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Simulation and optimization

Aim of numerical simulation is to achieve better understanding of real
world systems

eventually with the purpose of influencing or modifying these systems

thus motivating the formulation of optimization problems

multigrid strategies appear to be the method of choice for large-scale
simulation and optimization
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Constrained optimization problems







minimize J(y ,u,yd )

under the constraint e(y ,u) = 0

◮ A model of the dynamical or equilibrium system
◮ A description of the optimization mechanism
◮ A criterion that models the purpose of optimization
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Optimality systems
Consider the constrained minimization problem

minu∈Uad
J(y ,u) J : Y ×U → R

s.t. e(y ,u) = 0 where e−1
y exists.

The existence of e−1
y enables a clear distinction between y , the state

variable, and u ∈ Uad , the optimization variable in the admissible set.
Assume an objective functional given by

J(y ,u) = h(y)+ν g(u), ν ≥ 0

The solution of this optimization problem is characterized by the following
optimality system

e(y ,u) = 0
ey (y ,u)∗ p = −h′(y)

(ν g′(u)+e∗
u p ,v −u) ≥ 0 for all v ∈ Uad
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Control-constrained optimization

∆y +y4 = u + f ,

∆p +4y3 p = −(y −z)

(νu−p, v −u) ≥ 0 for all v ∈ Uad

Uad = {u ∈ L2(Ω) | −1/2 ≤ u(x) ≤ 1/2 a.e. in Ω}

Multigrid solution for ν = 10−6. The state (left) and the control (right). z(x1 ,x2) = sin(2πx1)sin(2πx2)+O(ν)
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Simulation and optimization of evolutionary systems

Simulation and control can be required to investigate evolution, track a
desired trajectory yd (x, t) or reach a desired terminal state yT (x).
For these purposes, the following cost functional is considered

J(y ,u) =
α
2
||y −yd ||

2
L2(Q)

+
β
2
||y(·,T )−yT ||

2
L2(Ω)

+
ν
2
||u||2L2(Q)

For reaction-diffusion models, the optimality system is given by

−∂ty +G(y)+σ∆y = u in Q

∂tp +G′(y)p +σ∆p +α(y −yd ) = 0 in Q

νu−p = 0 in Q

With initial condition y(x,0) = y0(x) for the state variable (evolving
forward in time). And terminal condition for the adjoint variable (evolving
backward in time) p(x,T ) = β (y(x,T )−yT (x)).
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Multigrid methods for PDE simulation and optimization
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Multigrid FAS framework to solve Ah(wh) = fh
Set B1(w (0)

1 ) ≈ A−1
1 . For k = 2, . . . ,L define Bk in terms of Bk−1 as follows.

1. Set the starting approximation w (0)
k .

2. Pre-smoothing. Define w (l)
k for l = 1, . . . ,m1, by

w (l)
k = Sk (w (l−1)

k , fk ).

3. Coarse grid correction.

Set w (m1+1)
k = w (m1)

k + Ik
k−1(wk−1 − Îk−1

k w (m1)
k ) where

wk−1 = Bk−1(̂I
k−1
k w (m1)

k )
[

Ik−1
k (fk −Ak (w (m1)

k ))+Ak−1(̂I
k−1
k w (m1)

k )
]

.

4. Post-smoothing. Define w (l)
k for l = m1 +2, · · · ,m1 +m2 +1, by

w (l)
k = Sk (w (l−1)

k , fk ).

5. Set Bk (w (0)
k ) fk = w (m1+m2+1)

k .
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Collective smoothing
Obtain yij and pij as functions of uij as follows

−∆hyh −uh = fh→ yij(uij) = (Aij −h2 uij)/cy
ij ,

−∆hph +yh = zh→ pij(uij) = (cy
ij Bij +h2 Aij −h4 uij)/(cp

ij c
y
ij )

(νuh −ph) · (vh −uh) ≥ 0

The solution of the unconstrained problem satisfies

J ′(y(ũ), ũ) = ν ũij −pij(ũij) = 0.

The update value for uij is obtained by projection

uij =







uH ij if ũij > uH ij
ũij if uLij ≤ ũij ≤ uH ij
uLij if ũij < uLij

For Uad = L2(Ω), smoothing factor µ ≈ 0.5 almost independent of ν and h.
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Bang-bang and chattering phenomena

Consider the objective function z(x1,x2) = sin(2πx1)sin(πx2) and box
constraints uL = −30 and uH = 30.

Results for ν = 10−6 and ν = 0.
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Bang-bang and switching of the control function for x1 = 3/4 and x2 ∈ [0.9,1] obtained with
ν = 0 on increasingly finer meshes: 1025×1025 and 8193×8193.
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Multigrid convergence theory
1. Multigrid convergence theory for scalar elliptic equation

−∆y = f in Ω and y = 0 on ∂Ω.

The matrix form of this problem is Âk yk = fk .

Convergence results are given in terms of the error operator Êk := Ik −

B̂k Âk . We have (for m1 = 1, m2 = 0)

Êk y = [(Ik − Ikk−1P̂k−1)+ Ikk−1 Êk−1 P̂k−1 ]Ŝk y .

Theorem 1: There exists a positive constant δ̂ < 1 such that

(Âk Êk y , Êk y)k ≤ δ̂2 (Âk y ,y)k for all y ∈ Mk , , k = L

2. Consider the decoupled symmetric system

−ν∆y = νg in Ω,
y = 0 on ∂Ω,

−∆p = z in Ω,
p = 0 on ∂Ω.

This system is exactly two copies of Poisson problem. Hence the multi-
grid convergence theory for this system inherits the properties of the
scalar case.

3. To analyze the optimality system define

Âk =

(

ν Âk 0
0 Âk

)

and analogously B̂k , Êk , etc., as counterparts of B̂k , Êk , etc..

Theorem 2: There exists a positive constant δ̂ < 1 such that

(ÂL ÊLw, ÊLw)L ≤ δ̂2(ÂLw,w)L for all w = (y ,p) ∈ ML ,

Consider
Ak = Âk +Dk ,

where

Dk =

(

0 −Ik
Ik 0

)

.

Note that |(Dk (u,v),(y ,p))| ≤ C |(u,v)| |(y ,p)|.

With Bk , Ak , etc., replacing B̂k , Âk , etc..

Ek = [Ik −I
k
k−1Pk−1 +I

k
k−1 Ek−1 Pk−1 ]Sk

Theorem 3: There exist positive constants h0 and δ < 1 such that for
all h1 < h0 we have

(Âk Ek w,Ek w)k ≤ δ2(Âk w,w)k for all w ∈ Mk , k = L

ˆ ˆ
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Space-time multigrid convergence estimates
Realize the coupling between state and control variables. Preserve the
opposite time orientation of state and adjoint equations.
Reaction-diffusion models optimality system

−∂t y +G(y)+σ∆y = u in Q

∂t p +G′(y)p +σ∆p +α(y −yd ) = 0 in Q

νu−p = 0 in Q

Discretization by backward Euler scheme.
Time-Splitted Collective Gauss-Seidel Iteration (TS-CGS)

1. Set the starting approximation.

2. For m = 2, . . . ,Nt do

3. For ij in, e.g., lexicographic order do

y
(1)
i j m = y

(0)
i j m +Fy [ry (w), rp (w)]

p
(1)
i j Nt−m+2 = p

(0)
i j Nt−m+2 +Fp [ry (w), rp (w)]
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Time-Line Collective Gauss-Seidel Iteration (TL-CGS)

1. Set the starting approximation.

2. For ij in, e.g., lexicographic order do

(

y
p

)(1)

i j
=

(

y
p

)(0)

i j
+M−1

(

ry
rp

)

i j

The block-tridiagonal system has the following form

M =















A2 C2
B3 A3 C3

CNt
BNt +1 ANt +1















Centered at tm , the entries Bm , Am , Cm refer to the variables (y ,p) at
tm−1, tm , and tm+1, respectively.
Block-tridiagonal systems can be solved with O(Nt ) effort.
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Simulation and optimization problems
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Cardiac arrhythmia and defibrillation
Consider the Aliev-Panfilov model of cardiac cell tissue dynamics

∂y1

∂ t
= −ky1(y1 −a)(y1 −1)−y1 y2 +σ ∆y1 +u

∂y2

∂ t
= [ε0 +

µ1y2

µ2 +y1
] [−y2 −ky1(y1 −b−1)]

y1: transmembrane potential; y2: the membrane conductance.
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Electrical field control response driving the system from a turbulent
electrical pattern to a uniform pattern as in the case of no stimulus.
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Eigenvalue computation Aφ i = λ iBφ i

FAS-AMG(Ak ,Bk ,Fk ,φ i
k ,λ i

k )
begin

if k is the coarsest level then
apply Sk , mc times, on Ak φ i

k −λ i
k Bk φ i

k = Fk
else

apply Sk , m1 times, on Ak φ i
k −λ i

k Bk φ i
k = Fk

φ i
k+1 = Ik+1

k φ i
k

Fk+1 = (Ak+1 −λ i
k Bk+1)φ i

k+1 + Ik+1
k [Fk − (Ak −λ i

k Bk )φ i
k ]

call FAMG(Ak+1,Bk+1,Fk+1,φ i
k+1,λ i

k )

φ i
k = φ i

k + Ikk+1

(

φ i
k+1 − Ik+1

k φ i
k

)

apply Sk , m2 times, on Ak φ i
k −λ i

k Bk φ i
k = Fk

endif

FAMG PAMG LAMG
λe λh λh λh

29.59867 29.67345 29.67345 29.67345
59.15680 59.47530 59.47530 59.47530
59.15680 59.47539 59.47539 59.47539
59.15680 59.47624 59.47624 59.47624
88.71493 89.40694 89.40694 89.40694
88.71493 89.40747 89.40747 89.40747
88.71493 89.40925 89.40925 89.40925
108.5656 109.4311 109.4311 109.4311
108.5656 109.4330 109.4330 109.4330
108.5656 109.4349 109.4349 109.4349

FAMG(Ah ,Bh ,[φ1
h , . . . ,φne

h ],[λ1
h , . . . ,λne

h ])

Compute
(

λ i
L ,φ i

L

)

, i = 1, . . . ,ne , (QR algorithm).

for k = L−1, . . . ,1 do
for i = 1, . . . ,ne do

φ i
k = Ikk+1φ i

k+1
call FAS-AMG (Ak ,Bk ,0,φ i

k ,λ i
k )

done
call Ritz

(

Ak ,Bk ,
[

φ1
k , . . . ,φne

k

]

,
[

λ1
k , . . . ,λne

k

])

Isospectral drums with the 9th mode.
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Industrial numerical simulations

AMG Calculations for a ventilation duct (k − ε, Re ≈ 105).
Mesh 564616 cells
417826 tetrahedral cells and 146790 prismatic cells (wall layer).
CPU Time AMG: 8496 / PCG: 12308

VW Benchmark - Ventilation duct: geometry, relative pressure, velocity. Project SWIFT/FIRE AMG. Courtesy of AVL List GmbH.
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Optical flow
Optimal control formulation of the optical flow problem: Find ~w = (u,v) s.t.

min
~w∈C

J(I(~w),~w),

It +~w ·∇I = 0, I(·,0) = Y1,

J is a cost functional of the tracking type with respect to a sampled sequence of
image frames {Yk}

N
k=1, at times tk .

Solve the following elliptic-hyperbolic optimality system

It +~w ·∇I = 0

I(·,0) = Y1

pt +∇ · (~wp) =
N−1

∑
k=2

[δ(t − tk )(I(·, tk )−Yk )]

p(·,T ) = −(I(·,T )−YN)

α
∂ 2u
∂ t2 +β∆u + γ

∂
∂x

(∇ ·~w) = p
∂ I
∂x

α
∂ 2v
∂ t2 +β∆v + γ

∂
∂y

(∇ ·~w) = p
∂ I
∂y
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Optical flow from a sequence of images
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First frame of the Taxi Sequence (top left); the corresponding brightness distribution (top right). Optical flow for the Taxi Sequence (bottom left).

Close-ups of the solution containing the region of the taxi (bottom right).
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Bose Einstein condensates in magnetic microtraps

The dynamics of the condensate is described by the Gross-Pitaevskii equation

iψ̇(r , t) =

(

−
1
2

∇2 +V (r ,λ (t))+g |ψ(r , t)|2
)

ψ(r , t) ,

where V (r ,λ (t)) is a control potential depending on λ (t). We require to minimize

J(ψ,λ ) =
1
2

(

1−
∣

∣〈ψd |ψ(T )〉
∣

∣

2)

+
γ
2

∫ T

0

(

λ̇ (t)
)2

dt

Consider the varying single-to-double-well potential

V (x ,λ ) =







1
2

(

|x |− λd
2

)2
for |x | > d

4
1
2

(

(λd)2

8 −x2
)

otherwise,

single-well potential for λ = 0; double-well potential for λ = 1.
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Optimality system: Coupled NLSE

The optimal solution is obtained solving

iψ̇ =

(

−
1
2

∇2 +Vλ +g|ψ|2
)

ψ

i ṗ =

(

−
1
2

∇2 +Vλ +2g|ψ|2
)

p +g ψ2 p∗

γλ̈ = −ℜe〈ψ|
∂Vλ
∂λ

|p〉 ,

with the initial and terminal conditions

ψ(0) = ψ0

i p(T ) = −〈ψd |ψ(T )〉ψd

λ (0) = 0 , λ (T ) = 1 .
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Splitting of Bose-Einstein condensate
Wavefunction splitting for linear t/T , square-root

√

t/T (Hänsel et al.), and
optimized variation of λ (t).
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(a) Cost function for linear t/T (solid line), square-root
√

t/T (dashed line), and optimized (symbols) variation of λ(t). The optimized J(ψ ,λ) is
magnified in the left inset. The right inset reports the optimal λ(t) for T = 8 ms (solid line) and T = 15 ms (dashed line). (b) Contour plot of

magnetic confinement potential as a function of λ . (c,d) Wave function evolution for linear variation of λ and transfer times of (c) T = 15 ms and (d)
T = 8 ms. (c’,d’) Same as (c,d) but for optimized control.
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Perspectives

◮ High-performance computing in optimization.

◮ Multilevel optimization schemes.

◮ Time-dependent inverse problems.
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Teaching, networking, meeting
◮ Teaching undergraduate and graduate students (1 PhD, 2 MSc).

Analysis, Linear Algebra, Optimization, Complex Analysis, Ordinary Differential
Equations, Programming in C++, Numerical Analysis, Theory of Partial Differential
Equations, Multilevel methods in optimization with PDE models, Numerical Solution of
Partial Differential Equations.

◮ Networking with excellent scientists.
A.M. Anile (Catania), B. Basara (Graz), G. Biros (Penn), C.C. Douglas (Kentucky),
O. Ghattas (Austin), M. Falcone (Roma), R. Griesse (RICAM), K. Ito (NCSU),
K. Kunisch (Graz), Do.Y. Kwak (KAIST), A. Majorana (Catania), C. Meyer (Berlin),
A. Rösch (RICAM), G. Russo (Catania), O. Scherzer (Innsbruck), J. Salomon (Paris
VI), V. Schulz (Trier), E. Süli (Oxford), M. Vanmaele (Ghent), I. Yavneh (Technion),....

◮ Organizing meetings.
Workshop Advances in Numerical Algorithms, Graz, 2003; GAMM 2006
Minisymposium "Multigrid Methods for Optimal Control of PDEs", Berlin; Conference
"Domain Decomposition Methods DD17", St. Wolfgang/Strobl, 2006; SIAM Annual
Meeting 2006 Minisymposium "Multilevel Methods for Optimization and Inverse
Problems", USA, Boston, 2006; "ENUMATH 2007" Conference, Graz, 2007.
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Academic and industrial projects

◮ Quantum optimal control of semiconductor nanostructures (FWF project
P18136-N13)

◮ A computational framework for real-time identification of hazardous events
(Biros, Willcox, et al.; NSF)

◮ Real time optimization for data assimilation and control of large scale
dynamic simulations (Ghattas, Biros, et al.; NSF)

◮ Fast solvers for computational problems arising in pharmacy, life sciences,
mathematics, physics, and the environment (Douglas, Langer et al.; NSF)

◮ SWIFT/FIRE AMG; PARALLEL SWIFT AMG; Boundary Conditions
Calculation in BOOST; Perforated Pipes in BOOST; Multigrid Solution of the
Reynolds Equation in EXCITE (WWW.AVL.COM)
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Scientific contributions

◮ Algebraic and geometric multigrid methods for elliptic and parabolic PDEs
and for optimality systems.

◮ Convergence theory of multigrid schemes for optimality systems.

◮ Numerical analysis of discretization schemes for linear and nonlinear elliptic
and parabolic partial differential equations (PDE) and optimality systems.

◮ Algebraic multigrid methods for eigenvalue problems.

◮ Modeling and numerical solution of image problems.

◮ Modeling and numerical simulation of gas dynamics and hydraulic systems.

◮ Modeling, numerical simulation and control of quantum systems.

→ modeling → numerical approx. → simulation → numerical analysis →
simulation → optimization → engineering
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