 , S, 𝛾, (𝛬a)a∈A) is a spectral decomposition system for ℌ.

Proof. It is clear that the operators (𝛬a)a∈A are linear isometries. Next, to verify property [B] in
Definition 2.1, we define a mapping 𝜏 : R𝑁 → R𝑁 as follows: for every 𝑥 = (𝜉𝑖)1⩽𝑖⩽𝑁 ∈ R𝑁 , let
(𝜇𝑖)1⩽𝑖⩽𝑁 = |𝑥 |↓ and set 𝜏 (𝑥) = (𝜈𝑖)1⩽𝑖⩽𝑁 , where(

∀𝑖 ∈ {1, . . . , 𝑁 }
)

𝜈𝑖 =

{
𝜇𝑖 if 1 ⩽ 𝑖 ⩽ 𝑁 − 1,
𝜇𝑁 sign(𝜉1 · · · 𝜉𝑁 ) if 𝑖 = 𝑁 .

(2.34)

One can check that 𝜏 is S-invariant and (∀𝑥 ∈ R𝑁 ) 𝜏 (𝑥) ∈ S · 𝑥 . The condition

(∀a ∈ A) 𝛾 ◦ 𝛬a = 𝜏 (2.35)

in property [B] in Definition 2.1 follows from the orthogonal invariance of 𝜎 and the construction of
𝛾 . Moreover, in the present setting, property [C] in Definition 2.1 reads(

∀𝑋 ∈ R𝑁×𝑁 )
(∃𝑈 ∈ SO𝑁 ) (∃𝑉 ∈ SO𝑁 ) 𝑋 =𝑈

(
Diag𝛾 (𝑋 )

)
𝑉T, (2.36)

which is an easy consequence of the singular value decomposition theorem. Finally, property [D] in
Definition 2.1 follows from [48, Lemma 1.3].
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Our last example of this section describes a construction of spectral decomposition systems from
existing ones.

Example 2.9. Let ℌ andU be Euclidean spaces, let𝔖 = (X, S, 𝛾, (𝛬a)a∈A) be a spectral decomposi-
tion system for ℌ, let S act on X ⊕ U via (s, (𝑥,𝑢)) ↦→ (s · 𝑥,𝑢), and define{

𝜸 : ℌ ⊕ U → X ⊕ U : (𝑋,𝑢) ↦→
(
𝛾 (𝑋 ), 𝑢

)
(∀a ∈ A) 𝜦a : X ⊕ U → ℌ ⊕ U : (𝑥,𝑢) ↦→ (𝛬a𝑥,𝑢).

(2.37)

Then (X ⊕ U, S,𝜸 , (𝜦a)a∈A) is a spectral decomposition system for ℌ ⊕ U.

3. Properties of spectral and spectral-induced ordering mappings

We present in this section properties of spectral and spectral-induced ordering mappings that will
assist us in our analysis. We shall operate under the umbrella of the following assumption.

Assumption 3.1. ℌ is a Euclidean space,𝔖 = (X, S, 𝛾, (𝛬a)a∈A) is a spectral decomposition system
forℌ, and 𝜏 : X → X is the spectral-induced orderingmapping of the system𝔖, that is, 𝜏 is S-invariant
and satisfies

(∀𝑥 ∈ X) 𝜏 (𝑥) ∈ S · 𝑥 (3.1)

and

(∀a ∈ A) 𝛾 ◦ 𝛬a = 𝜏 . (3.2)

The following simple observation will be employed frequently.

Lemma 3.2. LetH be a Euclidean space, let G be a group which acts onH by linear isometries, and let
g ∈ G. Then the adjoint of the operator 𝐿g : H → H : 𝑥 ↦→ g · 𝑥 is given byH → H : 𝑥 ↦→ g−1 · 𝑥 .

Proof. Since 𝐿g is a linear isometry, we have 𝐿∗g ◦ 𝐿g = Id. Hence

(∀𝑥 ∈ H) g−1 · 𝑥 = 𝐿∗g
(
𝐿g(g−1 · 𝑥)

)
= 𝐿∗g

(
g · (g−1 · 𝑥)

)
= 𝐿∗g𝑥, (3.3)

as claimed.

We first establish basic properties of spectral-induced ordering mappings.

Proposition 3.3. Suppose that Assumption 3.1 is in force, and let 𝑥 and 𝑦 be in X. Then the following
hold:

(i) 𝜏 is idempotent, that is, 𝜏 ◦ 𝜏 = 𝜏 .
(ii) (∀a ∈ A) ∥𝛬a𝑥 ∥ = ∥𝑥 ∥ = ∥𝜏 (𝑥)∥.
(iii) ⟨𝑥 |𝑦⟩ ⩽ ⟨𝜏 (𝑥) | 𝜏 (𝑦)⟩.
(iv) ⟨𝜏 (𝑥) | 𝜏 (𝑦)⟩ =maxs∈S⟨s · 𝑥 |𝑦⟩.
(v) ∥𝜏 (𝑥) − 𝜏 (𝑦)∥ ⩽ ∥𝑥 − 𝑦∥.
(vi) range𝜏 is a closed convex cone in X.

(vii) The orbit S · 𝑥 is compact.
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Proof. (i): A consequence of (3.1) and the S-invariance of 𝜏 .
(ii): Elementary.
(iii): Take a ∈ A and note that 𝛬∗

a ◦ 𝛬a = IdX . We derive from property [D] in Definition 2.1 and
(3.2) that ⟨𝑥 |𝑦⟩ = ⟨𝛬a𝑥 | 𝛬a𝑦⟩ ⩽ ⟨𝛾 (𝛬a𝑥) | 𝛾 (𝛬a𝑦)⟩ = ⟨𝜏 (𝑥) | 𝜏 (𝑦)⟩.

(iv): Use (iii), the S-invariance of 𝜏 , (3.1), and Lemma 3.2.
(v): Combine (iii) and (ii).
(vi): We infer from (3.1) and (iii) that (X, S, 𝜏) is a normal decomposition system in the sense of [35,

Definition 2.1], and then conclude via [35, Theorem 2.4] that range𝜏 is a closed convex cone in X.
(vii): Observe that the orbit S·𝑥 is bounded because (∀s ∈ S) ∥s · 𝑥 ∥ = ∥𝑥 ∥. Hence, it remains to show

that S·𝑥 is closed. To do so, let (s𝑛)𝑛∈N be a sequence in S such that the sequence (s𝑛 ·𝑥)𝑛∈N converges to
some 𝑧 ∈ X. Using the S-invariance of 𝜏 and (v), we deduce that ∥𝜏 (𝑥) − 𝜏 (𝑧)∥ = ∥𝜏 (s𝑛 · 𝑥) − 𝜏 (𝑧)∥ ⩽
∥s𝑛 · 𝑥 − 𝑧∥ → 0 and, thus, that 𝜏 (𝑥) = 𝜏 (𝑧). Therefore, (3.1) yields 𝑧 ∈ S · 𝜏 (𝑧) = S · 𝜏 (𝑥) = S · 𝑥 .

Proposition 3.3 (iii) allows us to provide another example of a spectral decomposition system.

Example 3.4. Suppose that Assumption 3.1 is in force and define

(∀s ∈ S) 𝜋s : X → X : 𝑥 ↦→ s · 𝑥 . (3.4)

Then (X, S, 𝜏, (𝜋s)s∈S) is a spectral decomposition system for X.

Our next result provides basic properties of spectral mappings.

Proposition 3.5. Suppose that Assumption 3.1 is in force. Then the following hold:

(i) 𝜏 ◦ 𝛾 = 𝛾 and (∀a ∈ A) 𝛾 ◦ 𝛬a ◦ 𝛾 = 𝛾 .

(ii) range𝛾 = range𝜏 is a closed convex cone in X.

(iii) (∀𝑋 ∈ ℌ) (∀a ∈ A) ∥𝑋 ∥ = ∥𝛬a𝛾 (𝑋 )∥ = ∥𝛾 (𝑋 )∥.
(iv) 𝛾 is nonexpansive, that is, (∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ) ∥𝛾 (𝑋 ) − 𝛾 (𝑌 )∥ ⩽ ∥𝑋 − 𝑌 ∥.
(v) (∀𝑋 ∈ ℌ) (∀𝛼 ∈ R+) 𝛾 (𝛼𝑋 ) = 𝛼𝛾 (𝑋 ).
(vi) (∀𝑋 ∈ ℌ) 𝛾 (−𝑋 ) ∈ −S · 𝛾 (𝑋 ).

Proof. (i): In view of (3.2), it is enough to show that 𝜏 ◦ 𝛾 = 𝛾 . Take 𝑋 ∈ ℌ and a ∈ A𝑋 . By (3.2),
𝜏 = 𝛾 ◦ 𝛬a. However, by the very definition of A𝑋 , 𝑋 = 𝛬a𝛾 (𝑋 ). Hence

𝜏
(
𝛾 (𝑋 )

)
= (𝛾 ◦ 𝛬a)

(
𝛾 (𝑋 )

)
= 𝛾

(
𝛬a𝛾 (𝑋 )

)
= 𝛾 (𝑋 ). (3.5)

(ii): It follows from (i) that range𝛾 ⊂ range𝜏 , while (3.2) yields range𝜏 ⊂ range𝛾 . Thus range𝛾 =

range𝜏 , which is a closed convex cone in X thanks to Proposition 3.3 (vi).
(iii): This follows from the fact that the operators (𝛬a)a∈A are linear isometries, and from the

spectral decomposition of elements in ℌ; see property [C] in Definition 2.1.
(iv): Combine property [D] in Definition 2.1 and (iii).
(v): For every 𝑋 ∈ ℌ and every 𝛼 ∈ R+, we derive from (iii) and property [D] in Definition 2.1 that

∥𝛾 (𝛼𝑋 ) − 𝛼𝛾 (𝑋 )∥2 = ∥𝛾 (𝛼𝑋 )∥2 − 2𝛼 ⟨𝛾 (𝛼𝑋 ) | 𝛾 (𝑋 )⟩ + 𝛼2∥𝛾 (𝑋 )∥2

⩽ ∥𝛼𝑋 ∥2 − 2𝛼 ⟨𝛼𝑋 |𝑋 ⟩ + 𝛼2∥𝑋 ∥2

= 0, (3.6)

which leads to 𝛾 (𝛼𝑋 ) = 𝛼𝛾 (𝑋 ).
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(vi): For every 𝑋 ∈ ℌ and every a ∈ A𝑋 , using the linearity of 𝛬a, together with (3.2) and (3.1), we
get

𝛾 (−𝑋 ) = 𝛾
(
−𝛬a𝛾 (𝑋 )

)
= (𝛾 ◦ 𝛬a)

(
−𝛾 (𝑋 )

)
= 𝜏

(
−𝛾 (𝑋 )

)
∈ −S · 𝛾 (𝑋 ), (3.7)

which concludes the proof.

We now establish necessary and sufficient conditions for equality in property [D] in Definition 2.1.

Proposition 3.6. Suppose that Assumption 3.1 is in force, let D be a nonempty subset of ℌ, and set

K=

{
𝑚∑︁
𝑖=1

𝛼𝑖𝑋𝑖

�����𝑚 ∈ N ∖ {0}, (𝑋𝑖)1⩽𝑖⩽𝑚 ∈ D𝑚, and (𝛼𝑖)1⩽𝑖⩽𝑚 ∈ R𝑚+

}
. (3.8)

Then the following are equivalent:

(i) (∀𝑋 ∈ D) (∀𝑌 ∈ D) ⟨𝑋 |𝑌 ⟩ = ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩.
(ii) (∀𝑋 ∈ D) (∀𝑌 ∈ D) ∥𝑋 − 𝑌 ∥ = ∥𝛾 (𝑋 ) − 𝛾 (𝑌 )∥.
(iii) There exists a ∈ A such that (∀𝑋 ∈ D) 𝑋 = 𝛬a𝛾 (𝑋 ).
(iv) There exists a ∈ A such that (∀𝑋 ∈ K) 𝑋 = 𝛬a𝛾 (𝑋 ).

Moreover, if one of the statements (i)–(iv) holds, then

(
∀𝑚 ∈ N ∖ {0}

) (
∀(𝑋𝑖)1⩽𝑖⩽𝑚 ∈ D𝑚

) (
∀(𝛼𝑖)1⩽𝑖⩽𝑚 ∈ R𝑚+

)
𝛾

( 𝑚∑︁
𝑖=1

𝛼𝑖𝑋𝑖

)
=

𝑚∑︁
𝑖=1

𝛼𝑖𝛾 (𝑋𝑖). (3.9)

Proof. (i)⇔ (ii): This follows from Proposition 3.5 (iii).
(i)⇒ (iii): We employ the techniques of the proof of [35, Theorem 2.2]. Take 𝑍 ∈ ri(conv D) and

a ∈ A𝑍 . Assume that there exists 𝑋 ∈ D for which 𝑋 ≠ 𝛬a𝛾 (𝑋 ). We get from Proposition 3.5 (iii)
that

2⟨𝑋 | 𝛬a𝛾 (𝑋 )⟩ = ∥𝑋 ∥2 + ∥𝛬a𝛾 (𝑋 )∥2 − ∥𝑋 − 𝛬a𝛾 (𝑋 )∥2

= 2∥𝑋 ∥2 − ∥𝑋 − 𝛬a𝛾 (𝑋 )∥2

< 2∥𝑋 ∥2. (3.10)

On the other hand, since 𝑍 ∈ ri(conv D) and 𝑋 ∈ D, it results from [45, Theorem 6.4] that there
exist families (𝛼𝑖)0⩽𝑖⩽𝑛 in ]0, 1[ and (𝑋𝑖)1⩽𝑖⩽𝑛 in D such that

∑𝑛
𝑖=0 𝛼𝑖 = 1 and 𝑍 = 𝛼0𝑋 + ∑𝑛

𝑖=1 𝛼𝑖𝑋𝑖 ;
additionally, by assumption,(

∀𝑖 ∈ {1, . . . , 𝑛}
)

⟨𝛾 (𝑋𝑖) | 𝛾 (𝑋 )⟩ = ⟨𝑋𝑖 |𝑋 ⟩. (3.11)
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Therefore, we derive from property [D] in Definition 2.1 and Proposition 3.5 (i) that

⟨𝛾 (𝑍 ) | 𝛾 (𝑋 )⟩ = ⟨𝛬a𝛾 (𝑍 ) | 𝛬a𝛾 (𝑋 )⟩
= ⟨𝑍 | 𝛬a𝛾 (𝑋 )⟩

= 𝛼0⟨𝑋 | 𝛬a𝛾 (𝑋 )⟩ +
𝑛∑︁
𝑖=1

𝛼𝑖 ⟨𝑋𝑖 | 𝛬a𝛾 (𝑋 )⟩

< 𝛼0∥𝑋 ∥2 +
𝑛∑︁
𝑖=1

𝛼𝑖
〈
𝛾 (𝑋𝑖)

��𝛾 (𝛬a𝛾 (𝑋 ))〉
= 𝛼0∥𝑋 ∥2 +

𝑛∑︁
𝑖=1

𝛼𝑖 ⟨𝛾 (𝑋𝑖) | 𝛾 (𝑋 )⟩

= 𝛼0∥𝑋 ∥2 +
𝑛∑︁
𝑖=1

𝛼𝑖 ⟨𝑋𝑖 |𝑋 ⟩

= ⟨𝑍 |𝑋 ⟩
⩽ ⟨𝛾 (𝑍 ) | 𝛾 (𝑋 )⟩, (3.12)

which is impossible.
(iii)⇒ (i): Use the fact that 𝛬∗

a ◦ 𝛬a = IdX .
(iii)⇒ (iv): Let 𝑋 ∈ K, say 𝑋 =

∑𝑚
𝑖=1 𝛼𝑖𝑋𝑖 , where (𝑋𝑖)1⩽𝑖⩽𝑚 ∈ D𝑚 and (𝛼𝑖)1⩽𝑖⩽𝑚 ∈ R𝑚+ . Then

(∀𝑖 ∈ {1, . . . ,𝑚}) 𝑋𝑖 = 𝛬a𝛾 (𝑋𝑖). Thus, because 𝛬a is an isometry,(
∀𝑖 ∈ {1, . . . ,𝑚}

) (
∀𝑗 ∈ {1, . . . ,𝑚}

)
∥𝑋𝑖 − 𝑋𝑗 ∥ = ∥𝛬a𝛾 (𝑋𝑖) − 𝛬a𝛾 (𝑋𝑗 )∥ = ∥𝛾 (𝑋𝑖) − 𝛾 (𝑋𝑗 )∥. (3.13)

In turn, upon setting 𝛼 =
∑𝑚
𝑖=1 𝛼𝑖 , we derive from [5, Lemma 2.1(i)] and items (iii) and (iv) in Proposi-

tion 3.5 that




𝛾 (𝑋 ) − 𝑚∑︁
𝑖=1

𝛼𝑖𝛾 (𝑋𝑖)





2 = (1 − 𝛼)∥𝛾 (𝑋 )∥2 +

𝑚∑︁
𝑖=1

𝛼𝑖 ∥𝛾 (𝑋 ) − 𝛾 (𝑋𝑖)∥2 + (𝛼 − 1)
𝑚∑︁
𝑖=1

𝛼𝑖 ∥𝛾 (𝑋𝑖)∥2

− 1
2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛼𝑖𝛼𝑗 ∥𝛾 (𝑋𝑖) − 𝛾 (𝑋𝑗 )∥2

⩽ (1 − 𝛼)∥𝑋 ∥2 +
𝑚∑︁
𝑖=1

𝛼𝑖 ∥𝑋 − 𝑋𝑖 ∥2 + (𝛼 − 1)
𝑚∑︁
𝑖=1

𝛼𝑖 ∥𝑋𝑖 ∥2

− 1
2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛼𝑖𝛼𝑗 ∥𝑋𝑖 − 𝑋𝑗 ∥2

=






𝑋 −
𝑚∑︁
𝑖=1

𝛼𝑖𝑋𝑖






2
= 0. (3.14)

Hence 𝛾 (𝑋 ) = ∑𝑚
𝑖=1 𝛼𝑖𝛾 (𝑋𝑖), which verifies (3.9). Consequently, by linearity of 𝛬a,

𝛬a𝛾 (𝑋 ) = 𝛬a

(
𝑚∑︁
𝑖=1

𝛼𝑖𝛾 (𝑋𝑖)
)
=

𝑚∑︁
𝑖=1

𝛼𝑖𝛬a𝛾 (𝑋𝑖) =
𝑚∑︁
𝑖=1

𝛼𝑖𝑋𝑖 = 𝑋 . (3.15)

(iv)⇒ (iii): Clear.
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Remark 3.7. Some comments are in order.

(i) The equivalence (i)⇔ (iii) in Proposition 3.6 corresponds to [35, Theorem 2.2] in the context
of normal decomposition systems of Example 2.4, and to [24, Theorem 4.1] in the context of
Euclidean Jordan algebras of Example 2.5.

(ii) In the settings of Examples 2.6, 2.7, and 2.8, where K is taken to be R or C, and with the choice
D = {𝑋,𝑌 }, item (iii) in Proposition 3.6 reduces to the classical condition for equality in von
Neumann-type trace inequalities; see [37, 48, 52, 55].

Central to our approach will be Theorem 3.9, which compares the spectrum of a sum and the
sum of the spectra. It can be regarded as a generalization of Ky Fan’s classical majorization theorem
on the eigenvalues of a sum of Hermitian matrices; see Remark 3.10 for further discussion. Proving
Theorem 3.9 necessitates the following technical result.

Proposition 3.8. Suppose that Assumption 3.1 is in force, and let 𝑥 and 𝑦 be in X. Then the following
are equivalent:

(i) 𝑦 ∈ conv(S · 𝑥).
(ii) (∀𝑧 ∈ X) ⟨𝑦 | 𝑧⟩ ⩽ ⟨𝜏 (𝑥) | 𝜏 (𝑧)⟩.

Moreover, if 𝑥 and 𝑦 lie in range𝛾 , then each of the statements (i) and (ii) is equivalent to

(iii) (∀𝑧 ∈ range𝛾) ⟨𝑦 − 𝑥 | 𝑧⟩ ⩽ 0.

Proof. It results from Proposition 3.3 (vii) and [46, Corollary 2.30] that conv(S ·𝑥) is compact. In turn,
we infer from [6, Proposition 11.1(iii)] and Proposition 3.3 (iv) that

(∀𝑧 ∈ X) 𝜎conv(S·𝑥) (𝑧) = 𝜎S·𝑥 (𝑧) =max
s∈S

⟨s · 𝑥 | 𝑧⟩ = ⟨𝜏 (𝑥) | 𝜏 (𝑧)⟩. (3.16)

Therefore, the equivalence (i)⇔ (ii) follows from [6, Proposition 7.11].
To proceed further, let us assume that {𝑥,𝑦} ⊂ range𝛾 . Note that, for every 𝑧 ∈ range𝛾 , thanks to

Proposition 3.5 (ii) and Proposition 3.3 (i), we get 𝜏 (𝑧) = 𝑧; in particular, 𝜏 (𝑥) = 𝑥 and 𝜏 (𝑦) = 𝑦.
(ii)⇒ (iii): Clear.
(iii)⇒ (ii): For every 𝑧 ∈ X, because 𝜏 (𝑧) ∈ range𝛾 by Proposition 3.5 (ii), we get from Proposi-

tion 3.3 (iii) that ⟨𝑦 | 𝑧⟩ ⩽ ⟨𝑦 | 𝜏 (𝑧)⟩ ⩽ ⟨𝑥 | 𝜏 (𝑧)⟩ = ⟨𝜏 (𝑥) | 𝜏 (𝑧)⟩.

Theorem 3.9. Suppose that Assumption 3.1 is in force, let (𝑋𝑖)1⩽𝑖⩽𝑚 be a family inℌ, and let (𝛼𝑖)1⩽𝑖⩽𝑚
be a family in R+. Then

𝛾

( 𝑚∑︁
𝑖=1

𝛼𝑖𝑋𝑖

)
∈ conv

(
S ·

𝑚∑︁
𝑖=1

𝛼𝑖𝛾 (𝑋𝑖)
)
. (3.17)

Proof. Set 𝑋 =
∑𝑚
𝑖=1 𝛼𝑖𝑋𝑖 and let a ∈ A𝑋 . We derive from property [D] in Definition 2.1 and Proposi-
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tion 3.5 (i) that

(∀𝑌 ∈ ℌ) ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩ = ⟨𝛬a𝛾 (𝑋 ) | 𝛬a𝛾 (𝑌 )⟩
= ⟨𝑋 | 𝛬a𝛾 (𝑌 )⟩

=

𝑚∑︁
𝑖=1

𝛼𝑖 ⟨𝑋𝑖 | 𝛬a𝛾 (𝑌 )⟩

⩽
𝑚∑︁
𝑖=1

𝛼𝑖
〈
𝛾 (𝑋𝑖)

��𝛾 (𝛬a𝛾 (𝑌 ))〉
=

〈 𝑚∑︁
𝑖=1

𝛼𝑖𝛾 (𝑋𝑖)
����𝛾 (𝑌 )〉. (3.18)

Therefore, inasmuch as
∑𝑚
𝑖=1 𝛼𝑖𝛾 (𝑋𝑖) ∈ range𝛾 thanks to Proposition 3.5 (ii), the conclusion follows

from the equivalence (i)⇔ (iii) in Proposition 3.8 applied to 𝑥 =
∑𝑚
𝑖=1 𝛼𝑖𝛾 (𝑋𝑖) and 𝑦 = 𝛾 (𝑋 ).

Remark 3.10. Here are some noteworthy instances of Theorem 3.9.

(i) We infer from [36, Propositions 3.3 and 3.4] that the semisimple real Lie algebra setting of [51,
Theorem 2] is a normal decomposition system (see Example 2.4), and we therefore recover [51,
Theorem 2].

(ii) Specializing Theorem 3.9 to Example 2.5 yields

(∀𝑋1 ∈ ℌ) (∀𝑋2 ∈ ℌ) 𝜆(𝑋1 + 𝑋2) ∈ conv
(
P𝑁 ·

(
𝜆(𝑋1) + 𝜆(𝑋2)

) )
, (3.19)

which improves [30, Proposition 8]. In particular, by choosing ℌ = H𝑁 (K) (see Example 2.6),
we obtain(

∀𝑋1 ∈ H𝑁 (K)
) (
∀𝑋2 ∈ H𝑁 (K)

)
𝜆(𝑋1 + 𝑋2) ∈ conv

(
P𝑁 ·

(
𝜆(𝑋1) + 𝜆(𝑋2)

) )
, (3.20)

which is Ky Fan’s majorization theorem for the eigenvalues of a sum of Hermitian matrices in
the real and complex cases [40, Theorem 9.G.1].

(iii) In the setting of Example 2.7, we recover from Theorem 3.9 the inclusion(
∀𝑋1 ∈ C𝑀×𝑁 ) (

∀𝑋2 ∈ C𝑀×𝑁 )
𝜎 (𝑋1 + 𝑋2) ∈ conv

(
P𝑚± ·

(
𝜎 (𝑋1) + 𝜎 (𝑋2)

) )
, (3.21)

which is Ky Fan’s weak majorization theorem for the singular values of a sum of rectangular
matrices [40, 9.G.1.d].

4. Spectral functions and their basic properties

Consider the setting of Assumption 3.1. Of prime interest in applications in the context of Exam-
ples 2.5, 2.6, 2.7, and 2.8 is the class of functions 𝛷 : ℌ → ]−∞,+∞] whose values are “spectrally
invariant”, i.e., for which𝛷 (𝑋 ) =𝛷 (𝑌 ) whenever 𝛾 (𝑋 ) = 𝛾 (𝑌 ). We follow customary convention and
call such functions spectral functions. For instance, in the setting of Hermitian matrices (Example 2.6
with K = C), these are functions that are unitarily invariant; see, e.g., [34, p. 164]. The following re-
sult shows that, under Assumption 3.1, spectral functions are precisely those of the form 𝜑 ◦𝛾 where
𝜑 : X → [−∞,+∞] is S-invariant.
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Proposition 4.1. Suppose that Assumption 3.1 is in force and let𝛷 : ℌ → [−∞,+∞]. Then the following
are equivalent:

(i) 𝛷 is a spectral function in the sense of

(∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ) 𝛾 (𝑋 ) = 𝛾 (𝑌 ) ⇒ 𝛷 (𝑋 ) =𝛷 (𝑌 ). (4.1)

(ii) (∀a ∈ A) (∀b ∈ A) 𝛷 ◦ 𝛬a =𝛷 ◦ 𝛬b.
(iii) There exists an S-invariant function 𝜑 : X → [−∞,+∞] such that𝛷 = 𝜑 ◦ 𝛾 .

Moreover, if (iii) holds, then (∀a ∈ A) 𝜑 =𝛷 ◦ 𝛬a.

Proof. (i)⇒ (ii): Let a and b be in A. For every 𝑥 ∈ X, since (3.2) yields 𝛾 (𝛬a𝑥) = 𝜏 (𝑥) = 𝛾 (𝛬b𝑥), it
results from (4.1) that𝛷 (𝛬a𝑥) =𝛷 (𝛬b𝑥).
(ii)⇒ (iii): Fix b ∈ Aand set 𝜑 =𝛷 ◦ 𝛬b. For every 𝑋 ∈ ℌ and every a ∈ A𝑋 , we have

𝜑
(
𝛾 (𝑋 )

)
= (𝛷 ◦ 𝛬b)

(
𝛾 (𝑋 )

)
= (𝛷 ◦ 𝛬a)

(
𝛾 (𝑋 )

)
=𝛷

(
𝛬a𝛾 (𝑋 )

)
=𝛷 (𝑋 ), (4.2)

which confirms that 𝜑 ◦𝛾 =𝛷 . In turn, appealing to (3.2), we obtain 𝜑 =𝛷 ◦ 𝛬b = 𝜑 ◦ (𝛾 ◦ 𝛬b) = 𝜑 ◦𝜏 .
Hence, the S-invariance of 𝜑 follows from that of 𝜏 .
(iii)⇒ (i): Clear.
Finally, if (iii) holds, then we derive from (3.2), (3.1), and the S-invariance of 𝜑 that (∀a ∈ A)

𝛷 ◦ 𝛬a = 𝜑 ◦ (𝛾 ◦ 𝛬a) = 𝜑 ◦ 𝜏 = 𝜑 .

In the light of Proposition 4.1, the following notion is well defined.

Definition 4.2. Suppose that Assumption 3.1 is in force and let 𝛷 : ℌ → [−∞,+∞] be a spectral
function. The unique S-invariant function 𝜑 : X → [−∞,+∞] such that 𝛷 = 𝜑 ◦ 𝛾 is called the
invariant function associated with𝛷 .

Considering the class of spectral indicator functions leads to the notion of a spectral set.

Corollary 4.3. Suppose that Assumption 3.1 is in force and let D be a subset of ℌ. Then the following
are equivalent:

(i) D is a spectral set in the sense that

(∀𝑋 ∈ ℌ) (∀𝑌 ∈ ℌ)
{
𝛾 (𝑋 ) = 𝛾 (𝑌 )
𝑋 ∈ D

⇒ 𝑌 ∈ D. (4.3)

(ii) There exists an S-invariant subset 𝐷 of X such that D = 𝛾−1(𝐷).

Moreover, if (ii) holds, then (∀a ∈ A) 𝐷 = 𝛬−1
a (D).

Proof. Apply Proposition 4.1 to𝛷 = 𝜄D.

Let H be a Euclidean space and let 𝑓 : H → [−∞,+∞]. The lower semicontinuous envelope of 𝑓
is defined by

𝑓 = sup
{
𝑔 : H → [−∞,+∞] | 𝑔 is lower semicontinuous and 𝑔 ⩽ 𝑓

}
(4.4)
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and, on account of [6, Lemma 1.32(iv)] and [46, Lemma 1.7], we have

(∀𝑥 ∈ H) 𝑓 (𝑥) =min
{
𝜉 ∈ [−∞,+∞]

��� (
∃ (𝑥𝑛)𝑛∈N ∈ HN)

𝑥𝑛 → 𝑥 and 𝑓 (𝑥𝑛) → 𝜉

}
; (4.5)

in particular, for every subset 𝐶 ofH , 𝜄𝐶 = 𝜄
𝐶
. Next, the function 𝑓 is said to be convex if

(∀𝑥 ∈ dom 𝑓 ) (∀𝑦 ∈ dom 𝑓 ) (∀𝛼 ∈ ]0, 1[) 𝑓
(
𝛼𝑥 + (1 − 𝛼)𝑦

)
⩽ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦), (4.6)

where dom 𝑓 =
{
𝑥 ∈ H | 𝑓 (𝑥) < +∞

}
is the domain of 𝑓 , and 𝑓 is said to be proper if−∞ ∉ 𝑓 (H) and

dom 𝑓 ≠ ∅. Finally, the set of all proper lower semicontinuous convex functions fromH to ]−∞,+∞]
is denoted by 𝛤0(H).
Below is a characterization of invariant functions that will be utilized repeatedly.

Proposition 4.4. Suppose that Assumption 3.1 is in force and let𝜑 : X → [−∞,+∞]. Then the following
hold:

(i) 𝜑 is S-invariant ⇔ 𝜑 ◦ 𝜏 = 𝜑 ⇔ (∀a ∈ A) 𝜑 ◦ 𝛾 ◦ 𝛬a = 𝜑 .

(ii) Suppose that 𝜑 is S-invariant. Then int dom(𝜑 ◦ 𝛾) = 𝛾−1(int dom𝜑).

Proof. (i): Use (3.1), the S-invariance of 𝜏 , and (3.2).
(ii): Suppose that 𝑋 ∈ int dom(𝜑 ◦ 𝛾) and let 𝜀 ∈ ]0,+∞[ be such that the closed ball 𝐵(𝑋 ; 𝜀)

is contained in dom(𝜑 ◦ 𝛾). We must show that 𝛾 (𝑋 ) ∈ int dom𝜑 . To do so, let 𝑦 ∈ 𝐵(𝛾 (𝑋 ); 𝜀) and
a ∈ A𝑋 . Then ∥𝛬a𝑦 − 𝑋 ∥ = ∥𝛬a𝑦 − 𝛬a𝛾 (𝑋 )∥ = ∥𝑦 − 𝛾 (𝑋 )∥ ⩽ 𝜀, which implies that 𝛬a𝑦 ∈ 𝐵(𝑋 ; 𝜀) ⊂
dom(𝜑 ◦ 𝛾). Hence, we get from (i) that 𝜑 (𝑦) = (𝜑 ◦ 𝛾) (𝛬a𝑦) < +∞. Therefore 𝐵(𝛾 (𝑋 ); 𝜀) ⊂ dom𝜑

or, equivalently, 𝛾 (𝑋 ) ∈ int dom𝜑 . The reverse inclusion is proved similarly.

Next, we study lower semicontinuity and convexity of spectral functions in terms of the associated
invariant functions.

Proposition 4.5. Suppose that Assumption 3.1 is in force and let 𝜑 : X → [−∞,+∞] be S-invariant.
Then the following hold:

(i) 𝜑 ◦ 𝛾 = 𝜑 ◦ 𝛾 .
(ii) Let 𝑋 ∈ ℌ. Then 𝜑 ◦ 𝛾 is lower semicontinuous at 𝑋 if and only if 𝜑 is lower semicontinuous at

𝛾 (𝑋 ).
(iii) 𝜑 ◦ 𝛾 is lower semicontinuous if and only if 𝜑 is lower semicontinuous.

Proof. (i): Take 𝑋 ∈ ℌ and let (𝑋𝑛)𝑛∈N be a sequence in ℌ such that 𝑋𝑛 → 𝑋 and 𝜑 ◦ 𝛾 (𝑋 ) = lim(𝜑 ◦
𝛾) (𝑋𝑛). Proposition 3.5 (iv) yields 𝛾 (𝑋𝑛) → 𝛾 (𝑋 ) and, thus, (4.5) implies that

𝜑 ◦ 𝛾 (𝑋 ) = lim𝜑
(
𝛾 (𝑋𝑛)

)
⩾ 𝜑

(
𝛾 (𝑋 )

)
. (4.7)

Now let (𝑥𝑛)𝑛∈N be a sequence inX such that 𝑥𝑛 → 𝛾 (𝑋 ) and 𝜑 (𝛾 (𝑋 )) = lim𝜑 (𝑥𝑛), and take a ∈ A𝑋 .
Since ∥𝛬a𝑥𝑛 − 𝑋 ∥ = ∥𝛬a𝑥𝑛 − 𝛬a𝛾 (𝑋 )∥ = ∥𝑥𝑛 − 𝛾 (𝑋 )∥ → 0, we deduce from Proposition 4.4 (i) and
(4.5) that

𝜑
(
𝛾 (𝑋 )

)
= lim𝜑 (𝑥𝑛) = lim(𝜑 ◦ 𝛾) (𝛬a𝑥𝑛) ⩾ 𝜑 ◦ 𝛾 (𝑋 ). (4.8)

Consequently, combining (4.7) and (4.8) yields the conclusion.
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(ii): We derive from [6, Lemma 1.32(v)] and (i) that

𝜑 ◦ 𝛾 is lower semicontinuous at 𝑋 ⇔ 𝜑 ◦ 𝛾 (𝑋 ) = (𝜑 ◦ 𝛾) (𝑋 )
⇔ 𝜑

(
𝛾 (𝑋 )

)
= 𝜑

(
𝛾 (𝑋 )

)
⇔ 𝜑 is lower semicontinuous at 𝛾 (𝑋 ), (4.9)

as announced.
(iii): Suppose that 𝜑 ◦ 𝛾 is lower semicontinuous. For every sequence (𝑥𝑛)𝑛∈N in X which con-

verges to some 𝑥 ∈ X and every a ∈ A, because ∥𝛬a𝑥𝑛 − 𝛬a𝑥 ∥ = ∥𝑥𝑛 − 𝑥 ∥ → 0, we derive from
Proposition 4.4 (i) that lim𝜑 (𝑥𝑛) = lim(𝜑 ◦ 𝛾) (𝛬a𝑥𝑛) ⩾ (𝜑 ◦ 𝛾) (𝛬a𝑥) = 𝜑 (𝑥). As a result, 𝜑 is lower
semicontinuous. The reverse implication is a consequence of (ii).

The following result characterizing convexity of spectral functions is the main result of this section.

Theorem 4.6. Suppose that Assumption 3.1 is in force and let 𝜑 : X → ]−∞,+∞] be S-invariant. Then
the following hold:

(i) 𝜑 ◦ 𝛾 is convex if and only if 𝜑 is convex.
(ii) Suppose that 𝜑 is proper. Then 𝜑 ◦ 𝛾 ∈ 𝛤0(ℌ) if and only if 𝜑 ∈ 𝛤0(X).

Proof. (i): If 𝜑 ◦ 𝛾 is convex, then, upon taking a ∈ A, we infer from Proposition 4.4 (i) that 𝜑 =

(𝜑 ◦ 𝛾) ◦ 𝛬a is convex as the composition of a convex function and a linear operator. Conversely,
suppose that 𝜑 is convex, and that 𝑋 and 𝑌 lie in dom(𝜑 ◦ 𝛾), and take 𝛼 ∈ ]0, 1[. On account of
Theorem 3.9, we obtain finite families (s𝑖)𝑖∈𝐼 in S and (𝛼𝑖)𝑖∈𝐼 in ]0, 1] such that∑︁

𝑖∈𝐼
𝛼𝑖 = 1 and 𝛾

(
𝛼𝑋 + (1 − 𝛼)𝑌

)
=

∑︁
𝑖∈𝐼

𝛼𝑖

(
s𝑖 ·

(
𝛼𝛾 (𝑋 ) + (1 − 𝛼)𝛾 (𝑌 )

) )
. (4.10)

Therefore, using the convexity and the S-invariance of 𝜑 , we get

𝜑

(
𝛾
(
𝛼𝑋 + (1 − 𝛼)𝑌

) )
⩽

∑︁
𝑖∈𝐼

𝛼𝑖𝜑

(
s𝑖 ·

(
𝛼𝛾 (𝑋 ) + (1 − 𝛼)𝛾 (𝑌 )

) )
=

∑︁
𝑖∈𝐼

𝛼𝑖𝜑
(
𝛼𝛾 (𝑋 ) + (1 − 𝛼)𝛾 (𝑌 )

)
= 𝜑

(
𝛼𝛾 (𝑋 ) + (1 − 𝛼)𝛾 (𝑌 )

)
⩽ 𝛼𝜑

(
𝛾 (𝑋 )

)
+ (1 − 𝛼)𝜑

(
𝛾 (𝑌 )

)
, (4.11)

which verifies that 𝜑 ◦ 𝛾 is convex.
(ii): Proposition 4.4 (i) ensures that 𝜑 ◦ 𝛾 is proper. Hence, we obtain the conclusion by combining

(i) and Proposition 4.5 (iii).

Remark 4.7. Theorem 4.6 encompasses various results on the convexity of spectral functions in
the context of Examples 2.4, 2.5, 2.6, 2.7, and 2.8; see, e.g., [1, Theorem 41], [18, Theorem 4.5], [19,
Theorem, p. 276], [30, Theorem 6], [35, Theorem 4.3], [48, Theorem 2.2], [49, Theorems 3.1 and 3.2],
and [54, Théorème 1.2].

From Theorem 4.6, we can immediately obtain characterizations of various useful properties of sets
defined via spectra.

Corollary 4.8. Suppose that Assumption 3.1 is in force and let 𝐷 be an S-invariant subset of X. Then
the following hold:
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(i) int𝛾−1(𝐷) = 𝛾−1(int𝐷).
(ii) 𝛾−1(𝐷) = 𝛾−1(𝐷).
(iii) 𝛾−1(𝐷) is closed if and only if 𝐷 is closed.
(iv) 𝛾−1(𝐷) is convex if and only if 𝐷 is convex.

Proof. Apply respectively Proposition 4.4 (ii), Proposition 4.5 (i), Proposition 4.5 (iii), and Theorem 4.6 (i)
to 𝜄𝐷 .

We close this section with formulas for the convex hull and the set of extreme points of spectral
sets in terms of that of the associated invariant sets, together with several illustrating examples. Here,
given a subset 𝐶 of a Euclidean space H , we denote by conv𝐶 its convex hull and, if 𝐶 is convex, by
ext𝐶 its set of extreme points.

Proposition 4.9. Suppose that Assumption 3.1 is in force and let 𝐷 be a nonempty S-invariant subset
of X. Then the following hold:

(i) conv𝛾−1(𝐷) = 𝛾−1(conv𝐷).
(ii) Suppose that 𝐷 is convex. Then ext𝛾−1(𝐷) = 𝛾−1(ext𝐷).

Proof. (i): Let 𝑋 ∈ ℌ. First, suppose that 𝑋 ∈ conv𝛾−1(𝐷), and let (𝑋𝑖)𝑖∈𝐼 and (𝛼𝑖)𝑖∈𝐼 be finite families
in conv𝛾−1(𝐷) and ]0, 1], respectively, such that∑︁

𝑖∈𝐼
𝛼𝑖 = 1 and 𝑋 =

∑︁
𝑖∈𝐼

𝛼𝑖𝑋𝑖 . (4.12)

Note that

(∀𝑖 ∈ 𝐼 ) 𝛾 (𝑋𝑖) ∈ 𝐷. (4.13)

In turn, appealing to Theorem 3.9, we obtain finite families (s𝑗 )𝑗∈𝐽 in S and (𝛽𝑗 )𝑗∈𝐽 in ]0, 1] such that∑︁
𝑗∈𝐽

𝛽𝑗 = 1 and 𝛾 (𝑋 ) =
∑︁
𝑗∈𝐽

𝛽𝑗

(
s𝑗 ·

(∑︁
𝑖∈𝐼

𝛼𝑖𝛾 (𝑋𝑖)
))
. (4.14)

On the one hand, we have∑︁
(𝑖, 𝑗)∈𝐼×𝐽

𝛼𝑖𝛽𝑗 = 1 and 𝛾 (𝑋 ) =
∑︁

(𝑖, 𝑗)∈𝐼×𝐽
𝛼𝑖𝛽𝑗

(
s𝑗 · 𝛾 (𝑋𝑖)

)
. (4.15)

On the other hand, using the S-invariance of𝐷 and (4.13), we get (∀𝑖 ∈ 𝐼 ) (∀𝑗 ∈ 𝐽 ) s𝑗 ·𝛾 (𝑋𝑖) ∈ 𝐷 . There-
fore 𝛾 (𝑋 ) ∈ conv𝐷 or, equivalently, 𝑋 ∈ 𝛾−1(conv𝐷). Conversely, suppose that 𝑋 ∈ 𝛾−1(conv𝐷),
that is, there exist finite families (𝑦𝑘 )𝑘∈𝐾 in 𝐷 and (𝛿𝑘 )𝑘∈𝐾 in ]0, 1] such that∑︁

𝑘∈𝐾
𝛿𝑘 = 1 and 𝛾 (𝑋 ) =

∑︁
𝑘∈𝐾

𝛿𝑘𝑦𝑘 . (4.16)

Take a ∈ A𝑋 and set (∀𝑘 ∈ 𝐾) 𝑌𝑘 = 𝛬a𝑦𝑘 . For every 𝑘 ∈ 𝐾 , it follows (3.2) and (3.1) that 𝛾 (𝑌𝑘 ) =

(𝛾 ◦ 𝛬a) (𝑦𝑘 ) = 𝜏 (𝑦𝑘 ) ∈ S · 𝑦𝑘 ⊂ 𝐷 , which confirms that 𝑌𝑘 ∈ 𝛾−1(𝐷). However, the linearity of 𝛬a
gives

𝑋 = 𝛬a𝛾 (𝑋 ) =
∑︁
𝑘∈𝐾

𝛿𝑘𝛬a𝑦𝑘 =
∑︁
𝑘∈𝐾

𝛿𝑘𝑌𝑘 . (4.17)

19



As a result, 𝑋 ∈ conv𝛾−1(𝐷).
(ii): Corollary 4.8 (iv) asserts that 𝛾−1(𝐷) is convex. Now take 𝑋 ∈ ℌ and a ∈ A𝑋 . First, suppose

that 𝑋 ∈ ext𝛾−1(𝐷), and let 𝑦 and 𝑧 be in 𝐷 and 𝛼 ∈ ]0, 1[ be such that 𝛾 (𝑋 ) = 𝛼𝑦 + (1 − 𝛼)𝑧. We
must show that 𝑦 = 𝑧. Towards this end, set 𝑌 = 𝛬a𝑦 and 𝑍 = 𝛬a𝑧. We deduce from (3.2) and (3.1)
that 𝛾 (𝑌 ) = (𝛾 ◦ 𝛬a) (𝑦) = 𝜏 (𝑦) ∈ S ·𝑦 ⊂ 𝐷 or, equivalently, 𝑌 ∈ 𝛾−1(𝐷). Likewise 𝑍 ∈ 𝛾−1(𝐷). At the
same time, by linearity of 𝛬a,

𝑋 = 𝛬a𝛾 (𝑋 ) = 𝛼𝛬a𝑦 + (1 − 𝛼)𝛬a𝑧 = 𝛼𝑌 + (1 − 𝛼)𝑍 . (4.18)

Therefore, because 𝑋 is an extreme point of 𝛾−1(𝐷), we must have 𝑌 = 𝑍 , which leads to ∥𝑦 − 𝑧∥ =

∥𝛬a𝑦 − 𝛬a𝑧∥ = ∥𝑌 − 𝑍 ∥ = 0. Conversely, assume that 𝛾 (𝑋 ) ∈ ext𝐷 , and let𝑈 ∈ 𝛾−1(𝐷),𝑉 ∈ 𝛾−1(𝐷),
and 𝛽 ∈ ]0, 1[ be such that 𝑋 = 𝛽𝑈 + (1 − 𝛽)𝑉 . We infer from Theorem 3.9 that there exist finite
families (s𝑖)𝑖∈𝐼 in S and (𝛼𝑖)𝑖∈𝐼 in ]0, 1] such that∑︁

𝑖∈𝐼
𝛼𝑖 = 1 and 𝛾 (𝑋 ) =

∑︁
𝑖∈𝐼

𝛼𝑖

(
s𝑖 ·

(
𝛽𝛾 (𝑈 ) + (1 − 𝛽)𝛾 (𝑉 )

) )
. (4.19)

By linearity,

𝛾 (𝑋 ) =
∑︁
𝑖∈𝐼

𝛼𝑖𝛽
(
s𝑖 · 𝛾 (𝑈 )

)
+

∑︁
𝑖∈𝐼

𝛼𝑖 (1 − 𝛽)
(
s𝑖 · 𝛾 (𝑉 )

)
. (4.20)

On the other hand, for every 𝑖 ∈ 𝐼 , since {𝛾 (𝑈 ), 𝛾 (𝑉 )} ⊂ 𝐷 and 𝐷 is S-invariant, we get s𝑖 · 𝛾 (𝑈 ) ∈ 𝐷
and s𝑖 · 𝛾 (𝑉 ) ∈ 𝐷 . Thus, inasmuch as 𝛾 (𝑋 ) is an extreme point of 𝐷 , it follows that

(∀𝑖 ∈ 𝐼 ) 𝛾 (𝑋 ) = s𝑖 · 𝛾 (𝑈 ) = s𝑖 · 𝛾 (𝑉 ). (4.21)

In turn, by Proposition 3.5 (iii) and the assumption that S acts onX by linear isometries, ∥𝑋 ∥ = ∥𝑈 ∥ =
∥𝑉 ∥. Therefore, we derive from [6, Corollary 2.15] that

𝛽 (1 − 𝛽)∥𝑈 −𝑉 ∥2 = 𝛽 ∥𝑈 ∥2 + (1 − 𝛽)∥𝑉 ∥2 − ∥𝛽𝑈 + (1 − 𝛽)𝑉 ∥2

= 𝛽 ∥𝑋 ∥2 + (1 − 𝛽)∥𝑋 ∥2 − ∥𝑋 ∥2

= 0, (4.22)

which completes the proof.

As a consequence, we can describe explicitly the convex hull of a set of elements with prescribed
spectrum.

Example 4.10. Suppose that Assumption 3.1 is in force and let 𝑥 ∈ range𝛾 . Then

conv
{
𝑋 ∈ ℌ | 𝛾 (𝑋 ) = 𝑥

}
=

{
𝑋 ∈ ℌ | 𝛾 (𝑋 ) ∈ conv(S · 𝑥)

}
. (4.23)

Proof. Denote by 𝐷 the S-invariant set S · 𝑥 . Then, it results from Proposition 3.5 (i) and Proposi-
tion 3.3 (i) that

(∀𝑋 ∈ ℌ) 𝛾 (𝑋 ) ∈ 𝐷 ⇔ (∃ s ∈ S) 𝛾 (𝑋 ) = s · 𝑥 .
⇒ 𝛾 (𝑋 ) = 𝜏

(
𝛾 (𝑋 )

)
= 𝜏 (s · 𝑥) = 𝜏 (𝑥) = 𝑥, (4.24)

which confirms that
{
𝑋 ∈ ℌ | 𝛾 (𝑋 ) = 𝑥

}
=

{
𝑋 ∈ ℌ | 𝛾 (𝑋 ) ∈ 𝐷

}
= 𝛾−1(𝐷). Thus, we derive from

Proposition 4.9 (i) that

conv
{
𝑋 ∈ ℌ | 𝛾 (𝑋 ) = 𝑥

}
= conv𝛾−1(𝐷) = 𝛾−1(conv𝐷) =

{
𝑋 ∈ ℌ | 𝛾 (𝑋 ) ∈ conv(S · 𝑥)

}
, (4.25)

as desired.
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Example 4.11 (eigenvalue decomposition). In the context of Example 2.6, (4.23) reads

conv
{
𝑋 ∈ H𝑁 (K) | 𝛾 (𝑋 ) = 𝑥

}
=

{
𝑋 ∈ H𝑁 (K) | 𝛾 (𝑋 ) ∈ conv(P𝑁 · 𝑥)

}
, (4.26)

where 𝑥 = (𝜉𝑖)1⩽𝑖⩽𝑁 ∈ R𝑁 satisfies 𝜉1 ⩾ · · · ⩾ 𝜉𝑁 . When K is R or C, we recover several existing
results on the convex hull of a set of Hermitian matrices with prescribed spectrum, e.g., [26, Proposi-
tion 2.1], [44, Corollary 9.3], and [53, Theorem 12].

Specializing Example 4.10 to the context of Example 2.8 and choosing 𝑥 = (1, . . . , 1), we recover
an expression for the convex hull of the special orthogonal group which first appeared in [53, Corol-
lary 10].

Example 4.12 (signed singular value decomposition). Consider the setting of Example 2.8 and set
𝑥 = (1, . . . , 1) ∈ R𝑁 . Then

conv SO𝑁 =
{
𝑌 ∈ R𝑁×𝑁 |

(
𝜎1(𝑌 ), . . . , 𝜎𝑁−1(𝑌 ), 𝜎𝑁 (𝑌 ) sign(det𝑌 )

)
∈ conv(S · 𝑥)

}
. (4.27)

The last illustration of Proposition 4.9 is a formula for the set of extreme points of the unit ball of a
unitarily invariant norm on K𝑀×𝑁 . It covers, in particular, [57, Theorem 5.1] in the real and complex
cases.

Example 4.13 (singular value decomposition). Consider the setting of Example 2.7. Let 𝜑 be a norm
on R𝑚 which is P𝑚± -invariant, and set𝛷 = 𝜑 ◦ 𝜎 . Then the following hold:

(i) 𝛷 is a unitarily invariant norm on K𝑀×𝑁 , that is,𝛷 is a norm on K𝑀×𝑁 which satisfies(
∀𝑋 ∈ K𝑀×𝑁 ) (

∀𝑈 ∈ U𝑀 (K)
) (
∀𝑉 ∈ U𝑁 (K)

)
𝛷 (𝑈𝑋𝑉 ∗) =𝛷 (𝑋 ). (4.28)

(ii) Denote by B and 𝐵 the unit balls of𝛷 and 𝜑 , respectively. Then extB= 𝜎−1(ext𝐵).

Proof. (i): An easy consequence of Proposition 4.1 and the singular value decomposition theorem.
(ii): Note that B= 𝜎−1(𝐵) and apply Proposition 4.9 (ii).

5. Conjugation and subdifferentiability of spectral functions

Two fundamental convex analytical objects attached to a proper function 𝑓 : H → ]−∞,+∞] defined
on a Euclidean spaceH are its conjugate

𝑓 ∗ : H → [−∞,+∞] : 𝑦 ↦→ sup
𝑥∈H

(
⟨𝑥 |𝑦⟩ − 𝑓 (𝑥)

)
, (5.1)

and its subdifferential

𝜕𝑓 : H → 2H : 𝑥 ↦→
{
𝑦 ∈ H | (∀𝑧 ∈ H) ⟨𝑧 − 𝑥 |𝑦⟩ + 𝑓 (𝑥) ⩽ 𝑓 (𝑧)

}
, (5.2)

which are related by the Fenchel–Young equality

(∀𝑥 ∈ H)(∀𝑦 ∈ H) 𝑦 ∈ 𝜕𝑓 (𝑥) ⇔ 𝑓 (𝑥) + 𝑓 ∗(𝑦) = ⟨𝑥 |𝑦⟩ ⇔ 𝑥 ∈ Argmin
(
𝑓 − ⟨· |𝑦⟩

)
, (5.3)

where Argmin𝑔 denotes the set of minimizers of a function 𝑔 : H → ]−∞,+∞], that is,

Argmin𝑔 =

{{
𝑥 ∈ H | 𝑔(𝑥) = inf 𝑔(H)

}
if inf 𝑔(H) < +∞,

∅ otherwise.
(5.4)
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In this section, we derive formulas for evaluating the conjugate and subdifferential of a spectral func-
tion in terms of that of the associated invariant function. Towards this end, we first establish a reduced
minimization principle, which will play a fundamental role in our analysis. In essence, one can replace
an optimality condition involving spectral functions by one that involves the associated invariant
functions and the spectral mapping.

Theorem5.1. Suppose that Assumption 3.1 is in force, let𝜑 : X → ]−∞,+∞] be proper and S-invariant,
and let 𝑌 ∈ ℌ. Set

S= Argmin
(
𝜑 ◦ 𝛾 − ⟨· |𝑌 ⟩

)
and 𝑆 = Argmin

(
𝜑 − ⟨· | 𝛾 (𝑌 )⟩

)
. (5.5)

Then the following hold:

(i) inf𝑋∈ℌ
(
𝜑 (𝛾 (𝑋 )) − ⟨𝑋 |𝑌 ⟩

)
= inf𝑥∈X

(
𝜑 (𝑥) − ⟨𝑥 | 𝛾 (𝑌 )⟩

)
.

(ii) Let 𝑋 ∈ ℌ. Then

𝑋 ∈ S ⇔
{
𝛾 (𝑋 ) ∈ 𝑆
(∃a ∈ A) 𝑋 = 𝛬a𝛾 (𝑋 ) and 𝑌 = 𝛬a𝛾 (𝑌 ).

(5.6)

(iii) Let 𝑥 ∈ X and b ∈ A𝑌 . Then 𝛬b𝑥 ∈ S ⇔ 𝑥 ∈ 𝑆 .
(iv) S=

{
𝛬b𝑥 | 𝑥 ∈ 𝑆 and b ∈ A𝑌

}
.

(v) S is convex if and only if 𝑆 is convex.

(vi) S is a singleton if and only if 𝑆 is a singleton.

Proof. We denote by 𝜇 and 𝜈 the infima on the left-hand and right-hand sides of (i), respectively. Using
the S-invariance of 𝜑 and Proposition 4.4 (i), we get

(∀𝑥 ∈ X)(∀b ∈ A𝑌 ) 𝜑 (𝑥) − ⟨𝑥 | 𝛾 (𝑌 )⟩ = 𝜑
(
𝛾 (𝛬b𝑥)

)
− ⟨𝛬b𝑥 | 𝛬b𝛾 (𝑌 )⟩

= 𝜑
(
𝛾 (𝛬b𝑥)

)
− ⟨𝛬b𝑥 |𝑌 ⟩ (5.7)

⩾ 𝜇. (5.8)

At the same time, since 𝜑 is proper, Proposition 4.4 (i) ensures that 𝜑 ◦ 𝛾 is likewise.
(i): It results from property [D] in Definition 2.1 that

(∀𝑋 ∈ ℌ) 𝜑
(
𝛾 (𝑋 )

)
− ⟨𝑋 |𝑌 ⟩ ⩾ 𝜑

(
𝛾 (𝑋 )

)
− ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩ ⩾ 𝜈. (5.9)

Therefore 𝜇 ⩾ 𝜈 . On the other hand, taking the infimum over 𝑥 ∈ X in (5.8) yields 𝜈 ⩾ 𝜇. Altogether
𝜇 = 𝜈 .
(ii): First, assume that 𝑋 ∈ S. Then 𝜑 (𝛾 (𝑋 )) ∈ R. In turn, since (i) and (5.9) entail that

𝜈 = 𝜇 = 𝜑
(
𝛾 (𝑋 )

)
− ⟨𝑋 |𝑌 ⟩ ⩾ 𝜑

(
𝛾 (𝑋 )

)
− ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩ ⩾ 𝜈. (5.10)

we get

𝜑
(
𝛾 (𝑋 )

)
− ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩ = 𝜈 = inf

𝑥∈X

(
𝜑 (𝑥) − ⟨𝑥 | 𝛾 (𝑌 )⟩

)
(5.11)

and

⟨𝑋 |𝑌 ⟩ = ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩. (5.12)

22



Hence 𝛾 (𝑋 ) ∈ 𝑆 by (5.11), while (5.12) and Proposition 3.6 force A𝑋 ∩ A𝑌 ≠ ∅. Conversely, assume
that 𝛾 (𝑋 ) ∈ 𝑆 and that there exists a ∈ A for which 𝑋 = 𝛬a𝛾 (𝑋 ) and 𝑌 = 𝛬a𝛾 (𝑌 ). Then ⟨𝑋 |𝑌 ⟩ =
⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩ due to the identity 𝛬∗

a ◦ 𝛬a = IdX . Thus, we derive from (i) that

𝜑
(
𝛾 (𝑋 )

)
− ⟨𝑋 |𝑌 ⟩ = 𝜑

(
𝛾 (𝑋 )

)
− ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩ = 𝜈 = 𝜇 (5.13)

and, therefore, that 𝑋 ∈ S.
(iii): This follows from (5.7) and (i).
(iv): Combine (ii) and (iii).
(v): Let 𝛼 ∈ ]0, 1[ and b ∈ A𝑌 . Suppose first that S is convex and that 𝑥0 and 𝑥1 lie in 𝑆 , and set

𝑥 = (1 − 𝛼)𝑥0 + 𝛼𝑥1. Item (iv) implies that 𝛬b𝑥0 and 𝛬b𝑥1 lie in the convex set S, which leads to
𝛬b𝑥 = (1 − 𝛼)𝛬b𝑥0 + 𝛼𝛬b𝑥1 ∈ S. Hence, (iii) forces 𝑥 ∈ 𝑆 . Conversely, suppose that 𝑆 is convex and
that 𝑋0 and 𝑋1 lie in S, and set 𝑋 = (1 − 𝛼)𝑋0 + 𝛼𝑋1. We infer from (ii) and Proposition 3.6 that(

∀𝑖 ∈ {0, 1}
)

𝛾 (𝑋𝑖) ∈ 𝑆 and ⟨𝑋𝑖 |𝑌 ⟩ = ⟨𝛾 (𝑋𝑖) | 𝛾 (𝑌 )⟩. (5.14)

At the same time, Theorem 3.9 ensures the existence of finite families (s𝑗 )𝑗∈𝐽 in S and (𝛽𝑗 )𝑗∈𝐽 in ]0, 1]
such that∑︁

𝑗∈𝐽
𝛽𝑗 = 1 and 𝛾 (𝑋 ) =

∑︁
𝑗∈𝐽

𝛽𝑗

(
s𝑗 ·

(
(1 − 𝛼)𝛾 (𝑋0) + 𝛼𝛾 (𝑋1)

) )
. (5.15)

In turn, it results from Proposition 3.3 (iv), Proposition 3.5 (i), and (5.14) that(
∀𝑖 ∈ {0, 1}

)
(∀𝑗 ∈ 𝐽 ) ⟨s𝑗 · 𝛾 (𝑋𝑖) | 𝛾 (𝑌 )⟩ ⩽ ⟨𝛾 (𝑋𝑖) | 𝛾 (𝑌 )⟩ = ⟨𝑋𝑖 |𝑌 ⟩. (5.16)

Combining this with property [D] in Definition 2.1 and (5.15), we obtain

⟨𝑋 |𝑌 ⟩ ⩽ ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩

=
∑︁
𝑗∈𝐽

𝛽𝑗

(
(1 − 𝛼)⟨s𝑗 · 𝛾 (𝑋0) | 𝛾 (𝑌 )⟩ + 𝛼 ⟨s𝑗 · 𝛾 (𝑋1) | 𝛾 (𝑌 )⟩

)
⩽

∑︁
𝑗∈𝐽

𝛽𝑗

(
(1 − 𝛼)⟨𝑋0 |𝑌 ⟩ + 𝛼 ⟨𝑋1 |𝑌 ⟩

)
= ⟨𝑋 |𝑌 ⟩. (5.17)

Hence

⟨𝑋 |𝑌 ⟩ = ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩, (5.18)

which entails that A𝑋 ∩ A𝑌 ≠ ∅. Moreover, we deduce from (5.16) that(
∀𝑖 ∈ {0, 1}

)
(∀𝑗 ∈ 𝐽 ) ⟨s𝑗 · 𝛾 (𝑋𝑖) | 𝛾 (𝑌 )⟩ = ⟨𝛾 (𝑋𝑖) | 𝛾 (𝑌 )⟩. (5.19)

In the light of (ii), it remains to show that 𝛾 (𝑋 ) ∈ 𝑆 . For every 𝑖 ∈ {0, 1} and every 𝑗 ∈ 𝐽 , using the
S-invariance of 𝜑 , (5.19), and (5.14), we get

𝜑
(
s𝑗 · 𝛾 (𝑋𝑖)

)
− ⟨s𝑗 · 𝛾 (𝑋𝑖) | 𝛾 (𝑌 )⟩ = 𝜑

(
𝛾 (𝑋𝑖)

)
− ⟨𝛾 (𝑋𝑖) | 𝛾 (𝑌 )⟩ =min

𝑧∈X

(
𝜑 (𝑧) − ⟨𝑧 | 𝛾 (𝑌 )⟩

)
, (5.20)

which verifies that s𝑗 · 𝛾 (𝑋𝑖) ∈ 𝑆 . Consequently, appealing to (5.15) and the convexity of 𝑆 , we obtain
𝛾 (𝑋 ) ∈ 𝑆 .
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(vi): Suppose that S is a singleton, say S= {𝑋 }. Then, on the one hand, it results from (v) that 𝑆 is
convex. On the other hand, for every 𝑥 ∈ 𝑆 and every b ∈ A𝑌 , we deduce from (iv) that 𝛬b𝑥 = 𝑋 and,
thus, since 𝛬b is a linear isometry, that ∥𝑥 ∥ = ∥𝛬b𝑥 ∥ = ∥𝑋 ∥. Altogether, [6, Proposition 3.7] implies
that 𝑆 is a singleton. Conversely, assume that 𝑆 is a singleton, say 𝑆 = {𝑥}. By (v), S is convex. At
the same time, for every 𝑋 ∈ S, (iv) entails that there exists b ∈ A𝑌 such that 𝑋 = 𝛬b𝑥 , from which
we obtain ∥𝑋 ∥ = ∥𝑥 ∥. Therefore, invoking [6, Proposition 3.7] once more, we conclude that S is a
singleton.

Remark 5.2. Here are several observations on Theorem 5.1.

(i) Theorem 5.1 (iv) subsumes, in particular, [8, Theorem 1].
(ii) We derive from the first inequality in (5.9), Proposition 3.5 (i), and Theorem 5.1 (i) that

𝜇 ⩾ inf
𝑥∈X
𝜏 (𝑥)=𝑥

(
𝜑 (𝑥) − ⟨𝑥 | 𝛾 (𝑌 )⟩

)
⩾ 𝜈 = 𝜇. (5.21)

Hence

inf
𝑋∈ℌ

(
𝜑 (𝛾 (𝑋 )) − ⟨𝑋 |𝑌 ⟩

)
= inf
𝑥∈X

(
𝜑 (𝑥) − ⟨𝑥 | 𝛾 (𝑌 )⟩

)
= inf

𝑥∈X
𝜏 (𝑥)=𝑥

(
𝜑 (𝑥) − ⟨𝑥 | 𝛾 (𝑌 )⟩

)
. (5.22)

Additionally, arguing as in the proof of Theorem 5.1 (ii), we obtain

(∀𝑋 ∈ ℌ) 𝑋 ∈ Argmin
(
𝜑 ◦ 𝛾 − ⟨· |𝑌 ⟩

)
⇔


𝛾 (𝑋 ) ∈ Argmin

𝑥∈X
𝜏 (𝑥)=𝑥

(
𝜑 (𝑥) − ⟨𝑥 | 𝛾 (𝑌 )⟩

)
(∃a ∈ A) 𝑋 = 𝛬a𝛾 (𝑋 ) and 𝑌 = 𝛬a𝛾 (𝑌 ).

(5.23)

Let us illustrate these identities via a problem in eigenvalue optimization [23]. Consider the
setting of Example 2.6 with K = R, let 𝐴 ∈ R𝑀×𝑁 , let 𝑏 ∈ R𝑀 , and set

D =
{
𝑋 ∈ H𝑁 (R) | 𝐴𝜆(𝑋 ) − 𝑏 ∈ ]−∞, 0]𝑀

}
,

𝐷 =
{
𝑥 ∈ R𝑁 | 𝐴(𝑥↓) − 𝑏 ∈ ]−∞, 0]𝑀

}
,

𝐶 =
{
𝑥 ∈ R𝑁 | 𝑥↓ = 𝑥 and 𝐴𝑥 − 𝑏 ∈ ]−∞, 0]𝑀

}
.

(5.24)

Then 𝐶 is convex, 𝐷 is P𝑁 -invariant, and 𝜄D = 𝜄𝐷 ◦ 𝜆. By noting that, in the current situation,
𝜏 : 𝑥 ↦→ 𝑥↓, we apply the above identities to the P𝑁 -invariant function 𝜑 = 𝜄𝐷 + ∥ · ∥22/2 to get(

∀𝑌 ∈ H𝑁 (R)
)

inf
𝑋∈D

1
2
∥𝑋 − 𝑌 ∥2 = 1

2
∥𝑌 ∥2 + inf

𝑋∈H𝑁 (R)

(
1
2
∥𝑋 ∥2 + 𝜄D(𝑋 ) − ⟨𝑋 |𝑌 ⟩

)
=
1
2
∥𝜆(𝑌 )∥22 + inf

𝑥∈R𝑁

𝑥↓=𝑥

(
1
2
∥𝑥 ∥22 + 𝜄𝐷 (𝑥) − ⟨𝑥 | 𝜆(𝑌 )⟩

)
= inf
𝑥∈𝐷
𝑥↓=𝑥

1
2
∥𝑥 − 𝜆(𝑌 )∥22

= inf
𝑥∈𝐶

1
2
∥𝑥 − 𝜆(𝑌 )∥22, (5.25)

which implies [23, Theorem 6].
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Theorem 5.1 (i) yields at once the following calculus rule for evaluating the conjugate of a spectral
function.

Corollary 5.3. Suppose that Assumption 3.1 is in force and let 𝜑 : X → ]−∞,+∞] be S-invariant. Then
(𝜑 ◦ 𝛾)∗ = 𝜑∗ ◦ 𝛾 .

The following fact will assist us in studying subdifferentiability of spectral functions.

Lemma 5.4. LetH be a Euclidean space, let G be a group which acts onH by linear isometries, and let
𝑓 : H → [−∞,+∞] be G-invariant. Then the following hold:

(i) 𝑓 ∗ is G-invariant.
(ii) Suppose that 𝑓 is proper, and let 𝑥 ∈ H and g ∈ G. Then 𝜕𝑓 (g · 𝑥) = g · 𝜕𝑓 (𝑥).

Proof. (i): In fact, for every 𝑦 ∈ H and every g ∈ G, using Lemma 3.2 and the fact that the mapping
𝑥 ↦→ g−1 · 𝑥 is a bijection, we obtain

𝑓 ∗(g · 𝑦) = sup
𝑥∈H

(
⟨𝑥 | g · 𝑦⟩ − 𝑓 (𝑥)

)
= sup
𝑥∈H

(
⟨g−1 · 𝑥 |𝑦⟩ − 𝑓

(
g−1 · 𝑥

) )
= sup
𝑥∈H

(
⟨𝑥 |𝑦⟩ − 𝑓 (𝑥)

)
= 𝑓 ∗(𝑦), (5.26)

as desired.
(ii): It results from (5.3), (i), and Lemma 3.2 that

(∀𝑦 ∈ H) 𝑦 ∈ 𝜕𝑓 (g · 𝑥) ⇔ 𝑓 (g · 𝑥) + 𝑓 ∗(𝑦) = ⟨g · 𝑥 |𝑦⟩
⇔ 𝑓 (𝑥) + 𝑓 ∗

(
g−1 · 𝑦

)
= ⟨𝑥 | g−1 · 𝑦⟩

⇔ g−1 · 𝑦 ∈ 𝜕𝑓 (𝑥)
⇔ 𝑦 ∈ g · 𝜕𝑓 (𝑥), (5.27)

which completes the proof.

Next, we examine subdifferentiability of spectral functions.

Proposition 5.5. Suppose that Assumption 3.1 is in force, let 𝜑 : X → ]−∞,+∞] be proper and S-
invariant, and let 𝑋 ∈ ℌ. Then the following hold:

(i) For every 𝑌 ∈ ℌ, 𝑌 ∈ 𝜕(𝜑 ◦ 𝛾) (𝑋 ) if and only if 𝛾 (𝑌 ) ∈ 𝜕𝜑 (𝛾 (𝑋 )) and there exists a ∈ A such
that 𝑋 = 𝛬a𝛾 (𝑋 ) and 𝑌 = 𝛬a𝛾 (𝑌 ).

(ii) 𝜕(𝜑 ◦ 𝛾) (𝑋 ) =
{
𝛬a𝑦 | 𝑦 ∈ 𝜕𝜑 (𝛾 (𝑋 )) and a ∈ A𝑋

}
.

(iii) 𝜕(𝜑 ◦ 𝛾) (𝑋 ) is a singleton if and only if 𝜕𝜑 (𝛾 (𝑋 )) is a singleton.

Proof. (i): In view of (5.3), this follows from Theorem 5.1 (ii).
(ii): The inclusion 𝜕(𝜑 ◦ 𝛾) (𝑋 ) ⊂

{
𝛬a𝑦 | 𝑦 ∈ 𝜕𝜑 (𝛾 (𝑋 )) and a ∈ A𝑋

}
follows from (i). To establish

the reverse inclusion, suppose that 𝑦 ∈ 𝜕𝜑 (𝛾 (𝑋 )) and let a ∈ A𝑋 . Lemma 5.4 (i) asserts that 𝜑∗ is
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S-invariant and, in turn, Proposition 4.4 (i) implies that 𝜑∗ ◦ 𝛾 ◦ 𝛬a = 𝜑∗. Therefore, we derive from
Corollary 5.3 and (5.3) that

(𝜑 ◦ 𝛾) (𝑋 ) + (𝜑 ◦ 𝛾)∗(𝛬a𝑦) = 𝜑
(
𝛾 (𝑋 )

)
+ 𝜑∗ (𝛾 (𝛬a𝑦))

= 𝜑
(
𝛾 (𝑋 )

)
+ 𝜑∗(𝑦)

= ⟨𝛾 (𝑋 ) |𝑦⟩
= ⟨𝛬a𝛾 (𝑋 ) | 𝛬a𝑦⟩
= ⟨𝑋 | 𝛬a𝑦⟩. (5.28)

Consequently, invoking (5.3) once more, we infer that 𝛬a𝑦 ∈ 𝜕(𝜑 ◦ 𝛾) (𝑋 ).
(iii): Note that both of the sets 𝜕(𝜑 ◦𝛾) (𝑋 ) and 𝜕𝜑 (𝛾 (𝑋 )) are convex due to [6, Proposition 16.4(iii)].

We can now use (ii) and proceed analogously to the proof of Theorem 5.1 (vi) to arrive at the conclu-
sion.

Remark 5.6. Let us make a connection between Proposition 5.5 and existing works.
(i) The realization of Proposition 5.5 (i) and (ii) in normal decomposition systems (Example 2.4) is

established in [35, Theorem 4.5]; see [33, 34] for further special cases in the context of matrices.
(ii) The special case of Proposition 5.5 (i) in the context of Euclidean Jordan algebras (Example 2.5)

is established in [1, Corollary 31].
Instantiations of Corollary 5.3, Proposition 5.5, and Corollary 5.8 in the frameworks described in
Examples 2.6, 2.7, and 2.8 can be found in, e.g., [18] and the references therein.

We deduce at once from Proposition 5.5 (i) the so-called commutation principle [25, Theorem 1.3].
Example 5.7 (normal decomposition system). Consider the normal decomposition system setting of
Example 2.4. Let 𝜑 : X → ]−∞,+∞] be proper, convex, and S-invariant, let 𝛹 : ℌ → R be Fréchet
differentiable, and let 𝑋 ∈ ℌ be such that 𝛾 (𝑋 ) ∈ dom𝜑 . Suppose that 𝑋 is a local minimizer of
𝜑 ◦ 𝛾 +𝛹. Then
𝛾
(
−∇𝛹 (𝑋 )

)
∈ 𝜕𝜑

(
𝛾 (𝑋 )

)
and

[
(∃ g ∈ G) 𝑋 = g · 𝛾 (𝑋 ) and ∇𝛹 (𝑋 ) = −g · 𝛾

(
−∇𝛹 (𝑋 )

) ]
. (5.29)

Proof. Theorem 4.6 asserts that 𝜑 ◦ 𝛾 is convex. Therefore, since 𝑋 ∈ dom(𝜑 ◦ 𝛾 +𝛹), we infer from
[41, Propositions 1.114 and 1.107(i), and Theorem 1.93] that 0 ∈ 𝜕(𝜑 ◦𝛾) (𝑋 ) +∇𝛹 (𝑋 ). The conclusion
thus follows from Proposition 5.5 (i).

We end this section with Fréchet differentiability property of spectral functions.
Corollary 5.8. Suppose that Assumption 3.1 is in force and let 𝜑 : X → ]−∞,+∞] be proper, convex,
and S-invariant, and let 𝑋 ∈ ℌ. Then 𝜑 ◦𝛾 is differentiable at 𝑋 if and only if 𝜑 is differentiable at 𝛾 (𝑋 ),
in which case

𝛾
(
∇(𝜑 ◦ 𝛾) (𝑋 )

)
= ∇𝜑

(
𝛾 (𝑋 )

)
and (∀a ∈ A𝑋 ) ∇(𝜑 ◦ 𝛾) (𝑋 ) = 𝛬a

(
∇𝜑

(
𝛾 (𝑋 )

) )
. (5.30)

Proof. Theorem 4.6 (i) ensures that 𝜑 ◦𝛾 is convex. Thus, according to [45, Theorem 25.1] and Propo-
sition 5.5 (iii),

𝜑 ◦ 𝛾 is differentiable at 𝑋 ⇔ 𝜕(𝜑 ◦ 𝛾) (𝑋 ) is a singleton
⇔ 𝜕𝜑

(
𝛾 (𝑋 )

)
is a singleton

⇔ 𝜑 is differentiable at 𝛾 (𝑋 ). (5.31)

Thus, if 𝜑 is differentiable at 𝛾 (𝑋 ), then by the above equivalences and [45, Theorem 25.1], we get
𝜕(𝜑 ◦ 𝛾) (𝑋 ) = {∇(𝜑 ◦ 𝛾) (𝑋 )} and 𝜕𝜑 (𝛾 (𝑋 )) = {∇𝜑 (𝛾 (𝑋 ))}, from which and items (i) and (ii) in
Proposition 5.5 we obtain (5.30).
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6. Bregman proximity operators of spectral functions

In this last section, we characterize the Bregman proximity (or proximal point) operator of spectral
functions in the setting of general spectral decomposition systems. These operators generalize the
classical proximal point operators that are the basic building blocks of modern first-order nonsmooth
optimization algorithms [6, 7, 15].

LetH be a Euclidean space. A function 𝑔 ∈ 𝛤0(H) is said to be:

• essentially smooth if 𝜕𝑔 is at most single-valued;
• essentially strictly convex if it is strictly convex on every convex subset of dom 𝜕𝑔 =

{
𝑥 ∈ H |

𝜕𝑔(𝑥) ≠ ∅
}
;

• a Legendre function if it is both essentially smooth and essentially strictly convex;

see [45, Section 26]. If 𝑔 ∈ 𝛤0(H) is a Legendre function, then

𝐷𝑔 : H ×H → [0,+∞]

(𝑦, 𝑥) ↦→
{
𝑔(𝑦) − 𝑔(𝑥) − ⟨𝑦 − 𝑥 | ∇𝑔(𝑥)⟩ if 𝑥 ∈ int dom𝑔,
+∞, otherwise

(6.1)

is called the Bregman distance associated with 𝑔. Now let 𝑓 : H → ]−∞,+∞] and let 𝑔 ∈ 𝛤0(H) be a
Legendre function such that (dom 𝑓 ) ∩ (dom𝑔) ≠ ∅. The Bregman envelope of 𝑓 with respect to 𝑔 is
defined by

env𝑔
𝑓
: H → [−∞,+∞] : 𝑥 ↦→ inf

𝑦∈H

(
𝑓 (𝑦) + 𝐷𝑔 (𝑦, 𝑥)

)
, (6.2)

and the Bregman proximity operator (or, in the terminology of [4], 𝐷-prox operator) of 𝑓 with respect
to 𝑔 is defined by

Prox𝑔
𝑓
: H → 2H

𝑥 ↦→ Argmin
(
𝑓 + 𝐷𝑔 ( · , 𝑥)

)
=

{
Argmin

(
𝑓 + 𝑔 − ⟨· | ∇𝑔(𝑥)⟩

)
if 𝑥 ∈ int dom𝑔,

∅ otherwise.

(6.3)

In particular, given a subset 𝐶 of H such that 𝐶 ∩ dom𝑔 ≠ ∅, we define the Bregman distance to 𝐶
with respect to 𝑔 as

dist𝑔
𝐶
= env𝑔𝜄𝐶 , (6.4)

and the Bregman projector onto 𝐶 with respect to 𝑔 as

Proj𝑔
𝐶
= Prox𝑔𝜄𝐶 . (6.5)

Finally, when𝑔 = ∥ · ∥2/2, we shall omit the superscript and simply write env𝑓 , Prox𝑓 , dist𝐶 , and Proj𝐶 .
We can now establish, under the umbrella of Assumption 3.1, relationship between the Bregman

proximity operators Prox𝜓◦𝛾𝜑◦𝛾 and Prox𝜓𝜑 , where 𝜑 : X → ]−∞,+∞] is S-invariant and𝜓 ◦𝛾 is a Legen-
dre spectral function, without any additional assumptions on 𝜑 and𝜓 . This necessitates the following
technical result.

Proposition 6.1. Suppose that Assumption 3.1 is in force and let 𝜑 ∈ 𝛤0(X) be S-invariant. Then the
following hold:
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(i) 𝜑 ◦ 𝛾 is essentially smooth if and only if 𝜑 is essentially smooth.

(ii) 𝜑 ◦ 𝛾 is essentially strictly convex if and only if 𝜑 is essentially strictly convex.

(iii) 𝜑 ◦ 𝛾 is a Legendre function if and only if 𝜑 is a Legendre function.

Proof. Theorem 4.6 (ii) states that 𝜑 ◦ 𝛾 ∈ 𝛤0(ℌ).
(i): Suppose that 𝜑 ◦ 𝛾 is essentially smooth, and take 𝑥 ∈ dom 𝜕𝜑 and a ∈ A. By (3.1), there exists

s ∈ S such that

𝛾 (𝛬a𝑥) = 𝜏 (𝑥) = s · 𝑥, (6.6)

where the first equality follows from (3.2). In turn, because 𝜕𝜑 (𝑥) is nonempty, Lemma 5.4 (ii) ensures
that 𝜕𝜑 (𝛾 (𝛬a𝑥)) is likewise, and it thus results from Proposition 5.5 (ii) that 𝜕(𝜑 ◦ 𝛾) (𝛬a𝑥) ≠ ∅.
Hence, the essential smoothness of 𝜑 ◦𝛾 forces 𝜕(𝜑 ◦𝛾) (𝛬a𝑥) to be a singleton and, therefore, Propo-
sition 5.5 (iii) entails that 𝜕𝜑 (𝛾 (𝛬a𝑥)) is likewise. Combining with (6.6), we infer from Lemma 5.4 (ii)
that 𝜕𝜑 (𝑥) must be a singleton. As a result, 𝜑 is essentially smooth. Conversely, suppose that 𝜑 is
essentially smooth and let 𝑋 ∈ dom 𝜕(𝜑 ◦ 𝛾). Then, Proposition 5.5 (i) implies that 𝛾 (𝑋 ) ∈ dom 𝜕𝜑

and 𝜑 is therefore differentiable at 𝛾 (𝑋 ). Consequently, we deduce from Corollary 5.8 that 𝜑 ◦ 𝛾 is
differentiable at 𝑋 and conclude that 𝜑 ◦ 𝛾 is essentially smooth.
(ii): We deduce from Lemma 5.4 (i) that 𝜑∗ is an S-invariant function in 𝛤0(X). Thus, on account of

[45, Theorem 26.3], Corollary 5.3, and (i), we obtain

𝜑 ◦ 𝛾 is essentially strictly convex ⇔ 𝜑∗ ◦ 𝛾 = (𝜑 ◦ 𝛾)∗ is essentially smooth
⇔ 𝜑∗ is essentially smooth
⇔ 𝜑 is essentially strictly convex, (6.7)

as claimed.
(iii): Combine (i) and (ii).

The main results of this section are laid out in the following theorem.

Theorem 6.2. Suppose that Assumption 3.1 is in force. Let 𝜑 : X → ]−∞,+∞] be a proper S-invariant
function, let 𝜓 ∈ 𝛤0(X) be an S-invariant Legendre function such that (dom𝜑) ∩ (dom𝜓 ) ≠ ∅, and let
𝑋 ∈ ℌ. Then the following hold:

(i) env𝜓◦𝛾𝜑◦𝛾 𝑋 = (env𝜓𝜑 ) (𝛾 (𝑋 )).
(ii) Let 𝑍 ∈ ℌ. Then

𝑍 ∈ Prox𝜓◦𝛾𝜑◦𝛾 𝑋 ⇔
{
𝛾 (𝑍 ) ∈ Prox𝜓𝜑 𝛾 (𝑋 )
(∃a ∈ A) 𝑋 = 𝛬a𝛾 (𝑋 ) and 𝑍 = 𝛬a𝛾 (𝑍 ).

(6.8)

(iii) Let 𝑧 ∈ X and a ∈ A𝑋 . Then 𝛬a𝑧 ∈ Prox𝜓◦𝛾𝜑◦𝛾 𝑋 ⇔ 𝑧 ∈ Prox𝜓𝜑 𝛾 (𝑋 ).

(iv) Prox𝜓◦𝛾𝜑◦𝛾 𝑋 =
{
𝛬a𝑧 | 𝑧 ∈ Prox𝜓𝜑 𝛾 (𝑋 ) and a ∈ A𝑋

}
.

(v) Prox𝜓◦𝛾𝜑◦𝛾 𝑋 is convex if and only if Prox𝜓𝜑 𝛾 (𝑋 ) is convex.

(vi) Prox𝜓◦𝛾𝜑◦𝛾 𝑋 is a singleton if and only if Prox𝜓𝜑 𝛾 (𝑋 ) is a singleton.
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Proof. Proposition 6.1 (iii) asserts that 𝜓 ◦ 𝛾 is a Legendre function, while Proposition 4.4 (ii) states
that int dom(𝜓 ◦ 𝛾) = 𝛾−1(int dom𝜓 ). We assume henceforth that

𝛾 (𝑋 ) ∈ int dom𝜓 (6.9)

since otherwise the assertions are clear. Then𝜓 is differentiable at 𝛾 (𝑋 ) and𝜓 ◦ 𝛾 is differentiable at
𝑋 . In turn, upon setting

𝑌 = ∇(𝜓 ◦ 𝛾) (𝑋 ) and 𝑦 = ∇𝜓
(
𝛾 (𝑋 )

)
, (6.10)

we get from Corollary 5.8 that

𝛾 (𝑌 ) = 𝑦 and (∀a ∈ A𝑋 ) 𝑌 = 𝛬a𝑦 = 𝛬a𝛾 (𝑌 ). (6.11)

Therefore, by Proposition 3.6,

⟨𝑋 |𝑌 ⟩ = ⟨𝛾 (𝑋 ) | 𝛾 (𝑌 )⟩ = ⟨𝛾 (𝑋 ) |𝑦⟩. (6.12)

We claim that

A𝑋 = A𝑌 . (6.13)

Indeed, it results from (6.11) that A𝑋 ⊂ A𝑌 . Now take b ∈ A𝑌 and set𝑊 = 𝛬b𝛾 (𝑋 ). Proposition 3.5 (i)
implies that 𝛾 (𝑊 ) = 𝛾 (𝑋 ) and, therefore, that

𝛬b𝛾 (𝑊 ) = 𝛬b𝛾 (𝑋 ) =𝑊 (6.14)

Thus b ∈ A𝑊 . Additionally, we have

𝜕𝜓
(
𝛾 (𝑊 )

)
= 𝜕𝜓

(
𝛾 (𝑋 )

)
=

{
∇𝜓

(
𝛾 (𝑋 )

)}
, (6.15)

where the last equality follows from the differentiability of𝜓 at 𝛾 (𝑋 ). Hence, on account of Proposi-
tion 5.5 (ii), 𝛬b(∇𝜓 (𝛾 (𝑋 ))) ∈ 𝜕(𝜓 ◦ 𝛾) (𝑊 ) and, because 𝜓 ◦ 𝛾 is a Legendre function, we must have
∇(𝜓 ◦ 𝛾) (𝑊 ) = 𝛬b(∇𝜓 (𝛾 (𝑋 ))). In turn, since b ∈ A𝑌 , we derive from (6.10) and (6.11) that

∇(𝜓 ◦ 𝛾) (𝑊 ) = 𝛬b𝛾 (𝑌 ) = 𝑌 = ∇(𝜓 ◦ 𝛾) (𝑋 ). (6.16)

Therefore, since 𝜓 ◦ 𝛾 is a Legendre function, we infer from [45, Theorem 26.5] and (6.14) that 𝑋 =

𝑊 = 𝛬b𝛾 (𝑋 ) and, therefore, that b ∈ A𝑋 .
(i): We derive from (6.1), (6.10), Theorem 5.1 (i) applied to the function 𝜑 +𝜓 , (6.11), and (6.12) that

env𝜓◦𝛾𝜑◦𝛾 𝑋 = inf
𝑍∈ℌ

(
𝜑
(
𝛾 (𝑍 )

)
+ 𝐷𝜓◦𝛾 (𝑍,𝑋 )

)
= inf
𝑍∈ℌ

(
𝜑
(
𝛾 (𝑍 )

)
+𝜓

(
𝛾 (𝑍 )

)
−𝜓

(
𝛾 (𝑋 )

)
− ⟨𝑍 |𝑌 ⟩ + ⟨𝑋 |𝑌 ⟩

)
(6.17)

= inf
𝑧∈X

(
𝜑 (𝑧) +𝜓 (𝑧) −𝜓

(
𝛾 (𝑋 )

)
− ⟨𝑧 |𝑦⟩ + ⟨𝛾 (𝑋 ) |𝑦⟩

)
(6.18)

=
(
env𝜓𝜑

) (
𝛾 (𝑋 )

)
, (6.19)

as desired.
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(ii)–(vi): On account of (6.3) and (6.10), we have

Prox𝜓◦𝛾𝜑◦𝛾 𝑋 = Argmin
(
𝜑 ◦ 𝛾 +𝜓 ◦ 𝛾 − ⟨· |𝑌 ⟩

)
(6.20)

and, by using (6.11),

Prox𝜓𝜑 𝛾 (𝑋 ) = Argmin
(
𝜑 +𝜓 − ⟨· |𝑦⟩

)
= Argmin

(
𝜑 +𝜓 − ⟨· | 𝛾 (𝑌 )⟩

)
. (6.21)

In the light of (6.13), the assertions respectively follow from items (ii)–(vi) in Theorem 5.1 applied to
the function 𝜑 +𝜓 .

Remark 6.3. Let us relate Theorem 6.2 to existing works.

(i) Consider the special case of Theorem 6.2 where 𝜑 ∈ 𝛤0(X) and𝜓 = ∥ · ∥2/2.
• In the context of Example 2.3, Theorem 6.2 (iv) reduces to [7, Theorem 6.18].
• In the context of Examples 2.6 and 2.7 whereK isR orC, we recover from Theorem 6.2 (iv)
well-known expressions for the proximity operator of a lower semicontinuous convex
spectral function; see, for instance, [6, Corollary 24.65 and Proposition 24.68] and [7, The-
orems 7.18 and 7.29].

• In the context of Example 2.7 where K = H, concrete instantiations of Theorem 6.2 (iv)
which arise in machine learning applications can be found in [11, 12].

• Theorem 6.2 (iv) appears to be new in the context of Examples 2.4, 2.5, and 2.8.
(ii) In the context of Example 2.6 where K = R, [8, Corollary 1] follows from items (iv) and (vi) in

Theorem 6.2 with 𝜑 ∈ 𝛤0(X), and [20, Theorem 4.1] follows from items (i) and (iv) in Theo-
rem 6.2 with𝜓 = ∥ · ∥2/2.

(iii) Let us point out that Theorem 6.2 (iv) fully describes the set-valued operator Prox𝜓◦𝛾𝜑◦𝛾 in terms
of Prox𝜓𝜑 and the spectral mapping 𝛾 . To the best of our knowledge, this result is new, even in
the Hermitian matrix setting of Example 2.6.

(iv) Concrete examples of proximity operators of functions on matrix spaces can be found in [3, 6,
7, 8, 13].

Theorem 6.2 yields the following descriptions of the Bregman distance to a spectral set, as well as
the associated Bregman projector, in terms of those of the associated invariant set.

Corollary 6.4. Suppose that Assumption 3.1 is in force. Let 𝐷 be a nonempty S-invariant subset of X,
let 𝜓 ∈ 𝛤0(X) be an S-invariant Legendre function such that 𝐷 ∩ dom𝜓 ≠ ∅, and let 𝑋 ∈ ℌ. Then the
following hold:

(i) dist𝜓◦𝛾
𝛾−1 (𝐷) (𝑋 ) = dist𝜓

𝐷
(𝛾 (𝑋 )).

(ii) For every 𝑍 ∈ ℌ,

𝑍 ∈ Proj𝜓◦𝛾𝜑◦𝛾 𝑋 ⇔
{
𝛾 (𝑍 ) ∈ Proj𝜓𝜑 𝛾 (𝑋 )
(∃a ∈ A) 𝑋 = 𝛬a𝛾 (𝑋 ) and 𝑍 = 𝛬a𝛾 (𝑍 ).

(6.22)

(iii) Proj𝜓◦𝛾
𝛾−1 (𝐷) 𝑋 =

{
𝛬a𝑧 | 𝑧 ∈ Proj𝜓

𝐷
𝛾 (𝑋 ) and a ∈ A𝑋

}
.

(iv) Proj𝜓◦𝛾
𝛾−1 (𝐷) 𝑋 is a singleton if and only if Proj𝜓

𝐷
𝛾 (𝑋 ) is a singleton.
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Proof. Apply respectively items (i), (ii), (iv), and (vi) in Theorem 6.2 to the proper S-invariant function
𝜄𝐷 , and observe that 𝜄𝛾−1 (𝐷) = 𝜄𝐷 ◦ 𝛾 .

Example 6.5 (Euclidean Jordan algebra). Consider the setting of Example 2.5. For every 𝑋 ∈ ℌ, we
define the rank of 𝑋 , in symbol Rank𝑋 , to be the number of nonzero entries of the vector 𝜆(𝑋 ) of
eigenvalues of 𝑋 . Now let 𝑟 ∈ {1, . . . , 𝑁 − 1}, set

D =
{
𝑋 ∈ ℌ | 𝜆(𝑋 ) ∈ R𝑁+ and Rank𝑋 ⩽ 𝑟

}
, (6.23)

let 𝑋 ∈ ℌ, and recall that (see (2.4) and (2.17)) A𝑋 is the set of Jordan frames (𝐴𝑖)1⩽𝑖⩽𝑁 inℌ for which
𝑋 =

∑𝑁
𝑖=1 𝜆𝑖 (𝑋 )𝐴𝑖 . Furthermore, denote by P𝑁

𝑋
the set of 𝑁 × 𝑁 permutation matrices that fix 𝜆(𝑋 ),

that is,

P𝑁𝑋 =
{
𝑃 ∈ P𝑁 | 𝜆(𝑋 ) = 𝑃𝜆(𝑋 )

}
. (6.24)

Then exactly one of the following holds:

(i) (∃ 𝑖 ∈ {1, . . . , 𝑁 }) 𝜆𝑖 (𝑋 ) ⩾ 0: Set

𝑞 =max
{
𝑖 ∈ {1, . . . , 𝑁 } | 𝜆𝑖 (𝑋 ) ⩾ 0

}
and 𝑥 =

(
𝜆1(𝑋 ), . . . , 𝜆min{𝑞,𝑟 } (𝑋 ), 0, . . . , 0

)
. (6.25)

Then

ProjD𝑋 =

{
𝑁∑︁
𝑖=1

𝜁𝑖𝐴𝑖

����� (𝐴𝑖)1⩽𝑖⩽𝑁 ∈ A𝑋 , 𝑃 ∈ P𝑁𝑋 , (𝜁𝑖)1⩽𝑖⩽𝑁 = 𝑃𝑥

}
. (6.26)

(ii) (∀𝑖 ∈ {1, . . . , 𝑁 }) 𝜆𝑖 (𝑋 ) < 0: Then ProjD𝑋 = {0}.

Proof. Define

𝐷 =
{
𝑦 ∈ R𝑁+ | ∥𝑦∥0 ⩽ 𝑟

}
, (6.27)

where ∥𝑦∥0 denotes the number of nonzero entries of a vector 𝑦 ∈ R𝑁 . Then 𝐷 is P𝑁 -invariant and
D = 𝜆−1(𝐷). Thus, using (2.17), we deduce from Corollary 6.4 (iii) applied to the Legendre function
𝜓 = ∥ · ∥2/2 that

ProjD𝑋 =

{
𝑁∑︁
𝑖=1

𝜁𝑖𝐴𝑖

����� (𝜁𝑖)1⩽𝑖⩽𝑁 ∈ Proj𝐷 𝜆(𝑋 ) and (𝐴𝑖)1⩽𝑖⩽𝑁 ∈ A𝑋

}
, (6.28)

and it therefore suffices to determine Proj𝐷 𝜆(𝑋 ). Towards this goal, take 𝑧 ∈ 𝐷 and write (see Nota-
tion 2.2)

𝑧↓ = (𝜋𝑖)1⩽𝑖⩽𝑁 . (6.29)

Since 𝜋1 ⩾ · · · ⩾ 𝜋𝑁 ⩾ 0 and ∥𝑧↓∥0 = ∥𝑧∥0 ⩽ 𝑟 , we must have

𝜋1 ⩾ · · · ⩾ 𝜋𝑟 ⩾ 0 = 𝜋𝑟+1 = · · · = 𝜋𝑁 . (6.30)

(i): Let us consider two cases.
(a) 𝑞 < 𝑟 : The very definition of 𝑞 yields(

∀𝑖 ∈ {𝑞 + 1, . . . , 𝑟 }
)

𝜆𝑖 (𝑋 ) < 0. (6.31)
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Hence, we derive from the Hardy–Littlewood–Pólya rearrangement inequality that

∥𝑧 − 𝜆(𝑋 )∥2 ⩾


𝑧↓ − 𝜆(𝑋 )

2

=

𝑞∑︁
𝑖=1

(
𝜋𝑖 − 𝜆𝑖 (𝑋 )

)2 + 𝑟∑︁
𝑖=𝑞+1

(
𝜋𝑖 − 𝜆𝑖 (𝑋 )

)2 + 𝑁∑︁
𝑖=𝑟+1

𝜆𝑖 (𝑋 )2

⩾
𝑟∑︁

𝑖=𝑞+1

(
𝜋2
𝑖 − 2𝜋𝑖𝜆𝑖 (𝑋 )︸    ︷︷    ︸

⩽0

+𝜆𝑖 (𝑋 )2
)
+

𝑁∑︁
𝑖=𝑟+1

𝜆𝑖 (𝑋 )2

⩾
𝑁∑︁

𝑖=𝑞+1
𝜆𝑖 (𝑋 )2. (6.32)

In turn, appealing to the condition for equality in the rearrangement inequality, we obtain

∥𝑧 − 𝜆(𝑋 )∥2 =
𝑁∑︁

𝑖=𝑞+1
𝜆𝑖 (𝑋 )2 ⇔


∥𝑧 − 𝜆(𝑋 )∥ =



𝑧↓ − 𝜆(𝑋 )


𝑞∑︁
𝑖=1

(
𝜋𝑖 − 𝜆𝑖 (𝑋 )

)2
=

𝑟∑︁
𝑖=𝑞+1

𝜋2
𝑖 =

𝑟∑︁
𝑖=𝑞+1

𝜋𝑖𝜆𝑖 (𝑋 ) = 0

⇔

(
∃ 𝑃 ∈ P𝑁

𝑋

)
𝑧 = 𝑃𝑧↓(

∀𝑖 ∈ {1, . . . , 𝑞}
)
𝜋𝑖 = 𝜆𝑖 (𝑋 )(

∀𝑖 ∈ {𝑞 + 1, . . . , 𝑟 }
)
𝜋𝑖 = 0

⇔
(
∃ 𝑃 ∈ P𝑁𝑋

)
𝑧 = 𝑃

(
𝜆1(𝑋 ), . . . , 𝜆𝑞 (𝑋 ), 0, . . . , 0

)
= 𝑃𝑥, (6.33)

which entails that Proj𝐷 𝜆(𝑋 ) =
{
𝑃𝑥 | 𝑃 ∈ P𝑁

𝑋

}
.

(b) 𝑞 ⩾ 𝑟 : Argue as in case (a).
(ii): Upon setting (𝜁𝑖)1⩽𝑖⩽𝑁 = 𝑧, we deduce that

∥𝑧 − 𝜆(𝑋 )∥2 =
𝑁∑︁
𝑖=1

(
𝜁𝑖 − 𝜆𝑖 (𝑋 )

)2
=

𝑁∑︁
𝑖=1

(
𝜁 2𝑖 − 2𝜁𝑖𝜆𝑖 (𝑋 )︸    ︷︷    ︸

⩽0

+𝜆𝑖 (𝑋 )2
)
⩾

𝑁∑︁
𝑖=1

𝜆𝑖 (𝑋 )2 (6.34)

and, in turn, that

∥𝑧 − 𝜆(𝑋 )∥2 =
𝑁∑︁
𝑖=1

𝜆𝑖 (𝑋 )2 ⇔
𝑁∑︁
𝑖=1

𝜁 2𝑖 =

𝑁∑︁
𝑖=1

𝜁𝑖𝜆𝑖 (𝑋 ) = 0 ⇔
(
∀𝑖 ∈ {1, . . . , 𝑁 }

)
𝜁𝑖 = 0. (6.35)

Thus Proj𝐷 𝜆(𝑋 ) = {0}.

Remark 6.6. Here are several comments on Example 6.5.

(i) Set

R =
{
𝑋 ∈ ℌ | Rank𝑋 ⩽ 𝑟

}
and C=

{
𝑋 ∈ ℌ | 𝜆(𝑋 ) ∈ R𝑁+

}
. (6.36)

Along the same lines of the proof of Example 6.5, one can show that

ProjD𝑋 = ProjR
(
ProjC𝑋

)
. (6.37)

In general, nevertheless, given nonempty closed subsets 𝑅 and 𝐶 of a Euclidean space,

Proj𝑅∩𝐶 ≠ Proj𝑅 ◦ Proj𝐶 . (6.38)
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(ii) Choosing ℌ to be the Euclidean Jordan algebra of Hermitian matrices (see Example 2.6), we
obtain an expression for the projector onto the set of positive semidefinite matrices of rank at
most 𝑟 , that is, the set{

𝑋 ∈ H𝑁 (K) | 𝜆(𝑋 ) ∈ R𝑁+ and Rank𝑋 ⩽ 𝑟
}
, (6.39)

which is of interest in low-rank factor analysis [9]. Such expression is known in the real and
complex cases (see, e.g., [14, Lemma 6.1]) but appears to be new in the quaternion case.

7. Conclusion

We have introduced an abstract framework of spectral decomposition systems that covers a wide
range of related settings such as eigenvalue or singular value decompositions of real, complex, and
quaternion matrices, or Euclidean Jordan algebras. In this framework, we have derived results on con-
vex analytical properties and objects related to spectral functions in spectral decomposition systems
that unify corresponding results in individual settings studied in the literature as well as new ones.
Along the way, we have obtained a generalization of the Ky Fan majorization theorem and an abstract
reduced minimization principle that can be used to derive novel results on spectral functions.We have
also studied Bregman proximity operators of spectral functions, which for non-convex functions are
new even in the case of Hermitian matrices.
Future work will be concerned with applying these representations for proximal point and splitting

algorithms [6, 7, 15] and with extending our results to objects of (nonconvex) variational analysis
such as the Clarke, Fréchet, and limiting subdifferentials [46, 15] of spectral functions in spectral
decomposition systems.
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