
Multilevel methods in optimization

with partial differential equations

Alfio Borz̀ı

Institut für Mathematik und Wissenschaftliches Rechnen

Karl–Franzens–Universität Graz

Heinrichstraße 36, 8010 Graz, Austria

Phone:+43 316 380 5166

Fax: +43 316 380 9815

www: http://www.uni-graz.at/imawww/borzi/index.html

email: alfio.borzi@uni-graz.at

1

http://www.uni-graz.at/imawww/borzi/index.html
mailto:alfio.borzi@uni-graz.at

Contents

1 Introduction 4

2 Multilevel methods for linear problems 12

2.1 Iterative methods and the smoothing property 12

2.2 Iterative methods as minimization schemes 19

2.3 The twolevel scheme and the approximation property . . 22

2.4 The multilevel scheme 28

3 Multilevel methods for nonlinear problems 36

3.1 The FAS multilevel method 37

3.2 MGOPT: A multilevel optimization scheme 40

3.3 Convergence of the MGOPT method 42

3.4 The full multilevel method 46

4 Multilevel schemes for optimality systems 50

4.1 Optimality systems . 50

4.2 Elliptic optimal control problems 51

4.3 Finite difference discretization 52

4.4 Smoothing iteration 55

4.5 A FAS multilevel scheme 57

4.6 Local Fourier convergence analysis 58

4.7 Parabolic optimal control problems 62

4.8 Local Fourier smoothing analysis 67

4.9 Receding horizon approach 69

5 Globalization issues 71

5.1 Second-order conditions for a minimum 72

5.2 Globalization of the FAS scheme 74

6 Appendix: A 1D MG code for the Poisson problem in MATLAB 78

2

7 Appendix: A 2D MG code for the Poisson problem in FORTRAN 82

8 Appendix: A 2D MG code for an optimality system in MATLAB 91

8.1 Problem Definition . 91

8.1.1 Optimality conditions 91

8.2 Discretization . 92

8.2.1 One dimensional case 92

8.2.2 Two dimensional case 92

8.3 Algorithm . 93

8.4 Smoothing . 93

8.5 Numerical results . 94

8.5.1 Test problem 1 94

8.6 Test problem 2 . 95

8.6.1 Test problem 3 96

8.6.2 Test problem 4 97

8.6.3 Conclusion . 97

8.7 MATLAB code . 98

References 107

3

1 Introduction

In these Lecture Notes we give an introduction to advanced multilevel

strategies for solving unconstrained and constrained optimization prob-

lems governed by partial differential equations (PDE). On the one hand,

practical aspects for the development and validation of multilevel algo-

rithms for PDE-model-based optimization are discussed. On the other

hand, recent convergence analysis results for some representative mul-

tilevel optimization schemes are presented.

These lecture notes start with an introduction of classical multilevel

(multigrid) schemes for linear and nonlinear scalar elliptic problems that

also correspond to unconstrained optimization problems as minimiza-

tion of appropriate energy functionals. This fact suggests that we may

interpret well-known multilevel schemes as optimization methods per

se. Along this line, we discuss the MG/OPT approach to unconstrained

optimization problems and related convergence analysis results.

The multilevel strategy is also successful in solving optimization

problems with PDE constraints as they appear, for example, in the

formulation of optimal control problems. Within this framework, we

focus on one-shot multilevel schemes. For these methods, convergence

estimates are also discussed.

Indeed, classical multilevel solvers can be used in combination with

gradient-type and Newton-like optimization methods. However, in

these cases no special use of inherent properties of the multilevel strat-

egy is made.

With multilevel strategy we mean a methodology of viewing a prob-

lem involving many different length-scales in such a way to treat each

length-scale efficiently on an appropriately chosen space and to com-

bine the results of this treatment to obtain a fast and accurate solution

to the original problem.

For the purpose of intuition, we give now a few examples of ‘mul-

tiscale phenomena’ or ‘multilevel phenomena’. Specifically, we would

4

Multilevel methods in optimization 5

like to show that there are systems having many degrees of freedom,

and are defined on many different length-scales, that possess a special

structure such that they are essentially invariant under length-scaling.

A first example is percolation (Orig. Latin: to filter through). Per-

colation deals with effects related to the varying of the richness of

interconnections in a infinite network system. For example, consider

the electric network of Figure 1. If the fraction of connecting links is

higher than some transition value p∗, the net is conducting. Below this

value, the net is insulating.

Figure 1: Electric network.

To have an insight on this transition phenomenon, consider the sim-

ple case of vertical percolation. In a 2 × 2 box there is vertical per-

colation in the cases depicted in Figure 2, which correspond to the

occurrence of a continuous dark column. Assume that a single square

in the box percolates (is dark) with probability p. Then the probability

that the 2 × 2 cell percolates is

p′ = R(p) = 2p2(1 − p2) + 4p3(1 − p) + p4

Multilevel methods in optimization 6

The mapping p → R(p) has a fixed point, p∗ = R(p∗), which is the

Figure 2: Vertical percolation in a 2 × 2 box.

critical value p∗ to have percolation; in our case p∗ = 0.6180. Now

define a coarsening (scaling) procedure, applied to a n × n (ideally in-

finite) box, which consists in replacing a 2 × 2 percolating box with a

percolating square, otherwise a non percolating square. If the original

box is characterized by p < p∗, the repeated application of the coars-

ening procedure results in a ‘visible’ non percolating box; see Figure 3.

In the other case of p > p∗, a repeated application of the coarsening

Figure 3: One coarsening step: No percolation (p < p∗).

Multilevel methods in optimization 7

Figure 4: Four coarsening steps: Percolation (p > p∗).

process reveals percolation as illustrated in Figure 4. At p = p∗ the

distribution of connections is such that we have ‘coarsening or scaling

invariance’.

A second example that provides algebraic insight in the multilevel ap-

proach is cyclic reduction. Consider the finite-difference discretization

of −u′′ = f on some interval and with homogeneous Dirichlet boundary

conditions. On a uniform grid with 7 interior points the corresponding

algebraic problem is given by the following linear system

Multilevel methods in optimization 8

E1

E2

E3

E4

E5

E6

E7

2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2

·

u1

u2

u3

u4

u5

u6

u7

= h2

f1

f2

f3

f4

f5

f6

f7

Let us call the equation corresponding to the row i as Ei. We define

the following coarsening steps

E ′
i = R(Ei) = Ei−1 + 2 Ei + Ei+1, i = 2, 4, 6.

The result of one coarsening is

2 −1 0

−1 2 −1

0 −1 2

 ·

u2

u4

u6

 = H2

f̃2

f̃4

f̃6

 (H = 2h),

where f̃i = (fi−1 + 2fi + fi+1)/4. Thus we obtain a smaller algebraic

system with the same structure as the original one. In this sense we have

‘coarsening invariance’. We can start appreciating the advantage of a

system possessing coarsening invariance: We can re-solve properties

of the system considering its coarsened version. In the first example,

we can state the percolation property of the network by examining

a coarsened version of the network. In the second example, we can

compute part of the entire solution solving a system of 3 unknowns

instead of a system of 7 unknowns. And this process can be repeated

recursively.

The second example allows also to make a direct link to uncon-

strained optimization as minimization of an appropriate functional. No-

tice that the matrix of coefficients of the 7 unknown linear system is

symmetric and positive definite. Denote this system with Au = f . It

Multilevel methods in optimization 9

is well known that the solution u = A−1f is the only minimizer of the

functional (T means transpose)

J(u) =
1

2
uTAu − uTf.

Similarly, if Ãũ = f̃ denotes the 3 unknown system given above, we

have that the minimum of

J̃(ũ) =
1

2
ũT Ãũ − ũT f̃

corresponds to the minimum of J in the subspace of components with

even index. Thus we have the possibility to approach the problem of

minimizing the functional J defined on a given finite dimensional space

by considering the minimization of another functional J̃ defined on a

smaller space.

An essential concept that motivates the development of multilevel

methods is the concept of computational complexity. Consider a sys-

tem described by n unknowns defining the solution of an algebraic

system or the minimum of a configuration functional. A best possible

(optimal) solver is one that provides this solution with a number of

operations which is linearly proportional to n. We shall demonstrate

that in most cases algorithms based on the multilevel strategy result in

optimal solvers.

We conclude this section with some historical remarks and refer-

ences. Already in the sixties R.P. Fedorenko [21, 22] developed the

first multilevel scheme for the solution of the Poisson equation in a unit

square. Since then, other mathematicians extended Fedorenko’s idea

to general elliptic boundary value problems with variable coefficients;

see, e.g., [1]. However, the full efficiency of the multilevel approach

was realized after the works of A. Brandt [13, 14] and W. Hackbusch

[24]. These Authors also introduced multilevel methods for nonlinear

problems like the multilevel full approximation storage (FAS) scheme

[14, 27]. Another achievement in the formulation of multilevel methods

Multilevel methods in optimization 10

was the full multigrid (FMG) scheme [14, 27], based on the combina-

tion of nested iteration techniques and multilevel methods. Multilevel

algorithms are now applied to a wide range of problems, primarily to

solve linear and nonlinear boundary value problems. Other examples

of successful applications are eigenvalue problems [15, 25], bifurcation

problems [37, 46], parabolic problems [18, 26, 50], hyperbolic problems

[19, 38], and mixed elliptic/hyperbolic problems. Investigation of mul-

tilevel methods for solving PDE-based optimization problems is more

recent, see, e.g., [47]. Also convergence analysis of multilevel methods

has developed along with the multitude of applications.

An essential contribution to the development of the multilevel com-

munity is the MGNet of Craig C. Douglas. This is the communication

platform on everything related to multilevel methods;

see http://www.mgnet.org.

Classical Readings

1. J.H. Bramble, Multigrid Methods, Pitman research notes in math-

ematical series, Longman Scientific & Technical, 1993.

2. A. Brandt, Multi-grid techniques: 1984 guide with applications

to fluid dynamics, GMD-Studien. no 85, St. Augustin, Germany,

1984.

3. W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.

4. W. Hackbusch, Multi-Grid Methods and Applications, Springer-

Verlag, Heidelberg, 1985.

5. S.F. McCormick, Multigrid Methods, Frontiers in Applied Mathe-

matics, vol. 3, SIAM Books, Philadelphia, 1987.

6. U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Aca-

demic Press, London, 2001.

http://www.mgnet.org

Multilevel methods in optimization 11

7. P. Wesseling, An introduction to multigrid methods, John Wiley,

Chichester, 1992.

Multilevel methods in optimization 12

2 Multilevel methods for linear problems

The basic components of a multilevel algorithm are presented in this

section. We start with the analysis of two standard iterative tech-

niques: the Jacobi and Gauss-Seidel schemes. These two methods

are characterized by global poor convergence rates, however, for errors

whose length scales are comparable to the mesh size, they provide rapid

damping, leaving behind smooth, longer wave-length errors. These

smooth components are responsible for the slow global convergence.

A multilevel algorithm, employing grids of different mesh sizes, allows

to solve all wave-length components and provides rapid convergence

rates. The multilevel strategy combines two complementary schemes.

The high-frequency components of the error are reduced applying itera-

tive methods like Jacobi or Gauss-Seidel schemes. For this reason these

methods are called smoothers. On the other hand, low-frequency error

components are effectively reduced by a coarse-grid correction proce-

dure. Because the action of a smoothing iteration leaves only smooth

error components, it is possible to represent these components as the

solution of an appropriate coarser system. Once this coarser problem is

solved, its solution is interpolated back to the fine grid to correct the

fine grid approximation for the low-frequency errors.

2.1 Iterative methods and the smoothing property

Consider a large sparse linear system of equations Au = f , where A is

a symmetric positive n × n matrix. Iterative methods for solving this

problem are formulated as follows

u(ν+1) = Mu(ν) + Nf , (1)

where M and N have to be constructed in such a way that given an

arbitrary initial vector u(0), the sequence u(ν), ν = 0, 1, . . . , converges

to the solution u = A−1f . Define the solution error at the sweep ν as

Multilevel methods in optimization 13

e(ν) = u − u(ν), then the iteration (1) is equivalent to e(ν+1) = Me(ν).

M is called the iteration matrix. We have the following convergence

criterion based on the spectral radius ρ(M) of the matrix M .

Theorem 1 The method (1) converges if and only if ρ(M) < 1.

A general framework to define iterative schemes of the type (1) is

based on the concept of splitting. Assume the splitting A = B − C

where B is non singular. By setting Bu(ν+1) − Cu(ν) = f and solving

with respect to u(ν+1) one obtains

u(ν+1) = B−1Cu(ν) + B−1f .

Thus M = B−1C and N = B−1. Typically, one considers the regular

splitting A = D − L − U where D = diag(a11, a22, . . . , ann) denotes

the diagonal part of the matrix A, and −L and −U are the strictly

lower and upper parts of A, respectively. Based on this splitting many

choices for B and C are possible leading to different iterative schemes.

For example, the choice B = 1
ωD and C = 1

ω [(1 − ω)D + ω(L + U)],

0 < ω ≤ 1, leads to the damped Jacobi iteration

u(ν+1) = (I − ωD−1A)u(ν) + ωD−1f . (2)

Choosing B = D − L and C = U , one obtains the Gauss-Seidel

iteration

u(ν+1) = (D − L)−1Uu(ν) + (D − L)−1f . (3)

Later on we denote the iteration matrices corresponding to (2) and (3)

with MJ(ω) and MGS, respectively.

To define and analyze the smoothing property of these iterations

we introduce a simple model problem. Consider the finite-difference

approximation of a one-dimensional Dirichlet boundary value problem:
{

−d2u
dx2 = f(x), in Ω = (0, 1)

u(x) = g(x), on x ∈ {0, 1} .
(4)

Multilevel methods in optimization 14

Let Ω be represented by a grid Ωh with grid size h = 1
n+1 and grid points

xj = jh, j = 0, 1, . . . , n + 1. A discretization scheme for the second

derivative at xj is h−2[u(xj−1)− 2u(xj) + u(xj+1)] = u
′′

(xj) + O(h2).

Set fh
j = f(jh), and uh

j = u(jh). We obtain the following tridiagonal

system of n equations

2 uh
1 − uh

2 = h2 fh
1 + g(0)

−uh
j−1 + 2 uh

j − uh
j+1 = h2 fh

j , j = 2, . . . , n − 1 (5)

−uh
n−1 + 2 uh

n = h2 fh
n + g(1)

Let us denote (5) (with all terms divided by h2) by Ah uh = fh.

We discuss the solution to this problem by means of the damped

Jacobi iteration with iteration matrix MJ(ω) = I−ωD−1
h Ah. Consider

the eigenvalue problem MJ(ω)vk = µkv
k. The eigenvectors of MJ(ω)

(and equivalently of Ah) are given by

vk =
√

2h (sin(kπhj))j=1,n , k = 1, . . . , n , (6)

The eigenvalues of Ah are λk = 4 sin2(kπh/2)/h2 and the correspond-

ing eigenvalues of MJ(ω) are

µk(ω) = 1 − ω(1 − cos(kπh)) , k = 1, . . . , n . (7)

We have that ρ(MJ(ω)) < 1 for 0 < ω ≤ 1, guaranteeing convergence.

In particular, for the Jacobi iteration with ω = 1 we have ρ(MJ(1)) =

1− 1
2πh2 +O(h4), showing how the convergence of the Jacobi iteration

deteriorates (i.e. ρ tends to 1) as h → 0.

The purpose of an iteration in a MG algorithm is primarily to be

a smoothing operator. In order to define this property, we need to

distinguish between low- and high-frequency eigenvectors. We define

• low frequency (LF) components: vk with 1 ≤ k < n
2 ;

• high frequency (HF) components: vk with n
2 ≤ k ≤ n;

Multilevel methods in optimization 15

We now define the smoothing factor µ as the worst factor by which

the amplitudes of HF components are damped per iteration. In the

case of the Jacobi iteration we have

µ = max{|µk|,
n

2
≤ k ≤ n} = max{1 − ω, |1 − ω(1 − cos(π)|}

≤ max{1 − ω, |1 − 2ω|}.

Using this result we find that the optimal (smallest) smoothing factor

µ = 1/3 is obtained choosing ω∗ = 2/3. This means that using MJ(ω∗)

the HF error components are reduced at least of a factor three after

any iteration sweep and this factor does not depend on the mesh size.

Therefore if we use the expansion e(ν) =
∑

k e
(ν)
k vk, we have that a few

sweeps of (2) give |e(ν)
k | << |e(0)

k | for HF components. For this reason,

although the global error decreases slowly by iteration, it is smoothed

very quickly.

Most often, instead of a Jacobi method other iterations are used that

suppress the HF components of the error more efficiently. This is the

case of the Gauss-Seidel iteration (3). The smoothing property of this

scheme is conveniently analyzed by using local mode analysis (LMA)

introduced by Brandt [14]. This is an effective tool for analyzing the

MG process even though it is based on certain idealized assumptions

and simplifications: Boundary conditions are neglected and the problem

is considered on infinite grids Gh = {jh, j ∈ Z}. Notice that on Gh,

only the components eiθx/h with θ ∈ (−π, π] are visible, i.e., there is

no other component with frequency θ0 ∈ (−π, π] with |θ0| < θ such

that eiθ0x/h = eiθx/h, x ∈ Gh.

In local Mode (Fourier) analysis the notion of low- and high-frequency

components on the grid Gh is related to a coarser grid denoted by GH .

In this way eiθx/h on Gh is said to be an high-frequency component,

with respect to the coarse grid GH , if its restriction (projection) to GH

is not visible there. If H = 2h then the high frequencies are those with
π
2 ≤ |θ| ≤ π. We have eiθx/h = ei(2θ)x/H .

Multilevel methods in optimization 16

In this framework, in order to analyze a given iteration we represent

solution errors in terms of their θ components e(ν) =
∑

θ E
(ν)
θ eiθx/h and

e(ν+1) =
∑

θ E
(ν+1)
θ eiθx/h (with formal summation on θ). Where E (ν)

θ

and E (ν+1)
θ denote the error amplitudes of the θ component, before and

after smoothing, respectively. The action of the iteration matrix M

is e(ν+1) = M e(ν). In the Fourier space this action is represented by

E (ν+1)
θ = M̂(θ) E (ν)

θ , and M̂(θ) is the Fourier symbol of M .

In the LMA framework, the smoothing factor is then defined by

µ = max{|E
(ν+1)
θ

E (ν)
θ

| ,
π

2
≤ |θ| ≤ π} = max{|M̂(θ)| ,

π

2
≤ |θ| ≤ π} .

(8)

Later, we consider the entire frequency domain spanned by the two

sets of frequencies θ ∈ ([−π/2, π/2) and θ = θ − sign(θ)π. Here

θ represents low frequencies components while θ contains the high

frequencies components. This choice results in the basis of the two

harmonics eiθx/h and eiθx/h. In this framework, a way to characterize

the smoothing property of the smoothing operator M is to consider

the action of M on both sets of frequencies as follows

M̂(θ) =

[
M̂(θ) 0

0 M̂(θ)

]

and to assume an ideal coarse grid correction which annihilates the

low frequency error components and leaves the high frequency error

components unchanged. That is, one defines the projection operator

Q̂ as follows

Q̂(θ) =

[
0 0

0 1

]
.

In this framework the smoothing property of M is defined as follows

µ = max{r(Q̂(θ) M̂(θ)) : θ ∈ [−π/2, π/2)}, (9)

where r is the spectral radius.

Multilevel methods in optimization 17

For illustration consider the Gauss-Seidel scheme applied to our dis-

cretized model problem. A smoothing sweep starting with an initial

approximation u(ν) produces a new approximation u(ν+1) such that the

corresponding error satisfies

Bhe
(ν+1)(x) − Che

(ν)(x) = 0, x ∈ Gh, (10)

where Bh = Dh − Lh and Ch = Uh. For a given θ, equation (10) at

x = jh becomes
∑

θ

[(2 − e−iθ)E (ν+1)
θ − eiθE (ν)

θ] eiθj = 0

which must hold for all j, therefore we obtain M̂(θ) = eiθ/(2 − e−iθ).

We have

µ = max{|E
(ν+1)
θ

E (ν)
θ

|, π

2
≤ |θ| ≤ π} = max{| eiθ

2 − e−iθ
|, π

2
≤ |θ| ≤ π} = 0.45.

Similar values are obtained for the Gauss-Seidel iteration applied to the

two- and three-dimensional version of our model problem. For the two

dimensional case the effect of smoothing can be seen in Figure 5.

Another definition of smoothing property of an iterative scheme is

due to Hackbusch [27]. Let M be the iteration matrix of a smoothing

procedure and recall the relation e(ν) = M νe(0). One can measure the

smoothness of e(ν) by a norm involving differences of the value of this

error on different grid points. A natural choice is to take the second-

order difference matrix A above (without multiplication by h2). Then

the following smoothing factor is defined

µ(ν) = ‖AM ν‖/‖A‖.

The iteration defined by M is said to possess the smoothing property if

there exists a function η(ν) such that, for sufficiently large ν, we have

‖AM ν‖ ≤ η(ν) h−α, (11)

Multilevel methods in optimization 18

0
10

20
30

0

20

40
−1

0

1

 Initial error, Physical Space

0
10

20
30

0

20

40
−1

0

1

Physical Space, 1 iter(s), Gauss−Seidel.

0
10

20
30

0

20

40
−0.5

0

0.5

Physical Space, 2 iter(s), Gauss−Seidel.

0
10

20
30

0

20

40
−0.5

0

0.5

Physical Space, 3 iter(s), Gauss−Seidel.

Figure 5: Smoothing by Gauss-Seidel iteration.

where α > 0 and η(ν) → 0 as ν → ∞. This is the case for our model

problem where A is the discretization of the minus second derivative

(minus Laplacian) and the damped Jacobi iteration, M = I − ωh2A,

ω ∈ (0, 1/2). To show this fact, recall the following lemma [27].

Lemma 1 Let B be real symmetric semipositive definite matrix such

that 0 ≤ B ≤ I, and ν is a positive integer. Then

‖B(I − γ B)ν‖ ≤ η̂(ν), η̂(ν) =
νν

γ (ν + 1)ν+1

where 0 < γ ≤ 1.

Proof. Notice that the spectrum σ(B) ∈ (0, 1) and that ‖f(B)‖ =

max{|f(λ)|, λ ∈ σ(B)}. Find the maximum of the function f(x) =

x(1 − γ x)ν.

Multilevel methods in optimization 19

Now, we have that there exists a constant C such that ‖h2 A‖ ≤ C,

therefore the matrix B = h2

C A satisfies the conditions of Lemma 1.

Hence, the smoothing property is given for ω < 1/C and with α = 2

and η(ν) = (1
ω) νν/(ν +1)(ν+1). For the Gauss-Seidel iteration one can

prove that the smoothing property is given with α = 2 and η(ν) ≈ 1/ν.

2.2 Iterative methods as minimization schemes

The discussion on iterative schemes given above is typical within the

classical multilevel framework where multilevel operators are charac-

terized by their properties on Fourier space. In the context of these

lecture notes, however, we are interested in the optimization properties

of the various multilevel components. In this section we consider iter-

ative schemes from this point of view. Again we use the equivalence

between solving the problem Au = f and minimizing the functional

J(u) =
1

2
uTAu − uTf. (12)

Recall that many iterative methods like Jacobi and Gauss-Seidel schemes

can be written in terms of a nonsingular matrix Q as follows

u(ν+1) = (I−Q−1A)u(ν)+Q−1f = u(ν)+Q−1(f−Au(ν)) = u(ν)+Q−1 r(ν)

(13)

where r(ν) = f −Au(ν) is the residual for the u(ν) approximation. With

Q = D/ω we have the damped Jacobi iteration; choosing Q = D − L

(Q = D+U) the forward (backward) Gauss-Seidel scheme is obtained.

If we use (13) in (12) we have

Multilevel methods in optimization 20

J(u(ν+1)) =
1

2
(u(ν+1))TAu(ν+1) − (u(ν+1))Tf

=
1

2
(u(ν) + Q−1 r(ν))TA(u(ν) + Q−1 r(ν)) − (u(ν) + Q−1 r(ν))Tf

= J(u(ν)) +
1

2
(Q−1 r(ν))TA Q−1 r(ν) + (Q−1 r(ν))T (Au(ν) − f)

= J(u(ν)) +
1

2
(Q−1 r(ν))TA Q−1 r(ν) − (Q−1 r(ν))T r(ν).

We obtain the following

J(u(ν+1)) = J(u(ν)) − (Q−1 r(ν))T [(Q − 1

2
A) Q−1 r(ν)].

In the case of the Gauss-Seidel iteration we have

Q − 1

2
A =

1

2
D − 1

2
(L − U)

and therefore

(Q−1 r(ν))T [(Q − 1

2
A) Q−1 r(ν)] =

1

2
(Q−1 r(ν))T [D Q−1 r(ν)] ≥ 0

since (Q−1 r(ν))T [(L−U) Q−1 r(ν)] = 0 because L−U is antisymmetric.

Hence we find that the Gauss-Seidel scheme is a minimizer in the sense

that

J(u(ν+1)) ≤ J(u(ν)),

where strict inequality holds if r(ν) 6= 0.

Next, consider the case of the damped Jacobi iteration where

Q − 1

2
A =

1

ω
(D − ω

2
A).

We have the following lemma [52]

Lemma 2 Let A be real symmetric with aii > 0, and let ω > 0. The

matrix 2 ω−1D − A, where D = diagA, is positive definite if and only

if ω satisfies

0 < ω ≤ 2

1 − µmin
,

where µmin ≤ 0 is the minimum eigenvalue of I − D−1A.

Multilevel methods in optimization 21

Proof. Let B = I − D−1A. The matrix 2 ω−1D − A is positive

definite if and only if

2 ω−1I − D−1/2AD−1/2 = (2 ω−1 − 1)I + D1/2 B D−1/2 = H

is positive definite. The eigenvalues of H are 2 ω−1 − 1 + µi where µi

are the eigenvalues of B. Since Tr B = 0 and the µi are real, it follows

that µmin ≤ 0. Therefore H is positive definite if 2 ω−1 − 1 + µi > 0.

That is if 0 < ω ≤ 2
1−µmin

≤ ω ≤ 2
1−µi

.

Therefore (D − ω
2A) ≥ 0 for ω ∈ (0, 2/(1 − µmin)) and hence

J(u(ν+1)) ≤ J(u(ν)).

In a classical multilevel context, the criteria for choosing an iteration

scheme is its ability to smooth errors. In an optimization context, we

require that the iterative scheme be a minimizer. Thus many other well-

known iterative methods can be chosen like, for example, the steepest

descent (gradient) method given by

Q = Q(ν) =
r(ν)TA r(ν)

r(ν)Tr(ν)
I =

1

αν
I

also notice that r(ν) = −J ′(u(ν)). Therefore we can write

u(ν+1) = u(ν) + ανr
(ν) = u(ν) − Q(ν)−1

J ′(u(ν)).

It follows that

J(u(ν+1)) = J(u(ν)) − αν

2
(r(ν))Tr(ν).

The iterative schemes discussed above can be interpreted as the

process of minimizing the functional J by optimizing successively with

respect to each unknown variable (Gauss-Seidel scheme) or in parallel

by updating all unknown variables at the same time (Jacobi scheme,

steepest descent). In this sense these methods belong to the class of

successive or parallel subspace correction (SSC or PSC) methods.

Multilevel methods in optimization 22

Uniform convergence rates for SC iterations applied to a convex

functional J(u) are proven in [48] assuming that J is Gateaux differ-

entiable and that there exist constants K, L > 0, p ≥ q > 1, such

that

〈J ′(u) − J ′(v), w − v〉 ≥ K ‖u − v‖p
V , (14)

‖J ′(u) − J ′(v)‖V ′ ≤ L ‖u − v‖q−1
V , (15)

for all u, v ∈ V , and 〈·, ·〉 is the duality pairing between V and its dual

space V ′.

2.3 The twolevel scheme and the approximation property

After the application of a few smoothing sweeps, we obtain an ap-

proximation ũh whose error ẽh = uh − ũh is smooth. Then ẽh can be

approximated on a coarser space. We need to express this smooth error

as solution of a coarse problem, whose matrix AH and right-hand side

have to be defined. For this purpose notice that in our model problem,

Ah is a second-order difference operator and the residual rh = fh−Ahũh

is a smooth function if ẽh is smooth. Obviously, the original equation

Ahuh = fh and the residual equation Ahẽh = rh are equivalent. The

difference is that ẽh and rh are smooth, therefore we can think of rep-

resenting them on a coarser grid with mesh size H = 2h. We define

rH as the restriction of the fine-grid residual to the coarse grid, that is,

rH = IH
h rh, where IH

h is a suitable restriction operator (for example, in-

jection). This defines the right-hand side of the coarse problem. Since

ẽh is the solution of a difference operator which can be represented

analogously on the coarse discretization level, we define the following

coarse problem

AH ẽH = rH . (16)

Here AH represents the same discrete operator but relative to the grid

with mesh size H. Reasonably one expects that ẽH be an approximation

Multilevel methods in optimization 23

to ẽh on the coarse grid. Because of its smoothness, we can apply a

prolongation operator Ih
H to transfer ẽH to the fine grid. Therefore,

since by definition uh = ũh + ẽh, we update the function ũh applying

the following coarse-grid correction (CGC) step

ũnew
h = ũh + Ih

H ẽH .

Notice that ẽh was a smooth function and the last step has amended

ũh by its smooth error. In practice, also the interpolation procedure

may introduce HF errors on the fine grid. Therefore it is convenient to

complete the twolevel process by applying ν2 post-smoothing sweeps

after the coarse-grid correction.

We summarize the twolevel (TL) procedure with the following al-

gorithm. To emphasize that the iteration u
(l)
h = Mu

(l−1)
h + Nfh is a

smoothing procedure, we denote it by u
(l)
h = Sh(u

(l−1)
h , fh). When no

confusion may arise, we also use S to denote the iteration matrix (in

place of) M .

Algorithm 1 (TL scheme)

• Twolevel method for solving Ahuh = fh.

1. Pre-smoothing steps on the fine grid: u
(l)
h = S(u

(l−1)
h , fh),

l = 1, . . . , ν1;

2. Computation of the residual: rh = fh − Ahu
(ν1)
h ;

3. Restriction of the residual: rH = IH
h rh;

4. Solution of the coarse-grid problem eH = (AH)−1rH ;

5. Coarse-grid correction: u
(ν1+1)
h = u(ν1) + Ih

HeH ;

6. Post-smoothing steps on the fine grid: u
(l)
h = S(u

(l−1)
h , fh),

l = ν1 + 2, . . . , ν1 + ν2 + 1;

A TL scheme starts at the fine level with pre-smoothing, performs a

CGC correction solving a coarse-grid auxiliary problem, and ends with

Multilevel methods in optimization 24

post-smoothing. A pictorial representation of this process where ‘fine’

is a high level and ‘coarse’ is a low level looks like a ‘V’ workflow. This

is called V cycle. To solve the problem to a given tolerance, we have to

apply the TL V-cycle repeatedly (iteratively). Actually, the TL scheme

can be written in the form (1) as stated by the following

Lemma 3 The iteration matrix of the twolevel scheme is

MTL = Sν2

h (Ih − Ih
H(AH)−1IH

h Ah)S
ν1

h , (17)

where Ih is the identity and Sh is the smoothing iteration matrix.

For the model problem considered here, it is possible to estimate the

spectral radius of MTL. Consider the damped Jacobi smoother with

ω = 1/2, assume that Ih
H is the piecewise linear interpolation given by

(example)[27]

Ih
H =

1

2

1 0 0

2 0 0

1 1 0

0 2 0

0 1 1

0 0 2

0 0 1

,

and IH
h is restriction by weighting such that rH(xj) = (rh(xj−1) +

2 rh(xj) + rh(xj+1))/4, j = 2, 4, . . . , n − 1. In stencil form we have

Ih
H =

1

2

1 2 1 0 0 0 0

0 0 1 2 1 0 0

0 0 0 0 1 2 1

 .

With this setting the following theorem is proved [27] using discrete

Fourier analysis.

Multilevel methods in optimization 25

Theorem 2 Let the TL scheme 1 with ν = ν1 + ν2 ≥ 1. The spectral

radius of the iteration matrix MTL given by (17) is bounded by

ρ(MTL) ≤ max{χ(1−χ)ν +(1−χ)χν : 0 ≤ χ ≤ 1/2} =: ρν < 1 ,

uniformly with respect to the mesh size h. Hence (17) is a convergent

iteration.

In the framework of LMA, a simple and effective way to predict the

convergence factor of the TL scheme, for usually moderate values of

ν, is to assume that the coarse-grid correction step solves ‘exactly’ the

LF error components, and there is no interaction between high- and

low-frequency components. This can be considered an ‘ideal’ situation.

Then the reduction of a suitable norm of the error (e.g., discrete L2-

norm) by one V cycle of the TL method is determined by the reduction

of the HF components on the fine grid. For this reason the reduction

(convergence) factor, denoted by ρ, can be roughly estimated by

ρLMA = µν1+ν2 . (18)

A sharper bound can be computed by twolevel Fourier mode analysis

[17]. For this purpose we need to construct the Fourier symbol of the

twolevel coarse-grid correction operator

CGH
h = [Ih − Ih

H (AH)−1 IH
h Ah].

We denote the corresponding symbol by

ĈG
H

h (θ) = [Îh − Îh
H(θ) (ÂH(2θ))−1 ÎH

h (θ) Âh(θ)].

(Recall that eiθx/h = ei(2θ)x/H .) The symbol of the coarse grid operator

is

ÂH(2θ) = −2 cos(2θ) − 2

H2

and similarly one constructs Âh(θ) corresponding to the two harmonics,

that is,

Multilevel methods in optimization 26

Âh(θ) =

[
−2 cos(θ)−2

h2 0

0 2 cos(θ)+2
h2

]
,

The symbol of the restriction operator is (here the hat denotes the

Fourier symbol, not the injection operator)

ÎH
h (θ) = [(1 + cos(θ))/2 (1 − cos(θ))/2] ,

whereas for the injection operator we have Îk−1
k (θ) = 1. For the linear

prolongation operator we have Îk
k−1(θ) = Îk−1

k (θ)T .

The symbol of the twolevel method is given by

T̂G
H

h (θ) = Ŝh(θ)
ν2 ĈG

H

h (θ) Ŝh(θ)
ν1.

This is an 2×2 matrix corresponding to the two frequency components.

In this framework the convergence factor is defined as follows

ρ(TGH
h) = sup{r(T̂G

H

h (θ)) : θ ∈ [−π/2, π/2)}.
In Table 1, we report estimates of ρQS as given by (18) and the

estimates ρTG resulting from the twogrid convergence analysis. These

are compared with the estimates of ρν by Theorem 2. The estimated

ρQS approximates well the bound ρν provided that ν1 +ν2 is small. For

large ν, ρQS has an exponential decay behavior whereas ρν and ρTG

have a slower decay as observed in numerical experiments.

ν ρQS ρTG ρν

1 0.5 0.4 0.5

2 0.25 0.19 0.25

3 0.12 0.12 0.12

4 0.06 0.08 0.08

Table 1: Comparison of error reduction factors.

Notice that measuring ρ requires the knowledge of the exact solu-

tion. Because this is usually not available, ρ is measured as the asymp-

totic value of the reduction of a suitable norm (usually the discrete L2

norm) of the residuals after consecutive TG cycles.

Multilevel methods in optimization 27

Another theoretical approach to multigrid convergence analysis, re-

lated to the smoothing property (11), introduces the approximation

property to measure how good the coarse-grid solution approximates

the fine grid solution. This is expressed by the following estimate

‖A−1
h − Ih

H A−1
H IH

h ‖ ≤ cA hβ. (19)

This estimate actually measures the accuracy between uh = A−1
h fh

and Ih
HuH where uH = A−1

H IH
h fh. Standard accuracy estimates for our

model problem give β = 2. This is due to the second-order accuracy

of the 3-point Laplacian in one dimension and the fact that the error

in interpolation and restriction is of second order.

Using the estimates of the smoothing and approximation properties,

one can prove convergence of the TG scheme as follows. Consider, for

simplicity, ν2 = 0, i.e. only pre-smoothing is applied. Then for our

model problem we have

‖MTG‖ = ‖(Ih − Ih
H(AH)−1IH

h Ah)S
ν
h‖

= ‖(A−1
h − Ih

H(AH)−1IH
h)AhS

ν
h‖

≤ ‖A−1
h − Ih

H(AH)−1IH
h ‖‖AhS

ν
h‖

≤ cA η(ν), (20)

where cA η(ν) < 1 for sufficiently large ν. Notice that the coarse-

grid correction without pre- and post-smoothing is not a convergent

iteration, in general. In fact, IH
h maps from a fine- to a coarse-

dimensional space and Ih
H(AH)−1IH

h is not invertible. We may have

ρ(Ih − Ih
H(AH)−1IH

h Ah) ≥ 1.

We conclude this section showing that the coarse-grid correction

step u
(ν+1)
h = u(ν) + Ih

HeH with eH = (AH)−1rH and rH = IH
h rh,

provides an update in the descent direction in the sense that

J ′
h(u

(ν)
h)T (Ih

H eH) < 0,

unless eH = 0, occurring at convergence. This means that the TG

scheme results in a optimization iteration by choosing a smoothing

Multilevel methods in optimization 28

scheme with minimization properties and by performing a globalization

step along the coarse-grid correction.

We assume that

IH
h = cI (Ih

H)T for a constant cI > 0.

This assumption holds, for example, for IH
h being full-weighting restric-

tion and Ih
H bilinear interpolation. In this case we have cI = (h/H)d,

with d the space dimension. It follows that

J ′
h(u

(ν)
h)T (Ih

H eH) = −rh
T (Ih

H eH) = − 1

cI
(IH

h rh)
T eH

= − 1

cI
rT
H eH = − 1

cI
(AeH)TeH < 0.

Updating along a descent direction is not sufficient to guarantee a

reduction of the value of J . For this purpose a line search or an a-priori

choice of step-length α is required (globalization) such that

J(u(ν) + α Ih
HeH) < J(u(ν)).

This aspect is discussed later in Sect. 3.2.

2.4 The multilevel scheme

In the TG scheme the size of the coarse problem may be still too large to

be solved exactly. Therefore it is convenient to use recursively the TG

method to solve (16) thus introducing a further coarse-grid problem.

This process can be repeated until a coarsest grid is reached where the

corresponding residual equation is inexpensive to solve. This is, roughly

speaking, the qualitative description of the multilevel method.

For a more detailed description, let us introduce a sequence of grids

with mesh size h1 > h2 > · · · > hL > 0, so that hk−1 = 2 hk. Here

k = 1, 2, . . . , L, is called the level number. With Ωhk
we denote the set

of grid points with grid spacing hk. The number of interior grid points

will be nk. With Vk we denote the space of functions defined on Ωhk
.

Multilevel methods in optimization 29

On each level k we define the problem Akuk = fk. Here Ak is a nk×nk

spd matrix, and uk and fk are vectors of size nk. The transfer among

levels is performed by two linear mappings: The restriction Ik−1
k and

the prolongation Ik
k−1 operators. With u

(l)
k = Sk(u

(l−1)
k , fk) we denote

a smoothing iteration.

For variables defined on Vk we introduce the inner product (·, ·)k

with associated norm ‖u‖k = (u, u)
1/2
k . Furthermore, denote with

|u|k = (Aku, u)1/2 the norm induced by Ak.

The following defines the multilevel algorithm.

Algorithm 2 (MG scheme)

• Multilevel method for solving Akuk = fk.

1. If k = 1 solve Akuk = fk exactly.

2. Pre-smoothing steps: u
(l)
k = S(u

(l−1)
k , fk), l = 1, . . . , ν1;

3. Computation of the residual: rk = fk − Aku
(ν1)
k ;

4. Restriction of the residual: rk−1 = Ik−1
k rk;

5. Set uk−1 = 0;

6. Call γ times the ML scheme to solve Ak−1uk−1 = rk−1;

7. Coarse-grid correction: u
(ν1+1)
k = u

(ν1)
k + Ik

k−1uk−1;

8. Post-smoothing steps: u
(l)
k = S(u

(l−1)
k , fk), l = ν1+2, . . . , ν1+

ν2 + 1;

The multilevel algorithm involves a new parameter (cycle index) γ

which is the number of times the MG procedure is applied to the coarse

level problem. Since this procedure converges very fast, γ = 1 or γ = 2

are the typical values used. For γ = 1 the multilevel scheme is called

V-cycle, whereas γ = 2 is named W-cycle. It turns out that with a

reasonable γ, the coarse problem is solved almost exactly. Therefore in

this case the convergence factor of a multilevel cycle equals that of the

Multilevel methods in optimization 30

corresponding TG method, i.e., approximately ρ = µν1+ν2. Actually

in many problems γ = 2 or even γ = 1 are sufficient to retain the

twolevel convergence. A picture of the multilevel workflow is given in

Figure 6. A complete MATLAB linear multilevel code for solving the

Figure 6: Multilevel setting.

one-dimensional model problem is given in Appendix 6.

Also the multilevel scheme can be expressed in the form (1) as stated

by the following lemma

Lemma 4 The iteration matrix of the multilevel scheme is given in

recursive form by the following.

For k = 1 let M1 = 0. For k = 2, . . . , L:

Mk = Sν2

k (Ik − Ik
k−1(Ik−1 − Mγ

k−1)A
−1
k−1I

k−1
k Ak)S

ν1

k (21)

where Ik is the identity, Sk is the smoothing iteration matrix, and Mk

is the multilevel iteration matrix for the level k.

Proof. To derive (21) consider an initial error e
(0)
k . The action

of ν1 pre-smoothing steps gives ek = Sν1

k e
(0)
k and the corresponding

residual rk = Akek. On the coarse grid, this error is given by ek−1 =

A−1
k−1I

k−1
k rk. However, in the multilevel algorithm we do not invert

Ak−1 (unless on the coarsest grid) and we apply γ multilevel cycles

Multilevel methods in optimization 31

instead. That is, denote with v
(γ)
k−1 the approximation to ek−1 obtained

after γ application of Mk−1, we have for the error (of the error) η
(γ)
k−1 =

Mγ
k−1η

(0)
k−1. That is,

ek−1 − v
(γ)
k−1 = Mγ

k−1(ek−1 − v
(0)
k−1).

Following the ML Algorithm 2, we set v
(0)
k−1 = 0 (Step 5.). Therefore

we have ek−1 − v
(γ)
k−1 = M

(γ)
k−1ek−1 which can be rewritten as v

(γ)
k−1 =

(Ik−1 − Mγ
k−1)ek−1. It follows that

v
(γ)
k−1 = (Ik−1 − Mγ

k−1)ek−1 = (Ik−1 − Mγ
k−1) A−1

k−1I
k−1
k rk

= (Ik−1 − Mγ
k−1) A−1

k−1I
k−1
k Akek.

Correspondingly, the coarse-grid correction is u
(ν1+1)
k = u

(ν1)
k +Ik

k−1v
(γ)
k−1.

In terms of error functions this means that

e
(ν1+1)
k = ek − Ik

k−1v
(γ)
k−1,

substituting the expression for v
(γ)
k−1 given above, we obtain

e
(ν1+1)
k = [Ik − Ik

k−1(Ik−1 − Mγ
k−1) A−1

k−1I
k−1
k Ak]e

(ν1)
k .

Finally, consideration of the pre- and post-smoothing sweeps proves the

Lemma.

We now describe a multigrid convergence theory for the Poisson

model problem. For this purpose we rewrite the multilevel iteration

matrix above in the form of a classical iteration as follows

Mk = Ik − BkAk.

where Ik denotes the identity on Vk. Let Rk : Vk → Vk be an iteration

operator such that Sk = Ik −Rk Ak for k > 1. (Recall (13) to see that

Rk = Q−1
k .) Consider

−∆u = f in Ω,

u = 0 on ∂Ω.
(22)

Multilevel methods in optimization 32

The matrix form of this problem is

Akuk = fk in Vk. (23)

We introduce the following operators. We interpret Ik−1
k : Vk →

Vk−1 as the L2
k projection defined by

(Ik−1
k u, v)k−1 = (u, Ik

k−1v)k,

for all u ∈ Vk and v ∈ Vk−1. Similarly, let Pk−1 : Vk → Vk−1 be the Ak

projection defined by

(Ak−1 Pk−1u, v)k−1 = (Aku, Ik
k−1v)k,

for all u ∈ Vk and v ∈ Vk−1.

The V -cycle multigrid algorithm to solve (23) in recursive form is

given as follows.

Algorithm 3 (MG scheme - recursive form)

• Set B1 = A−1
1 . For k ≥ 2 define Bk : Vk → Vk in terms of Bk−1

as follows. Let fk ∈ Vk.

1. Define u(l) for l = 1, . . . , ν1 by

u(l) = u(l−1) + Rk(fk − Ak u(l−1)).

2. Set u(ν1+1) = u(ν1) + Ik
k−1q, where

q = Bk−1I
k−1
k (fk − Ak u(ν1)).

3. Set Bk fk = u(ν1+ν2+1), where u(ℓ) for ℓ = ν1 + 2, . . . , ν1 +

ν2 + 1 is given by step 2 (with RT
k - T means transpose -

instead of Rk for a symmetric MG scheme).

Multilevel methods in optimization 33

To simplify the analysis of this scheme, we chose ν1 = 1 and ν2 = 0,

and take u(0) = 0. From the definition of Pk−1, we see that

Ik−1
k Ak = Ak−1Pk−1. (24)

Let Sk u = Sk (u−u(0)) = u−u(1). Now for u ∈ Vk, k = 2, . . . , L, we

have

(Ik − BkAk) u = u − u(1) − Ik
k−1q

= Sk u − Ik
k−1Bk−1Ak−1Pk−1Sk u (25)

= [Ik − Ik
k−1Bk−1Ak−1Pk−1] Sk u

= [(Ik − Ik
k−1Pk−1) + Ik

k−1(Ik−1 − Bk−1Ak−1) Pk−1]Sk u.

It is immediate to see that this recurrence relation, including post-

smoothing, can be written as

Mk = Sk [(Ik − Ik
k−1Pk−1) + Ik

k−1Mk−1 Pk−1]Sk.

Clearly, it is equivalent to (21) with γ = 1. Starting from this recurrence

relation, in [12] the following multigrid convergence theorem is proved.

Theorem 3 Let Rk satisfy (26) and (27) for k > 1. Then there exists

positive constants δk < 1 such that

(Ak Mk u, u)k ≤ δk (Aku, u)k for all u ∈ Vk.

The two conditions required in Theorem 3 are given below. The

first condition concerns the smoothing operator Rk as follows. Let Rk

be symmetric and positive definite and Sk be nonnegative. We need

AkSk = SkAk. There exists constant CR > 0 and c > 0 independent

of u and k such that

CR
‖u‖2

k

λk
≤ (R u, u)k ≤ c (A−1

k u, u)k for all u ∈ Vk, (26)

where λk denotes the largest eigenvalue of Ak. In general, notice that

if the spectrum σ(Sk) = σ(Ik − RkAk) ∈ (−1, 1), then there exist

positive constants a0 and a1 smaller then one such that

−a0 (Aku, u)k ≤ (Ak(Ik − RkAk)u, u)k ≤ a1 (Aku, u)k.

Multilevel methods in optimization 34

This is the same as (1−a1) (A−1
k u, u)k ≤ (Ru, u)k ≤ (1+a0) (A−1

k u, u)k;

see [11]. Compare with the smoothing property (11).

The second assumption is a regularity and approximation assump-

tion. There exists 0 < α ≤ 1 and a constant Cα > 0 independent of k

such that

(Ak(Ik−Ik
k−1Pk−1) u, u)k ≤ Cα

(‖Aku‖2
k

λk

)α

(Aku, u)1−α
k for all u ∈ Vk.

(27)

The case α = 1 corresponds to full elliptic regularity, ‖u‖H2 ≤ c‖f‖L2.

Notice that (27) corresponds to the approximation property (19). In

fact, we have

Ik − Ik
k−1Pk−1 =

(
A−1

k − Ik
k−1 A−1

k−1I
k−1
k

)
Ak,

and if Akuk = fk then Ak−1(Pk−1uk) = Ik−1
k fk.

In the following, we sketch the proof of Theorem 3. This proof is

by induction. For k = 1 we have M1 = Ik − B1A1 = Ik − A−1
1 A1 = 0

and the claim of the theorem is true. Now assume it is true for k − 1.

We have

(AkMku, u)k = (AkSk (Ik − Ik
k−1Pk−1)Sku, u)k + (AkSk Ik

k−1Mk−1 Pk−1Sku, u)k

= (Ak (Ik − Ik
k−1Pk−1)z, z)k + (Ak Ik

k−1Mk−1 Pk−1z, z)k

= (Ak (Ik − Ik
k−1Pk−1)z, z)k + (Mk−1 Pk−1z, Ik−1

k Akz)k−1

= (Ak (Ik − Ik
k−1Pk−1)z, z)k + (Mk−1 Pk−1z, Ak−1Pk−1z)k−1

= (Ak (Ik − Ik
k−1Pk−1)z, z)k + (Mk−1 v, Ak−1v)k−1

≤ (Ak (Ik − Ik
k−1Pk−1)z, z)k + δk−1 (Ak−1 v, v)k−1

= (Ak (Ik − Ik
k−1Pk−1)z, z)k + δk−1 (Ak−1Pk−1z, Pk−1z)k−1

= (Ak (Ik − Ik
k−1Pk−1)z, z)k + δk−1 (Akz, Ik

k−1Pk−1z)k

= (1 − δk−1) (Ak (Ik − Ik
k−1Pk−1)z, z)k + δk−1 (Akz, z)k

where we let z = Sku (the case with ν pre- and post-smoothing sweeps

requires z = Sν
ku) and v = Pk−1z. To complete the proof of the

Multilevel methods in optimization 35

theorem, one considers the resulting inequality

(AkMku, u)k ≤ (1 − δk−1) (Ak (Ik − Ik
k−1Pk−1)z, z)k + δk−1 (Akz, z)k.

(28)

From (27) with α = 1 we have

(Ak (Ik − Ik
k−1Pk−1)z, z)k ≤ C1

‖Akz‖2
k

λk
.

Next, we find a δ independent of k such that Theorem 3 holds for all

k. We need the following lemma.

Lemma 5 The following estimate holds

(Ak (Ik − Ik
k−1Pk−1) Sν

ku, Sν
ku)k ≤ C1

2νCR

(
|u|2k − |Sν

ku|2k
)

Proof.

(Ak (Ik − Ik
k−1Pk−1) Sν

ku, Sν
ku)k ≤ C1λ

−1
k ‖AkS

ν
ku‖2

k

= (C1/CR) (RkAkS
ν
ku, AkS

ν
ku)k

= (C1/CR) ((I − Sk)S
2ν
k u, Aku)k

≤ C1

2νCR

(
|u|2k − |Sν

ku|2k
)

the last inequality follows from

((I−Sk)S
2ν
k u, Aku)k ≤ 1

2ν

2ν−1∑

j=0

((I−Sk)S
j
ku, Aku)k =

1

2ν

(
|u|2k − |Sν

ku|2k
)

resulting from

(1 − x)x2m ≤ 1

2m
(1 − x)

2m−1∑

j=0

xj =
1

2m
(1 − x2m) for 0 ≤ x ≤ 1.

Multilevel methods in optimization 36

With this lemma and (28) (with δk−1 = δ) we obtain

(AkMku, u)k ≤ (1 − δ)
C1

2νCR

(
|u|2k − |Sν

ku|2k
)

+ δ |Sν
ku|2k.

Now, choosing δ = C1/(C1 + 2νCR) we have

(AkMku, u)k ≤ δ (Aku, u)k

where 0 < δ < 1 for ν ≥ 1 and Theorem 3 is proved with δ independent

of k.

Notice that since Mk is symmetric with respect to (Ak·, ·)k it fol-

lows that (AkM
2
ku, u)k ≤ δ2 (Aku, u)k. This fact and the additional

condition

(AkI
k
k−1u, Ik

k−1u)k ≤ 2 (Ak−1u, u)k−1 for all u ∈ Vk,

that characterizes the case of nested spaces, allow to extend the theo-

rem above to the case of W-cycles (γ = 2) and the same estimate of

δ results [11].

3 Multilevel methods for nonlinear problems

Usually, two multilevel approaches to the solution of nonlinear prob-

lems are considered. The first is based on a generalization of the

ML scheme described above which is called full approximation stor-

age (FAS) scheme [14]. The second approach is based on the Newton

method and uses the multilevel scheme as inner solver of the linearized

equations defining the Jacobian in the Newton step.

An interesting comparison between the FAS and the Newton-ML

schemes is presented in [33]. First, it is shown that in terms of comput-

ing time, the exact Newton approach is not a viable method. Further,

it is demonstrated that the inexact-Newton-ML scheme may provide

similar efficiency as the FAS scheme. However, it remains an open is-

sue how many interior ML cycles are possibly needed in the Newton-ML

Multilevel methods in optimization 37

method to match the FAS efficiency. In this sense the FAS scheme is

more robust and we discuss this method in the following.

3.1 The FAS multilevel method

To illustrate the FAS method, consider the discrete nonlinear problem

Ak(uk) = fk , (29)

where Ak(·) represents a nonlinear discrete operator on Ωhk
.

The starting point for the FAS scheme is again to define a suitable

smoothing process denoted by u = S (u, f). Now suppose to apply

a few times this iterative method to (29) obtaining some approximate

solution ũk. The desired exact correction ek is defined by Ak(ũk+ek) =

fk. Here the coarse residual equation Akek = rk makes no sense

(nonlinearity, no superposition). Nevertheless the ‘correction’ equation

can instead be written in the form

Ak(ũk + ek) − Ak(ũk) = rk , (30)

where rk = fk − Ak(ũk). Now assume to represent ũk + ek on the

coarse grid in terms of the coarse-grid variable

uk−1 := Îk−1
k ũk + ek−1 . (31)

Since Îk−1
k ũk and ũk represent the same function but on different grids,

the standard choice of the fine-to-coarse linear operator Îk−1
k is straight

injection. The formulation of (30) on the coarse level is obtained by

replacing Ak(·) by Ak−1(·), ũk by Îk−1
k ũk, and rk by Ik−1

k rk = Ik−1
k (fk−

Ak(ũk)), thus we get the FAS equation

Ak−1(uk−1) = Ik−1
k (fk − Ak(ũk)) + Ak−1(Î

k−1
k ũk) . (32)

This equation can also be written in the form

Ak−1(uk−1) = Ik−1
k fk + τ k−1

k , (33)

Multilevel methods in optimization 38

where

τ k−1
k = Ak−1(Î

k−1
k ũk) − Ik−1

k Ak(ũk).

Observe that (33) without the τ k−1
k term is the original equation rep-

resented on the coarse grid. At convergence uk−1 = Îk−1
k uk, because

fk − Ak(uk) = 0 and Ak−1(uk−1) = Ak−1(Î
k−1
k uk). The term τ k−1

k

is the fine-to-coarse defect or residual correction. That is, the correc-

tion to (33) such that its solution coincides with the fine grid solution.

This fact allows to reverse the point of view of the multilevel approach

[16]. Instead of regarding the coarse level as a device for accelerating

convergence on the fine grid, one can view the fine grid as a device for

calculating the correction τ k−1
k to the FAS equation. In this way most

of the calculation may proceed on coarser spaces.

The direct use of uk−1 on fine grids, that is, the direct interpolation

of this function by Ik
k−1uk−1 cannot be used, since it introduces the

interpolation errors of the full (possibly oscillatory) solution, instead of

the interpolation errors of only the correction ek−1, which is assumed

smooth. For this reason the following coarse-grid correction is used

uk = ũk + Ik
k−1(uk−1 − Îk−1

k ũk) . (34)

The complete FAS scheme is summarized below.

Algorithm 4 (FAS scheme)

• Multilevel FAS method for solving Ak(uk) = fk.

1. If k = 1 solve Ak(uk) = fk exactly.

2. Pre-smoothing steps: u
(l)
k = S(u

(l−1)
k , fk), l = 1, . . . , ν1;

3. Computation of the residual: rk = fk − Ak(u
(ν1)
k);

4. Restriction of the residual: rk−1 = Ik−1
k rk;

5. Set uk−1 = Îk−1
k u

(ν1)
k ;

6. Set fk−1 = rk−1 + Ak−1(uk−1)

Multilevel methods in optimization 39

7. Call γ times the FAS scheme to solve Ak−1(uk−1) = fk−1;

8. Coarse-grid correction: u
(ν1+1)
k = u

(ν1)
k +Ik

k−1(uk−1−Îk−1
k u

(ν1)
k);

9. Post-smoothing steps: u
(l)
k = S(u

(l−1)
k , fk), l = ν1+2, . . . , ν1+

ν2 + 1;

The action of one FAS scheme can be also expressed in terms of

a (nonlinear) multigrid iteration operator Bk. Starting with an initial

approximation u
(0)
k the result of one FAS-cycle is then denoted by uk =

Bk(u
(0)
k) fk.

Algorithm 5 (FAS scheme - recursive form)

• Set B1(u
(0)
1) ≈ A−1

1 (e.g., iterating with S1 starting with u
(0)
1).

For k = 2, . . . , L define Bk in terms of Bk−1 as follows.

1. Set the starting approximation u
(0)
k .

2. Pre-smoothing. Define u
(l)
k for l = 1, . . . , ν1, by

u
(l)
k = Sk(u

(l−1)
k , fk).

3. Coarse-grid correction. Set

u
(ν1+1)
k = u

(ν1)
k + Ik

k−1(uk−1 − Îk−1
k u

(ν1)
k)

where uk−1 is given by

uk−1 = Bk−1(u
(0)
k−1)

[
Ik−1
k (fk − Ak(u

(ν1)
k)) + Ak−1(u

(0)
k−1)

]
.

and u
(0)
k−1 = Îk−1

k u
(ν1)
k .

4. Post-smoothing. Define u
(l)
k for l = ν1 + 2, · · · , ν1 + ν2 + 1,

by

u
(l)
k = Sk(u

(l−1)
k , fk).

5. Set Bk(u
(0)
k) fk = u

(ν1+ν2+1)
k .

Multilevel methods in optimization 40

A complete FORTRAN FAS multigrid code for solving a two-dimensional

Poisson problem is given in Appendix 7. Next, we discuss a multilevel

approach to optimization which closely relates with the FAS scheme and

provides a framework to investigate convergence of multigrid schemes

for nonlinear problems.

3.2 MGOPT: A multilevel optimization scheme

In some recent papers, Nash [40] and Lewis and Nash [35] propose a

multilevel approach to optimization problems, called MGOPT, which

closely resembles the FAS scheme. One novelty of the MGOPT ap-

proach is the extension of the multilevel strategy to optimization prob-

lems. This extension exploits the fact that, as we have seen, the coarse-

grid correction provides a descent direction. Combining this fact with a

line search procedure and a minimizing ‘smoothing’ iteration, a globally

convergent algorithm is obtained. Numerical experiments, e.g. [40],

demonstrate that MGOPT greatly improves the efficiency of the under-

lying optimization scheme used as ‘smoother’. However, a coarse-grid

correction combined with line search may be necessary for convergence.

As shown below, an a-priori choice of the step-length is possible [2].

Consider the following (locally) convex optimization problem

min
uk

Jk(uk) (35)

where k = 1, 2, . . . , L, is the resolution or discretization parameter, L

denotes the finest resolution, and uk is the (unconstrained) optimiza-

tion variable in the space Vk. Among spaces Vk, restriction operators

Ik−1
k : Vk → Vk−1 and prolongation operators Ik

k−1 : Vk−1 → Vk are

defined. We require that (Ik−1
k u, v)k−1 = (u, Ik

k−1v)k for all u ∈ Vk

and v ∈ Vk−1, that is, Ik−1
k = cI (Ik

k−1)
T for a constant cI > 0. No-

tice that for optimization problems with partial differential equations,

the definition of the hierarchy of spaces Vk and of the intergrid trans-

fer operators follows the guidelines of geometrical/algebraical multigrid

Multilevel methods in optimization 41

techniques. However, in principle the MGOPT framework is not re-

stricted to PDE-based optimization problems and therefore it could be

applied to minimization problems without a geometric context. In this

case, given JL and VL at the finest resolution it is an open issue of how

to choose the hierarchy of Jk and of Vk.

We denote with Sk an optimization algorithm (for example the trun-

cated Newton scheme used in [40]) and require that given an initial

approximation u
(0)
k to the solution of (35), the application of Sk results

in sufficient reduction as follows

Jk(Sk(u
(0)
k)) ≤ Jk(u

(0)
k) − η‖∇Jk(u

(0)
k)‖2 for some η ∈ (0, 1).

The MGOPT scheme is an iterative gradient-based optimization

method. Therefore it must be formulated in the same space where

the gradient is defined. In the following, we assume a L2 formulation

of the gradient.

To define one cycle of the MGOPT method, it is convenient to

consider the minimization problem minuk
(Jk(uk) − (fk, uk)k) where

fL = 0. Let u
(0)
k be the starting approximation at resolution k.

Algorithm 6 (MGOPT scheme)

• MGOPT method for solving minuk
(Jk(uk) − (fk, uk)k).

1. If k = 1 solve minuk
(Jk(uk) − (fk, uk)k) exactly, i.e. solve

∇Jk(uk) = fk.

2. Pre-optimization. Define u
(1)
k = Sk(u

(0)
k).

3. Setup and solve a coarse-grid minimization problem. Define

u
(1)
k−1 = Ik−1

k u
(1)
k . Compute the fine-to-coarse gradient correc-

tion

τk−1 = ∇Jk−1(u
(1)
k−1)−Ik−1

k ∇Jk(u
(1)
k), fk−1 = Ik−1

k fk+τk−1.

The coarse-grid minimization problem is given by

min
uk−1

(Jk−1(uk−1) − (fk−1, uk−1)k−1) . (36)

Multilevel methods in optimization 42

Solve (36) with MGOPT to obtain uk−1.

4. Line-search and coarse-grid correction. Perform a line search

in the Ik
k−1(uk−1 − Ik−1

k u
(1)
k) direction to obtain αk that min-

imizes Jk. The coarse-grid correction is given by

u
(2)
k = u

(1)
k + αk Ik

k−1(uk−1 − Ik−1
k u

(1)
k)

5. Post-optimization. Define u
(3)
k = Sk(u

(2)
k).

Roughly speaking, the essential guideline for constructing Jk on

coarse levels is that it must sufficiently well approximate the convexity

properties of the functional at finest resolution. This property and the

following remark give an insight into the fact that the coarse-grid cor-

rection provides a descending direction; recall the discussion at the end

of Sect. 2.3 and see also Lemma 8 below.

Remark 1 With the term −(fk−1, uk−1)k−1 in Step 3. we have that

∇ (Jk−1(uk−1) − (fk−1, uk−1)k−1) |u(1)
k−1

= Ik−1
k

(
∇Jk(u

(1)
k) − fk

)
.

That is, the gradient of the coarse-grid functional at the coarse

approximation u
(1)
k−1 = Ik−1

k u
(1)
k equals the restriction of the gradient

of the fine-grid functional at corresponding fine approximation u
(1)
k .

3.3 Convergence of the MGOPT method

Assume that for each k, Jk is twice Frechét differentiable and ∇2Jk is

strictly positive definite and satisfies the condition (∇2Jk(u)v, v)k ≥
β‖v‖2

k together with ‖∇2Jk(u) − ∇2Jk(v)‖k ≤ λ ‖u − v‖k uniformly

for some positive constants β and λ. We use the expansion

Jk(u+z) = Jk(u)+(∇Jk(u), z)k+
1

2

∫ 1

0

(∇2Jk(u+tz)z, z)k dt. (37)

The main tool for our discussion is the following lemma [29].

Multilevel methods in optimization 43

Lemma 6 For u, v ∈ Vk assume (∇Jk(u), v)k ≤ 0 and let γ be such

that

0 < γ ≤ −2δ(∇Jk(u), v)k

[∫ 1

0

(∇2Jk(u + tγv) v, v)kdt

]−1

for some δ ∈ (0, 1]. Then

−(1−δ)γ(∇Jk(u), v)k ≤ Jk(u)−Jk(u+γv) ≤ −γ(∇Jk(u), v)k. (38)

Proof. Set z = γ v in (37). The first inequality follows from the

restriction to γ. The second inequality follows from the positivity of

∇2Jk.

The next lemma provides an explicit estimate for the step-length αk

for the coarse-grid gradient correction in Step 3.

Lemma 7 For u, v ∈ Vk assume (∇Jk(u), v)k ≤ 0 and let

α(u, v) = min{2, −(∇Jk(u), v)k

(∇2Jk(u)v, v)k + λ ‖v‖3
k

} (39)

Then

0 ≤ −1

2
α(u, v)(∇Jk(u), v)k ≤ Jk(u) − Jk(u + α(u, v)v). (40)

Proof. For the proof it is enough to verify that Lemma 6 may be

applied with γ = α(u, v) and δ = 1/2. Notice that
∫ 1

0

(∇2Jk(u + tα v)v, v)k dt ≤ (∇2Jk(u)v, v)k + λ ‖v‖3
k.

Therefore we have

α(u, v) ≤ −(∇Jk(u), v)k

(∇2Jk(u)v, v)k + λ ‖v‖3
k

≤ −(∇Jk(u), v)k∫ 1

0 (∇2Jk(u + tα v)v, v)kdt
.

Hence α satisfies the condition of Lemma 6 with δ = 1/2.

The following lemma states that the MGOPT coarse-grid correction

with step-length 0 < α ≤ 2 given by Lemma 7 is a minimizing step.

Notice that the above lemmas are formulated for a functional Jk(uk)

and its gradient ∇Jk(uk). They hold true considering Jk(uk)−(fk, uk)k

and ∇Jk(uk) − fk. Denote with Ĵk(uk) = Jk(uk) − (fk, uk)k.

Multilevel methods in optimization 44

Lemma 8 Take u
(1)
k ∈ Vk and define u

(1)
k−1 = Ik−1

k u
(1)
k ∈ Vk−1. De-

note with Ĵk−1(uk−1) = Jk−1(uk−1) − (fk−1, uk−1)k−1 where fk−1 =

Ik−1
k fk + τk−1 and τk−1 = ∇Jk−1(u

(1)
k−1) − Ik−1

k ∇Jk(u
(1)
k). Let uk−1 ∈

Vk−1 be such that Ĵk−1(uk−1) ≤ Ĵk−1(u
(1)
k−1) and define q = Ik

k−1(uk−1−
u

(1)
k−1). Then

Ĵk(u
(1)
k + α(u

(1)
k , q) q) − Ĵk(u

(1)
k) ≤ 1

2
α(u

(1)
k , q)(∇Ĵk(u

(1)
k), q)k, (41)

where α(u
(1)
k , q) is defined in Lemma 7 (strict inequality holds if

Ĵk−1(uk−1) < Ĵk−1(u
(1)
k−1)).

Proof. The proof follows from Lemma 7 after showing that (∇Ĵk(u
(1)
k), q)k ≤

0. From (37) we obtain

(∇Ĵk−1(u
(1)
k−1), uk−1 − u

(1)
k−1)k ≤ Ĵk−1(uk−1) − Ĵk−1(u

(1)
k−1) ≤ 0.

Now we have

(∇Ĵk(u
(1)
k), q)k = (∇Ĵk(u

(1)
k), Ik

k−1(uk−1 − u
(1)
k−1))k

= (Ik−1
k (∇Ĵk(u

(1)
k)), uk−1 − u

(1)
k−1)k−1

= (∇Ĵk−1(u
(1)
k−1), uk−1 − u

(1)
k−1)k−1 ≤ 0. (42)

For the last equality recall Remark 1 (and the discussion at the end of

Sect. 2.3).

Notice that in Lemma 8 it is not required to solve exactly the

coarse minimization problem: find u ∈ Vk−1 such that Ĵk−1(u) =

minuk−1
Ĵk−1(uk−1). This is (formally) required only on the coars-

est grid. The following theorem states convergence of the MGOPT

method.

Theorem 4 The MGOPT method described above provides a min-

imizing iteration and if J is strictly convex then (the index L of the

finest level is omitted)

lim
i→∞

‖u(i) − u‖ = 0,

where J(u) = minv J(v) and (i) is the MGOPT cycle index.

Multilevel methods in optimization 45

Proof. The proof of the first part is by induction. For k = 2 we

have u where Ĵ1(u) = minu1
Ĵ1(u1) and from Lemma 8 it follows that

Ĵ2(u
3
2) = Ĵ2(S2(u

2
2)) ≤ Ĵ2(u

2
2) = Ĵ2(u

1
2 + α Ik

k−1(u − Ik−1
k u1

2))

≤ Ĵ2(u
1
2) = Ĵ2(S2(u

0
2)) ≤ Ĵ2(u

0
2). (43)

If Ĵ2(u
0
2) > minu2

Ĵ2(u2), then (43) holds with strict inequality.

For k > 2, due to the induction hypothesis and because of Lemma

8 the theorem holds.

The sequence {u(i)
L }i≥1 is in the compact set A = {v ∈ VL : JL(v) ≤

JL(u0
L)} and {JL(u

(i)
L)}i≥1 is a non-increasing sequence in the compact

set V = {JL(v) : v ∈ A}, so this sequence converges. We can write

limi→∞(JL(u
(i)
L) − JL(uL)) = 0. Strict convexity and (37) give that

limi→∞ ‖u(i)
L − uL‖L = 0.

Linear multigrid schemes including algebraic multilevel methods [6,

41, 43] can be interpreted as MGOPT schemes for the quadratic func-

tional

Jk(u) =
1

2
(u, Aku)k − (u, bk)k, u ∈ Vk,

where Vk = R
nk and Ak is a nk×nk symmetric positive definite matrix.

Consider nk−1 < nk and take Ik
k−1 be full rank. Then, with the Galerkin

formula Ak−1 = Ik−1
k AkI

k
k−1 and bk−1 = Ik−1

k bk, one obtains a suitable

coarse functional Jk−1(u) = 1
2(u, Ak−1u)k−1 − (u, bk−1)k−1. A twolevel

analysis of the MGOPT scheme applied to this problem reveals that we

have convergence for α = 1. In fact, consider (39) with v = Ih
HeH , we

have

− (∇Jh, I
h
HeH)h

(AhIh
HeH , Ih

HeH)h
=

(IH
h rh, eH)H

(AhIh
HeH , Ih

HeH)h
=

(AHeH , eH)H

(IH
h AhIh

HeH , eH)H
= 1

(Notice that in the linear case λ = 0.)

The MGOPT convergence theory given above applies also to ana-

lyze the FAS scheme. For this purpose we assume the existence of a

functional Jk such that ∇Jk(uk) = Ak(uk) − fk. Then, subject to the

Multilevel methods in optimization 46

conditions given above, convergence of the FAS scheme is proved if

one proves that α given by (39) is always greater or equal to one.

3.4 The full multilevel method

When dealing with nonlinear problems it may be essential to start the it-

erative procedure from a good initial approximation. The multilevel set-

ting suggests a natural way of how to get this approximation. Suppose

to start the solution process from a coarse working level K < M where

the discretized problem Aℓ(uℓ) = fℓ with ℓ = K is easily solved. The

idea is to interpolate this solution to the next finer working level as ini-

tial approximation for the iterative process to solve Aℓ+1(uℓ+1) = fℓ+1

as follows

uℓ+1 = Ĩℓ+1
ℓ uℓ. (44)

Thereafter the FAS (or ML) solution process at level ℓ + 1 is applied.

The idea of using a coarse-grid approximation as a first guess for the

solution process on a finer grid is known as nested iteration. The

algorithm obtained by combining the multilevel scheme with nested

iteration is called full multilevel (FML) method; see Figure 7. The

interpolation operator (44) used in the FML scheme is called FML

interpolator. Because of the improvement on the initial solution at

each starting level, the FML scheme results to be more efficient than the

iterative application of the multilevel cycle without FML initialization.

Algorithm 7 (FML scheme)

• FML method for solving AL(uL) = fL.

1. For ℓ = K < L set initial approximation uℓ;

2. If ℓ < L then interpolate to the next finer working level:

ũℓ+1 = Ĩℓ+1
ℓ uℓ;

3. Apply FAS (or ML) scheme to solve Aℓ+1(uℓ+1) = fℓ+1, start-

ing with ũℓ+1;

Multilevel methods in optimization 47

4. Set ℓ := ℓ + 1. If ℓ < L go to 2; else stop.

On each current working level one applies N -FAS (or ML) cycles and

then the algorithm is called N -FML scheme.

Within the N -FML algorithm an estimate of the degree of accuracy

can be obtained by comparison of solutions at different levels. Denote

with uℓ the solution on the level ℓ after N -FAS (or ML) cycles. Then

in the FML method this solution is interpolated to level ℓ + 1 to serve

as a first approximation for this working level. At the end of N cycles

on this level, one obtains uℓ+1. An estimate of the (maximum) norm

of the solution error on level ℓ can be defined as

Eℓ = max
Ωhℓ

|uℓ − Îℓ
ℓ+1uℓ+1| , (45)

and so on finer levels.

To show the efficiency of the full multilevel approach we consider a

three dimensional Poisson problem with Dirichlet boundary conditions:
{

−(∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2) = 3 sin(x + y + z) in Ω = (0, 2)3

u(x, y, z) = sin(x + y + z) for (x, y, z) ∈ ∂Ω

(46)

ℓ = 1

ℓ = 2

ℓ = 3

��
��

A
A
A
AU

��
����

�
��
��
��

A
A
A
AU

��
��

A
A
A
AU

��
����

�
��
��
����

�
��
��
��

A
A
A
AU

��
��

A
A
A
AU

��
��

ν

ν1

ν

ν2

ν1

ν1

ν

ν2

ν2

Figure 7: The FML scheme.

Multilevel methods in optimization 48

Finite difference approximations to (46) are obtained in much the same

way as was done in the one-space variable case. If on each level ℓ, we

choose a uniform mesh with grid size hℓ = 2
nℓ+1 , nℓ = 2ℓ − 1, a direct

application of the discretization scheme used in the 1D case gives

−(
uℓ

i+1jk − 2uℓ
ijk + uℓ

i−1jk

h2
ℓ

+
uℓ

ij+1k − 2uℓ
ijk + uℓ

ij−1k

h2
ℓ

+
uℓ

ijk+1 − 2uℓ
ijk + uℓ

ijk−1

h2
ℓ

)

= 3 sin(ihℓ, jhℓ, khℓ) , i, j, k = 1, . . . , nℓ . (47)

This is the 7-point stencil approximation which is O(h2) accurate. To

solve this problem we employ the FAS scheme with γ = 1 and L = 7

with Gauss-Seidel smoothing, ν1 = 2 and ν2 = 1. Its smoothing factor

estimated by local mode analysis is µ = 0.567. Hence, by this analysis,

the expected reduction factor is ρ∗ = µν1+ν2 = 0.18. The observed

reduction factor is ≈ 0.20.

Here Îk−1
k is simple injection and Ik−1

k and Ik
k−1 are the full weighting

and (tri-)linear interpolation, respectively. Finally, the FML operator

Ĩℓ+1
ℓ is cubic interpolation [16, 27]. Now let us discuss the optimality

of the FML algorithm constructed with these components.

To show that the FML scheme is able to solve the given discrete

problem at a minimal cost, we compute Eℓ and show that it behaves

like h2
ℓ , demonstrating convergence. This means that the ratio Eℓ/Eℓ+1

at convergence should be a factor h2
ℓ/h

2
ℓ+1 = 4. Results are reported in

Table 2. In the 10-FML column of we actually observe the h2 behavior

which can also be seen with smaller N = 3 and N = 1 FML schemes.

In fact, as reported in Table 2, the 1-FML scheme gives the same order

of magnitude of errors as the 10-FML scheme. Therefore the choice

N = 1 in a FML cycle is suitable to solve the problem to second-order

accuracy.

To estimate the amount of work invested in the FML method, let

us define the work unit (WU) [14], i.e. the computational work of one

smoothing sweep on the finest level M . The number of corresponding

arithmetic operations is linearly proportional to the number of grid

Multilevel methods in optimization 49

level 10-FML 3-FML 1-FML

3 6.75 10−4 6.79 10−4 9.44 × 10−4

4 1.73 10−4 1.75 10−4 2.34 × 10−4

5 4.36 10−5 4.40 10−5 5.92 × 10−5

6 1.09 10−5 1.10 10−5 1.48 × 10−5

Table 2: The estimated solution error for various N -FML cycles.

points. On the level ℓ ≤ M the work involved is (1
2)

3(M−ℓ)WU , where

the factor 1
2 is given by the mesh size ratio hℓ+1/hℓ and the exponent 3

is the number of spatial dimensions. Thus a multilevel cycle that uses

ν = ν1 + ν2 relaxation sweeps on each level requires

Wcycle = ν
L∑

k=1

(
1

2
)3(L−k)WU <

8

7
νWU ,

ignoring transfer operations. Hence the computational work employed

in a N -FML method is roughly

WFMG = N
L∑

ℓ=2

(
1

2
)3(L−ℓ)Wcycle ,

ignoring the FML interpolation and work on the coarsest grid. This

means that, using the 1-FML method, we solve the discrete 3D Poisson

problem to second-order accuracy with a number of computer opera-

tions which is proportional to the number of unknowns on the finest

grid. In the present case we have FML Work of ≈ 4WU .

Multilevel methods in optimization 50

4 Multilevel schemes for optimality systems

In this section we discuss the discretization and the multigrid solution

of optimal control problems. These consist of a dynamical or equilib-

rium system, a description of the control mechanism, and a criterion

defining the cost functional, that models the purpose of the control and

describes the cost of its action. An optimal control problem is then for-

mulated as the minimization of the cost functional where the state of

the system is characterized by the modeling equations and the action

of the control. This is a constrained minimization problem. The neces-

sary conditions for such a minimum result in a set of coupled equations

called the optimality system.

Further details on the multigrid solution of steady and unsteady

optimal control problems can be found in [3]–[10].

4.1 Optimality systems

Consider the optimal control problem
{

minu∈U J(y, u),

e(y, u) = 0 in Ω,
(48)

where y and u denote the state- and control variables of a controlled

partial differential equation expressed as e(y, u) = 0, with e : Y ×U →
Z for appropriate Hilbert spaces Y , U , and Z. Ω is an open bounded

set in R
d. The cost functional J is formally given by

J(y, u) = h(y) + ν g(u), (49)

where ν > 0 is the weight of the cost of the control. Here g and h are

required to be continuously differentiable, bounded from below, and

such that g(u) → ∞ as ||u|| → ∞. Allowing g and h to be locally

non-convex and e to be possibly nonlinear, (48) may have multiple

extremals including minima, maxima, and saddle points.

Multilevel methods in optimization 51

Local minima satisfy the first-order necessary conditions. To define

these conditions consider the Lagrangian

L(y, u, p) = J(y, u) + 〈e(y, u), p〉Z,Z∗,

where p is the Lagrange multiplier, the adjoint variable. By equating

to zero the Frechét derivatives of L with respect to the triple (y, u, p),

we obtain the following optimality system

e(y, u) = 0,

ey(y, u)∗ p = −h′(y),

ν g′(u) + e∗u p = 0.

(50)

Numerical approximations to solutions of (50) can be obtained, after

discretization, using the multilevel schemes discussed below. In the

following we shall consider optimal control problems where solutions to

(50) are local minima. More general situations where these solutions

are not necessarily local minima but rather only extremal points are

discussed in Section 5.

4.2 Elliptic optimal control problems

We discuss an optimal control problem governed by a linear elliptic

equation. Consider a model problem representing a material plate defin-

ing a two-dimensional convex domain Ω. For the state y of the material

we choose the temperature distribution which is maintained equal to

zero along the boundary. This system is governed by the following

equation {
∆y = f in Ω,

y = 0 on ∂Ω.
(51)

The setting above suggests that we may control the temperature

distribution y to come close to a given target profile z ∈ L2(Ω) by act-

ing with an additional distributed source term u, the control function.

Multilevel methods in optimization 52

The corresponding optimal control problem is formulated as follows

minu∈Uad
J(y, u)

∆y = u + f in Ω,

y = 0 on ∂Ω,

(52)

where we assume that u ∈ Uad = L2(Ω) being the set of admissible

controls.

The cost functional J is of the tracking type and is given by

J(y, u) =
1

2
‖y − z‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω), (53)

where ν > 0 is the weight of the cost of the control.

Existence of solutions to (52)–(53) can be easily established [36].

Optimal solutions are characterized by the following optimality sys-

tem

∆y = u + f in Ω,

y = 0 on ∂Ω,

∆p = −(y − z) in Ω,

p = 0 on ∂Ω,

νu − p = 0 in Ω.

(54)

We refer to the first differential equation of (54) as the state equation

and to the second one as the adjoint equation. The last equation in

(54) gives the optimality condition.

4.3 Finite difference discretization

In this section we discuss finite differences discretization of the opti-

mality system given above. Consider a sequence of grids {Ωh}h>0 given

by

Ωh = {x ∈ R
2 : xi = si h, si ∈ Z} ∩ Ω.

We assume that Ω is a rectangular domain and that the values of the

mesh size h are chosen such that the boundaries of Ω coincide with

Multilevel methods in optimization 53

grid lines. For grid functions vh and wh defined on Ωh we introduce

the discrete L2-scalar product

(vh, wh)L2
h

= h2
∑

x∈Ωh

vh(x) wh(x),

with associated norm |vh|0 = (vh, vh)
1/2

L2
h

. We also need |vh|∞ =

maxx∈Ωh
|vh(x)|.

First-order backward and forward partial derivatives of vh in the xi

direction are denoted by ∂−
i and ∂+

i , respectively, and given by

∂−
i vh(x) =

vh(x) − vh(x − î h)

h
and ∂+

i vh(x) =
vh(x + î h) − vh(x)

h

where î denotes the i coordinate direction vector and vh is extended by

0 on grid points outside of Ω; see [28]. In this framework, the discrete

H1-product is given by

|vh|1 =

(
|vh|20 +

2∑

i=1

|∂−
i vh|20

)1/2

.

The spaces L2
h and H1

h consist of the sets of grid functions vh endowed

with |vh|0, respectively |vh|1, as norm. We need the following lemma

[45].

Lemma 9 (Poincaré–Friedrichs inequality for finite differences)

For any grid function vh, there exists a constant c∗, independent of

vh and h, such that

|vh|20 ≤ c∗

2∑

i=1

|∂−
i vh|20. (55)

(Note: for Ω = (0, 1) × (0, 1), c∗ = 1/4.)

Functions in L2(Ω) and H1(Ω) are approximated by grid functions

defined through their mean values with respect to elementary cells [x1−
h
2 , x1 + h

2] × [x2 − h
2 , x2 + h

2]; see [28] for more details. For sufficiently

Multilevel methods in optimization 54

smooth functions v ∈ Ck(Ω̄) (resp. f ∈ Ck(Ω)), k = 0, 1, . . . , we

denote with (Rhv)(x) = v(x) (resp. (R̃hf)(x) = f(x)) the restriction

operator on Ω̄h (resp. Ωh).

The (standard) second-order five-point approximation to the Lapla-

cian with homogeneous Dirichlet boundary conditions is defined by

∆h = ∂+
1 ∂−

1 + ∂+
2 ∂−

2 .

We have the following consistency result

|∆hRhv − R̃h∆v|∞ ≤ c h2‖v‖C4(Ω̄); (56)

see, e.g., [28].

After discretization and elimination of the variable uh we have the

following discrete optimality system

∆hyh − ph/ν = f̃h, (57)

∆hph + yh = z̃h, (58)

where f̃h = R̃hf and z̃h = R̃hz.

Now consider the inner product of (57) by ν yh and of (58) by ph

and take the sum of the two resulting equations. We obtain

ν (∆hyh, yh)L2
h
+ (∆hph, ph)L2

h
= ν (f̃h, yh)L2

h
+ (z̃h, ph)L2

h
,

which implies that

ν (−∆hyh, yh)L2
h
+ (−∆hph, ph)L2

h
≤ ν |(f̃h, yh)L2

h
| + |(z̃h, ph)L2

h
|.

Because (−∆hvh, vh)L2
h

=
∑2

i=1 |∂−
i vh|20 and using Lemma 9, we obtain

ν |yh|20 + |ph|20 ≤ c∗ ν |(f̃h, yh)L2
h
| + c∗ |(z̃h, ph)L2

h
|.

Applying the Cauchy-Schwarz and Cauchy inequalities on the right-

hand side of this expression results in

ν |yh|20 + |ph|20 ≤ c (ν |f̃h|20 + |z̃h|20), (59)

Multilevel methods in optimization 55

where c = c∗/(2 − c∗).

Using (59), we are now able to determine the degree of accuracy of

the optimal solution. For this purpose, notice that (57)–(58) hold true

with yh and ph replaced by their respective error functions, and with

f̃h and z̃h replaced by the truncation error for ∆h estimated by (56).

Further notice that dividing (59) by ν and recalling that uh = ph/ν,

we obtain the estimate for the control from |yh|20 + ν |uh|20 ≤ c (|f̃h|20 +

|z̃h|20/ν). These statements are summarized in the following theorem.

Theorem 5 Let y ∈ C4(Ω̄), and p ∈ C4(Ω̄), be solutions to (54), and

let yh and ph be solutions to (57)–(58). Then there exists a constant

c, depending on Ω, and independent of h, such that

|yh − Rhy|20 +
1

ν
|ph − Rhp|20 ≤ c (h4 ‖y‖2

C4(Ω̄) + h4 1

ν
‖p‖2

C4(Ω̄)).

That means that the numerical solution is second-order accurate.

4.4 Smoothing iteration

Let x ∈ Ωh, where x = (ih, jh) and i, j index the grid points, e.g.,

lexicographically. Denote with ωij the set of grid index pairs s, t of the

stencil of ∆h centered at i, j. That is, for ∆h centered at 0, 0 we have

ωij = {0, 0; 1, 0;−1, 0; 0, 1; 0,−1}. Correspondingly, denote with cst,

s, t ∈ ωij, the s, t coefficient of the stencil (multiplied by h2) centered

at i, j. In the example we have c00 = −4, c10 = 1, etc.. Using this

notation, we can express the action of ∆h on the function vh in the

following compact form

∆hvh|ij =
1

h2
(

∑

s,t∈ωij , s,t6=i,j

cst vst − cijvij).

Multilevel methods in optimization 56

Consider (69) and (70) at x, we have
∑

s,t∈ωij , s,t6=i,j

cy
st yst − cy

ij yij − h2 uij = h2f̃ij, (60)

∑

s,t∈ωij , s,t6=i,j

cp
st pst − cp

ij pij + h2 yij = h2 z̃ij, (61)

νuij − pij = 0, (62)

where f̃ and z̃ represent fh and zh including the defect corrections.

Notice that for convenience we distinguish between the coefficient cst

for the y and p variables by writing cy
st and cp

st, respectively.

To ease notation we set

Aij =
∑

s,t∈ωij , s,t6=i,j

cy
st yst−h2f̃ij and Bij =

∑

s,t∈ωij , s,t6=i,j

cp
st pst−h2z̃ij.

Here Aij and Bij are considered constant during the update of the

variables at i, j. Summarizing, we have the following system for the

three scalar variables yij, pij, and uij:

Aij − cy
ij yij − h2 uij = 0, (63)

Bij − cp
ij pij + h2 yij = 0, (64)

νuij − pij = 0. (65)

This system can be solved immediately and its solution gives an update

to yij, pij, and uij defining a collective (all-at-once) Gauss-Seidel step.

In fact, we obtain yij and pij as functions of uij as follows

yij = (Aij − h2 uij)/c
y
ij, (66)

and

pij = (cy
ij Bij + h2 Aij − h4uij)/c

y
ij cp

ij. (67)

Now to obtain the uij update, replace the expression for pij in the

optimality condition. We obtain

uij =
1

ν + h4/cy
ij cp

ij

(cy
ij Bij + h2 Aij)/c

y
ij cp

ij. (68)

Multilevel methods in optimization 57

With the new value of uij given, new values for yij and pij are obtained

from (66) and (67), respectively. Clearly, also in this case we can

remove the variable uij altogether.

4.5 A FAS multilevel scheme

We complete the description of the multilevel solution process in this

section illustrating the FAS structure. We have the following system

∆kyk − pk/ν = fk, (69)

∆kpk + yk = zk, (70)

Consider a current approximation to the solution of this system de-

noted by wk = (yk, pk, uk) and apply ν1-times the iterative scheme

described in the previous section, so that the main components of the

error that are left are smooth. Then we start a coarse-grid correction

procedure to solve for these components. First, a coarse level problem

is constructed on the grid with mesh size hk−1 given by

∆k−1yk−1 − pk−1/ν = Ik−1
k fk + τ(y)k−1

k , (71)

∆k−1pk−1 + yk−1 = Ik−1
k zk + τ(p)k−1

k , (72)

where τ(y)k−1
k and τ(p)k−1

k are fine-to-coarse defect corrections defined

by

τ(y)k−1
k = ∆k−1Î

k−1
k yk − Îk−1

k pk/ν − Ik−1
k (∆kyk − pk/ν), (73)

τ(p)k−1
k = ∆k−1Î

k−1
k pk + Îk−1

k yk − Ik−1
k (∆kpk + yk). (74)

Here Îk−1
k is straight injection and Ik

k−1, Ik−1
k are as follows

Ik
k−1 =

1

4

1 2 1

2 4 2

1 2 1

 and Ik−1

k =
1

16

1 2 1

2 4 2

1 2 1

 . (75)

Multilevel methods in optimization 58

Once the coarse level problem is solved, which gives wk−1 = (yk−1, pk−1, uk−1),

the coarse-grid correction follows

ynew
k = yk + Ik

k−1 (yk−1 − Îk−1
k yk), (76)

pnew
k = pk + Ik

k−1 (pk−1 − Îk−1
k pk). (77)

This is followed by ν2 post-smoothing steps.

A complete MATLAB FAS multilevel code for solving (69)-(70) in-

cluding results of numerical experiments is given in Appendix 8.

4.6 Local Fourier convergence analysis

We now proceed with a local Fourier analysis [17, 49, 51] to investi-

gate the convergence properties of the twolevel method applied to the

optimality system above.

First, let us recall the local Fourier setting. Consider a sequence of

(infinite) grids, Γk = {(ihk, jhk), i, j ∈ Z}. On these grids we define

the Fourier components:

φk(θ,x) = eiθ1x1/hk eiθ2x2/hk.

For any low frequency θ = (θ1, θ2) ∈ [−π/2, π/2)2, we consider

θ(0,0) := (θ1, θ2), θ(1,1) := (θ1, θ2),

θ(1,0) := (θ1, θ2), θ(0,1) := (θ1, θ2),

where

θi =

{
θi + π if θi < 0,

θi − π if θi ≥ 0.

We have φ(θ(0,0),x)k = φ(θ(1,1),x)k = φ(θ(1,0),x)k = φ(θ(0,1),x)k for

θ(0,0) ∈ [−π/2, π/2)2 and x = (x1, x2) ∈ Γk−1. That is, we have a

quadruples of distinct Fourier components that coincide (aliases) on

Γk−1.

Multilevel methods in optimization 59

Denote with α = (α1, α2) and consider α ∈ {(0, 0), (1, 1), (1, 0), (0, 1)};
then on Γk−1 we have φk(θ

α,x) = φk−1(2θ
(0,0),x). The four compo-

nents φk(θ
α, ·) are called harmonics. Their span is denoted with

Eθ
k = span[φk(θ

α, ·) : α ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}].

Purpose of this analysis is to investigate the action of the smoothing

and coarse-grid correction operators on couples (ey, ep) defined by

ey(x) =
∑

α,θ

Yα,θ φk(θ
α,x) and ep(x) =

∑

α,θ

Pα,θ φk(θ
α,x).

Here (ey, ep) represent the error functions for yh and ph and Wα,θ =

(Yα,θ, Pα,θ) denote the corresponding Fourier coefficients. With this

decomposition of the error, the action of one smoothing step can be

expressed as W
(1)

α,θ
= Ŝ(α, θ) W

(0)

α,θ
where Ŝ(α, θ) is the Fourier

symbol [49] of the smoothing operator. To determine Ŝ(α, θ), recall

that the functions φk(θ
α,x) are eigenfunctions of any discrete operator

described by a difference stencil on the Γk grid. Therefore we have

Skφk(θ,x) = Ŝk(θ) φk(θ,x) that is, the symbol of Sk is its (formal)

eigenvalue.

Now, consider one collective Gauss-Seidel iteration step applied to

our model problem

∆hyh − ph/ν = fh, (78)

∆hph + yh = zh. (79)

In this case, one smoothing step at x corresponds to an update which

sets the residuals at x equal to zero. In terms of the generic Fourier

mode θ, Ŝk(θ) is given by
[

(e−iθ1 + e−iθ2 − 4) −h2
k/ν

h2
k (e−iθ1 + e−iθ2 − 4)

]−1

×
[
−(eiθ1 + eiθ2) 0

0 −(eiθ1 + eiθ2)

]
.

Multilevel methods in optimization 60

Clearly, Ŝ(α, θ) consists of Ŝk(θ
α) with α ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}.

The smoothing property of Sk measures the action of this iteration

on the high-frequency error components and can be defined as follows

µ(Sk) = sup
{

r(Ŝk(θ)) : θ ∈ {θ(1,1), θ(1,0), θ(0,1)}
}

, (80)

where r denotes the spectral radius and µ(·) is the smoothing factor

which can be evaluated for any choice of values of h and ν.

The next step is to construct the Fourier symbol of the twolevel

coarse-grid correction operator

CGk−1
k = [Ik − Ik

k−1 (Ak−1)
−1 Ik−1

k Ak].

We denote the corresponding symbol by

ĈG
k−1

k (θ) = [Îk − Îk
k−1(θ) (Âk−1(2θ))−1 Îk−1

k (θ) Âk(θ)].

The symbol of the coarse grid operator Âk−1(θ) is

[2(cos(2θ1)+cos(2θ2))−4
h2

k−1
−1/ν

1 2(cos(2θ1)+cos(2θ2))−4
h2

k−1

]
,

and similarly one constructs Âk(θ) corresponding to the four harmonics,

that is,

l(θ(0,0)) 0 0 0 −1/ν 0 0 0

0 l(θ(1,1)) 0 0 0 −1/ν 0 0

0 0 l(θ(1,0)) 0 0 0 −1/ν 0

0 0 0 l(θ(0,1)) 0 0 0 −1/ν

1 0 0 0 l(θ(0,0)) 0 0 0

0 1 0 0 0 l(θ(1,1)) 0 0

0 0 1 0 0 0 l(θ(1,0)) 0

0 0 0 1 0 0 0 l(θ(0,1))

,

where

l(θα) =
2(cos(θα1

1) + cos(θα2

2)) − 4

h2
k

.

Multilevel methods in optimization 61

The symbol of the restriction operator is (here the hat denotes the

Fourier symbol, not the injection operator)

Îk−1
k (θ) =

[
I(θ(0,0)) I(θ(1,1)) I(θ(1,0)) I(θ(0,1)) 0 0 0 0

0 0 0 0 I(θ(0,0)) I(θ(1,1)) I(θ(1,0)) I(θ(0,1))

]
,

where

I(θα) =
1

4
(1 + cos(θα1

1))(1 + cos(θα2

2)).

For the prolongation operator we have Îk
k−1(θ) = Îk−1

k (θ)T .

Finally, the symbol of the twolevel method is given by

T̂G
k−1

k (θ) = Ŝk(θ)ν2 ĈG
k−1

k (θ) Ŝk(θ)ν1.

This is an 8 × 8 matrix corresponding to the four pairs (Yα,θ, Pα,θ),

α ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}. In this framework the convergence

factor is defined as follows

η(TGk−1
k) = sup{r(T̂G

k−1

k (θ)) : θ ∈ [−π/2, π/2)2}.

We can state the following theorem.

Theorem 6 Under the assumption that all multilevel components are

linear and that (Ak−1)
−1 exists and Ŝk(θ) : Eθ

k ×Eθ
k → Eθ

k ×Eθ
k for all

θ ∈ [−π/2, π/2)2, we have a representation of the twolevel operator

TGk−1
k on Eθ

k × Eθ
k by a 8 × 8 matrix given by

T̂G
k−1

k (θ) = Ŝk(θ)ν2 ĈG
k−1

k (θ) Ŝk(θ)ν1,

and for given mesh with mesh-size hk and given weight of the cost

ν, the convergence factor estimate for the twolevel scheme applied to

(78)-(79) is given by

η(TGk−1
k) = sup{r(T̂G

k−1

k (θ)) : θ ∈ [−π/2, π/2)2}.

We complete this section by reporting in Table 3 the values of

η(TGk−1
k) and those of µ(Sk) obtained with the twolevel analysis de-

scribed above. For comparison, the observed value of convergence fac-

tor defined as the “asymptotic” value of the ratio between the discrete

Multilevel methods in optimization 62

Table 3: Convergence factors and smoothing factors.

Local Fourier analysis Experim.

(ν1, ν2) µ(Sk)
ν1+ν2 η(TGk−1

k) V (ν1, ν2)

(1,1) 0.25 0.25 0.30

(2,1) 0.125 0.12 0.12

(2,2) 0.06 0.08 0.08

(3,2) 0.03 0.06 0.06

(3,3) 0.01 0.05 0.05

L2 norms of residuals resulting from two successive multilevel cycles on

the finest mesh is reported. Notice that the values reported in Table

3 are typical of the standard Poisson model problem. These values

have been obtained considering the mesh size value h ranging in the

interval [0.01, 0.25] corresponding to the interval of mesh sizes used in

the multilevel code. The value of the weight ν has been taken in the

interval [10−6, 1].

4.7 Parabolic optimal control problems

We describe space-time multilevel schemes for the solution of parabolic

optimal control problems in the whole space-time cylinder. The advan-

tage of this approach, in contrast to the sequential one, is the abil-

ity to implement time coupling in the optimality system consisting of

parabolic partial differential equations with opposite time orientation.

For this purpose, appropriate collective smoothing schemes are defined.

The space-time collective smoothing multigrid (CSMG) strategy results

in fast solvers whose convergence factors are mesh independent and do

not deteriorate as the weight of the cost of the control tends to be

small.

Multilevel methods in optimization 63

Consider the following optimal control problem

minu∈L2(Q) J(y, u),

−∂ty + σ ∆y = u in Q = Ω × (0, T),

y(x, 0) = y0(x) in Ω at t = 0,

y(x, t) = 0 on Σ = ∂Ω × (0, T),

(81)

where we take y0(x) ∈ H1
0(Ω). Control may be required to track

a desired trajectory given by yd(x, t) ∈ L2(Q) or to reach a desired

terminal state yT (x) ∈ L2(Ω). For this purpose we choose a cost

functional of the tracking type given by

J(y, u) =
α

2
||y− yd||2L2(Q) +

β

2
||y(·, T)− yT ||2L2(Ω) +

ν

2
||u||2L2(Q). (82)

Then there exists a unique solution to the optimal control problem

above; see [36]. Here, ν > 0 is the weight of the cost of the control

and α ≥ 0, β ≥ 0, α + β > 0 are optimization parameters. For

example, the case α = 1, β = 0 corresponds to tracking without

terminal observation.

The solution to (81) is characterized by the following optimality

system

− ∂ty + σ ∆y = u, (83)

∂tp + σ ∆p + α (y − z) = 0, (84)

νu − p = 0, (85)

with initial condition y(x, 0) = y0(x) for the state equation (evolving

forward in time) and terminal condition

p(x, T) = β(y(x, T) − yT (x)), (86)

for the adjoint equation (evolving backward in time).

Now, we discuss the design of two robust collective smoothing schemes

for solving (83)–(86) discretized by finite differences and backward Eu-

Multilevel methods in optimization 64

ler scheme. For simplicity of illustration, we eliminate the control vari-

able by means of the optimality condition νum
h − pm

h = 0. We have

− [1 + 4σγ] yi j m + σγ [yi+1 j m + yi−1 j m + yi j+1m + yi j−1m] + yi j m−1

− δt

ν
pi j m = 0, 2 ≤ m ≤ Nt + 1, (87)

− [1 + 4σγ] pi j m + σγ [pi+1 j m + pi−1 j m + pi j+1m + pi j−1m] + pi j m+1

+ δt α (yi j m − yd i j m) = 0, 1 ≤ m ≤ Nt. (88)

Here, γ = δt/h2, and tm = (m − 1)δt, m = 1, 2, . . . , Nt + 1.

Let us define a collective iteration step which is applied at any space-

time grid point to update wi j m = (yi j m, pi j m). For this purpose

consider (87) and (88) for the two variables yi j m and pi j m at the grid

point i j m. We can refer to the left-hand sides of (87) and (88) as

the negative of the residuals ry(wi j m) and rp(wi j m), respectively. A

step of a collective smoothing iteration at this point consists of a local

update given by

(
y

p

)(1)

i j m

=

(
y

p

)(0)

i j m

+

[
−(1 + 4σγ) −δt/ν

δt α −(1 + 4σγ)

](0) −1

i j m

(
ry

rp

)

i j m

(89)

where ry and rp denote the residuals at i j m prior to the update. While

a sweep of this smoothing iteration can be performed in any ordering

of i, j in space, the problem of how to proceed along time direction

arises.

To solve this problem we define a Gauss-Seidel-type update providing

that the opposite time orientation of the state equation and of the

adjoint equation is taken into account. For this purpose, to update the

state variable we use the first vector component of (89) marching in

the forward direction and the adjoint variable p is being updated using

the second component of (89) marching backwards in time. In this way

a robust iteration is obtained given by the following algorithm.

Multilevel methods in optimization 65

Algorithm 8 Time-Splitted Collective Gauss-Seidel Iteration (TS-CGS)

1. Set the starting approximation.

2. For m = 2, . . . , Nt do

3. For ij in, e.g., lexicographic order do

y
(1)
i j m = y

(0)
i j m +

[−(1 + 4σγ)] ry(w) + δt
ν rp(w)

[−(1 + 4σγ)]2 + δt2

ν α
|(0)
i j m,

p
(1)
i j Nt−m+2 = p

(0)
i j Nt−m+2+

[−(1 + 4σγ)] rp(w) − δt α ry(w)

[−(1 + 4σγ)]2 + δt2

ν α
|(0)
i j Nt−m+2;

4. end.

Results of local Fourier analysis show that the TS-CGS scheme has

good smoothing properties, independently of the value of ν. This is also

confirmed by results of numerical experiments. In the regime of small

σ, however, the TS-CGS iteration cannot provide robust smoothing as

we expect from our experience of multigrid methods for anisotropic

problems [49]. To overcome this difficulty, block-relaxation of the vari-

ables that are strongly connected should be performed. For small σ

this means solving for all the pairs of state and adjoint variables along

the time-direction for each space coordinate.

To describe the resulting procedure, consider the discrete optimality

system (87)–(88) at any i, j and for all time steps. For each spatial

grid point i, j a block-tridiagonal system is obtained, where each block

is a 2× 2 matrix corresponding to the pair (y, p) at a given time step.

This block-tridiagonal system has the following form

M =

A2 C2

B3 A3 C3

B4 A4 C4

CNt

BNt+1 ANt+1

. (90)

Multilevel methods in optimization 66

Centered at tm, the entries Bm, Am, Cm refer to the variables (y, p)

at tm−1, tm, and tm+1, respectively. The block Am, m = 2, . . . , Nt, is

given by

Am =

−(1 + 4σγ) −δt
ν

δt α −(1 + 4σγ)

 , (91)

where all functions within the brackets [] are evaluated at tm. Corre-

spondingly, the Bm and Cm blocks are given by

Bm =

[
1 0

0 0

]
and Cm =

[
0 0

0 1

]
. (92)

Clearly, for each time step, the variables neighboring the point ij are

taken as constant and contribute to the right-hand side of the system.

It remains to discuss the block ANt+1 for β 6= 0. At tm = T , we

have the terminal condition (86) which we rewrite as

β (ym
h − ym

Th) − pm
h = 0, m = Nt + 1.

Thus, the block ANt+1 is given by

ANt+1 =

[
−(1 + 4σγ) −δt

ν

β −1

]
. (93)

For each i, j we have to solve a tridiagonal system Mw = r where

w = (y2
h, p

2
h, . . . , y

Nt+1
h , pNt+1

h) and r = (ry(w
2), rp(w

2), . . . , ry(w
Nt+1), rp(w

Nt+1)).

In particular we have rp(w
Nt+1) = pNt+1

h − β (yNt+1
h − yNt+1

Th). Block-

tridiagonal systems can be solved efficiently with O(Nt) effort. Summa-

rizing the collective t-line relaxation is given by the following algorithm.

Algorithm 9 Time-Line Collective Gauss-Seidel Iteration (TL-CGS)

1. Set the starting approximation.

Multilevel methods in optimization 67

2. For ij in, e.g., lexicographic order do

(
y

p

)(1)

i j

=

(
y

p

)(0)

i j

+ M−1

(
ry

rp

)

i j

;

3. end.

Also in this case ry and rp denote the residuals at i, j and for all m prior

to the update. Since the solution in time is exact, no time splitting is

required.

4.8 Local Fourier smoothing analysis

In this section, we perform local Fourier analysis of the TS-CGS and

TL-CGS iterative schemes. The resulting estimates are in agreement

with the observed computational behavior.

For simplicity, consider one space dimension. On the fine grid, con-

sider the Fourier components φ(j, θ) = eij ·θ where i is the imag-

inary unit, j = (jx, jt) ∈ Z × Z, θ = (θx, θt) ∈ [−π, π)2, and

j · θ = jxθx + jtθt.

In a semicoarsening setting, the frequency domain is spanned by the

following two sets of frequencies

φ low frequency component ⇐⇒ θx ∈ [−π
2 ,

π
2), θt ∈ [−π, π),

φ high frequency component ⇐⇒ θx ∈ [−π, π) \ [−π
2 ,

π
2), θt ∈ [−π, π).

Let w̃(j) = (ỹ(j), p̃(j)) =
∑

θ W̃θ φ(j, θ) denotes the errors on

the space-time grid and W̃θ = (Ỹθ, P̃θ) are the corresponding Fourier

coefficients. The action of one smoothing step on w̃ can be expressed

by W̃
(1)

θ
= Ŝ(θ) W̃

(0)

θ
.

Now consider applying the TS-CGS step for solving a distributed

Multilevel methods in optimization 68

control problem with tracking. Substituting w̃ in (87)-(88) we obtain
(

−(1 + 2σγ) + σγe−iθx −δt
ν

αδt −(1 + 2σγ) + σγe−iθx

)(
Ỹ

(1)

θ
P̃

(1)

θ

)
=

(
−(e−iθt + σγeiθx) 0

0 −(eiθt + σγeiθx)

)(
Ỹ

(0)

θ
P̃

(0)

θ

)
.

Hence

Ŝ(θ) =

(
−(1 + 2σγ) + σγe−iθx −δt

ν

αδt −(1 + 2σγ) + σγe−iθx

)−1

(94)

×
(

−(e−iθt + σγeiθx) 0

0 −(eiθt + σγeiθx)

)
.

In Figure 8 (left) we depict the smoothing factor of the TS-CGS

scheme as a function of ν and γ. It appears that µ is independent of

the value of the weight ν and of the discretization parameter γ, as long

as γ is sufficiently large. For γ → 0 or σ → 0 and moderate values of

ν, worsening of the smoothing factor can be observed. Similar results

are obtained with different choices of the time-step size and in case

α = 0, β 6= 0.

0

20

40

60

gamma

-6

-5

-4

-3

-2

log10 nu

0
0.2
0.4
0.6
0.8

0

20

40

60

gamma

0

20

40

60

gamma

-6

-5

-4

-3

-2

log10 nu

0
0.2
0.4
0.6
0.8

0

20

40

60

gamma

Figure 8: Smoothing factors of TS-CGS (left) and TL-CGS (right) schemes as func-

tions of ν and γ; δt = 1/64, α = 1, and σ = 1.

Multilevel methods in optimization 69

Next consider the case of TL-CGS relaxation. The Fourier symbol

of the smoothing operator is given by the following 2 × 2 matrix

Ŝ(θ) = −(A + B e−iθt + C eiθt + Ĩ e−iθx)−1(Ĩ eiθx),

where

A =

[
−(1 + 2σγ) −δt

ν

δtα −(1 + 2σγ)

]
, Bm =

[
1 0

0 0

]
and Cm =

[
0 0

0 1

]
,

and Ĩ = σγ I, I is the 2 × 2 identity matrix.

In Figure 8 (right), the smoothing factor of the TL-CGS scheme as

a function of ν and γ is shown. Notice that the smoothing factor of

this scheme is independent of ν and γ. For σ = 0 no spatial coupling

is present and the TL-CGS scheme becomes an exact solver, i.e. µ = 0

results.

4.9 Receding horizon approach

Results of numerical experiments and Fourier analysis estimates demon-

strate the ability of the multigrid schemes presented here in solving

tracking and terminal observation optimal control problems. This fact

suggests combining these multigrid schemes with receding horizon tech-

niques [34] to develop an efficient (sub) optimal control algorithm for

tracking a desired trajectory over very long time intervals. In the fol-

lowing, we sketch the implementation of the multigrid receding horizon

scheme.

Consider the optimal control problem of tracking yd for t ≥ 0. Define

time windows of size ∆t. In each time window, an optimal control

problem with tracking (α = 1) and terminal observation (β = 1) is

solved. The resulting optimal state at n∆t defines the initial condition

for the next optimal control problem defined in (n∆t, (n + 1)∆t) with

desired terminal state given by yT (x) = yd(x, (n+1)∆t). The following

algorithm results.

Multilevel methods in optimization 70

Algorithm 10 Multigrid Receding Horizon Scheme (MG-RH)

1. Set y(x, 0) = y0(x) and n = 0.

2. Set yT (x) = yd(x, (n + 1)∆t).

3. CSMG Solve (83)–(85) in (n∆t, (n + 1)∆t).

4. Update n := n + 1, set y0(x) = y(x, n∆t) and goto 2.

Multilevel methods in optimization 71

5 Globalization issues

In a convex setting where the optimal control solution is unique, solving

the optimality system is equivalent to solving the optimal control prob-

lem. However, in general, these solutions represent only extremal points

and additional conditions must be satisfied to guarantee that they are

the minima sought. We now consider optimal control problems that

possibly have multiple extremal points and describe a multigrid method

[9] of how to escape undesired maxima or saddle points. For ease of

reading, we recall the content of Section 4.1.

Consider the optimal control problem
{

minu∈U J(y, u),

e(y, u) = 0 in Ω,
(95)

where y and u denote the state- and control variables of a controlled

partial differential equation expressed as e(y, u) = 0, with e : Y ×U →
Z for appropriate Hilbert spaces Y , U , and Z. Ω is an open bounded

set in R
d. The cost functional J is formally given by

J(y, u) = h(y) + ν g(u), (96)

where ν > 0 is the weight of the cost of the control. Here g and h are

required to be continuously differentiable, bounded from below, and

such that g(u) → ∞ as ||u|| → ∞. Allowing g and h to be locally

non-convex and e to be possibly nonlinear, (95) may have multiple

extremals including minima, maxima, and saddle points.

Local minima satisfy the first-order necessary conditions. To define

these conditions consider the Lagrangian

L(y, u, p) = J(y, u) + 〈e(y, u), p〉Z,Z∗,

where p is the Lagrange multiplier, the adjoint variable. By equating

to zero the Frechét derivatives of L with respect to the triple (y, u, p),

Multilevel methods in optimization 72

we obtain the following optimality system

e(y, u) = 0,

ey(y, u)∗ p = −h′(y),

ν g′(u) + e∗u p = 0.

(97)

Numerical approximations to solutions of (97) can be obtained, after

discretization, using multilevel or other iterative methods starting from

any initial guess. The particular choice of the starting approximation

determines towards which solution the iterative scheme will converge.

Solutions to (97) are not necessarily local minima, rather they are ex-

tremal points.

Our purpose is to introduce in the multilevel scheme a mechanism al-

lowing to distinguish among different types of extremal points and pro-

viding the direction for escaping undesired maxima and saddle points.

5.1 Second-order conditions for a minimum

If J and e are twice continuously differentiable, the second-order suffi-

cient conditions for a minimum are given by (97) and the following

Lxx(y, u, p)(v, v) ≥ c1 ||v||2, c1 > 0, for all v ∈ N (e′(y, u)), (98)

where x = (y, u) and e′ represents the linearized equality constraint;

see, e.g., [20]. We assume that the null space N (e′(y, u)) can be

represented by N (e′(y, u)) = T (y, u) U , where

T (y, u) =

[
−e−1

y eu

Iu

]
,

and ey, eu are evaluated at (y, u). Therefore condition (98) becomes

H(y, u, p)(w, w) ≥ c2 ||w||2, c2 > 0, (99)

for all w ∈ U . The operator H is the reduced Hessian defined by

H(y, u, p) = T (y, u)∗ Lxx(y, u, p) T (y, u).

Multilevel methods in optimization 73

That is, H is given by

H(y, u, p) = Luu(y, u, p) + C(y, u)∗ Lyy(y, u, p) C(y, u), (100)

where C(y, u) = ey(y, u)−1 eu(y, u), assuming eyu(y, u) = 0.

Notice that H is symmetric. Therefore condition (99) requires that,

in order to have a minimum, all eigenvalues of the reduced Hessian

be positive. Otherwise, the occurrence of nonpositive eigenvalues in-

dicates the presence of possible maxima or saddle points. Thus, in

principle, once a solution to (97) is found, one should solve the eigen-

value problem associated to H. If all eigenvalues are positive, we have

a minimum and therefore a solution to (95). If some eigenvalues are

negative, the solution of the optimality system is not a solution to the

optimal control problem.

Clearly, in an infinite dimensional setting, the analysis of the spec-

trum of H may be an overwhelming task. Even after discretization,

solving the eigenvalue problem may be computationally more expensive

than solving the optimality system.

The multilevel strategy provides a way to overcome this difficulty.

A successful multilevel procedure is based on a hierarchy of discrete

equations able to represent, at different scales, the underlying contin-

uous problem. We make the assumption that the spectral properties

of the reduced Hessian are well represented on the hierarchy of grids

and therefore we can define a globalization step based on the spectral

properties of the Hessian H on the coarsest grid. In the case negative

eigenvalues of the reduced Hessian are detected, we use the eigenvec-

tor corresponding to the smallest eigenvalue to determine an escape

direction. This direction of negative curvature [39, 42] is given by

the eigenvector corresponding to the negative eigenvalue with largest

absolute value.

If such an eigenvalue exists, the normalized eigenvector φh is used

Multilevel methods in optimization 74

to perform the following globalization step

unew
h = uh − σ φh. (101)

We choose |σ| =
√

β (with β as in (103); see [42]) and the sign of σ

is such that σ φh · (νg′(uh) + e∗u ph(uh)) ≥ 0.

Once we escape the undesired critical point (at the coarsest grid),

the multigrid procedure continues as described choosing components

that are minimizing.

In the above discussion, we tacitly assumed that the spectrum of the

Hessian before discretization also consists of pure point-spectrum. This

is the case, for example, if e−1
y is a compact operator corresponding to

the case of elliptic- or parabolic-type partial differential equations and

g(u) = 1
2||u||2. A similar remark applies, for example, for the choice

g(u) = 1
2||∇u||2. In either of these two cases, the resulting reduced

Hessian is such that its spectrum can be well represented in a hierarchy

of grids.

5.2 Globalization of the FAS scheme

The present globalization approach relies on two features. First, the

FAS multilevel procedure is defined such that it provides a descent step

for the optimal control constrained minimization problem. Second, on

the coarsest grid one analyzes the possible encounter of extremal points

that are not minima and define an escape direction, if necessary, on the

basis of negative-curvature eigenvectors.

To guarantee a multilevel step which is minimizing, we define the

smoothing process based on the gradient of the reduced cost functional

and show that the FAS coarse-grid correction step provides a descent

update.

To define the smoothing iteration S, the discretized state equation

to obtain yh(x) as function of uh(x) at the grid point is used. Replacing

yh in the adjoint equation by this function, we obtain p(x) as function

Multilevel methods in optimization 75

of u(x). From these considerations, the optimality condition becomes

ν g′(uh) + e∗u ph(uh) = 0. (102)

This equation corresponds to requiring that the gradient of the reduced

cost functional J(y(u), u) with respect to the control variable u is zero.

In general, in order to update the control function in the smoothing

process, we use (102) to perform a few steps of the following descent

scheme

unew
h = uh − β (ν g′(uh) + e∗u ph(uh)). (103)

An optimal choice of the scaling factor β > 0 may be done using line

search methods.

Now consider the case e(y, u) = −∆y − u, we show that the FAS

coarse-grid correction provides a descent direction in the sense that

(ν g′(uh) − ph, I
h
H(uH − ÎH

h uh))h < 0,

unless uH = ÎH
h uh, occurring at convergence.

Starting from an initial approximation and after a few pre-smoothing

steps the resulting triple (yh, uh, ph) satisfies the optimality system up

to residuals (d1
h, d

2
h, d

3
h), that is,

−∆hyh − uh = d1
h,

−∆h ph + yh − zh = d2
h,

ν g′(uh) − ph = d3
h.

(104)

For the coarse-grid process, we take Îh
h = IH

h where IH
h is the full-

weighting restriction operator. For Ih
H we choose bilinear interpolation

which is the adjoint of the restriction operator just defined [27], i.e.

(IH
h uh, vH)H = (uh, I

h
HvH)h. Define zH = IH

h zh. With this setting, we

obtain the following coarse-grid FAS equations

−∆HyH − uH = IH
h ∆hyh − ∆HIH

h yh,

−∆HpH + yH − zH = IH
h ∆hph − ∆HIH

h ph,

ν g′(uH) − pH = 0.

(105)

Multilevel methods in optimization 76

As usual in two-grid convergence analysis, we assume that this coarse

system of equations is solved exactly. From the first equation of (105),

and using the corresponding equation in (104) we obtain

uH − IH
h uh = −∆H(yH − IH

h yh) + IH
h d1

h. (106)

Combining the fine and coarse adjoint equations we have

pH − IH
h ph = ∆−1

H (yH − IH
h yh) + ∆−1

H IH
h d2

h. (107)

Let us assume that

(g′(vH) − IH
h g′(vh), vH − IH

h vh)H ≥ δ′ ‖vH − IH
h vh‖2

H , (108)

for some δ′ > 0 independent of vh and vH . Note that (108) is satisfied,

for example, if g′ is linear or if IH
h is strict injection and g is strictly

convex.

With these preparations we are ready to show that the update step

of the FAS coarse-grid correction follows a descent direction

(ν g′(uh) − ph, I
h
H(uH − IH

h uh))h = (IH
h (ν g′(uh) − ph), uH − IH

h uh)H

= (νIH
h g′(uh) − IH

h ph, uH − IH
h uh)H

= (νIH
h g′(uh) − pH + ∆−1

H (yH − IH
h yh) + ∆−1

H IH
h d2

h, uH − IH
h uh)H

= − ν (g′(uH) − IH
h g′(uh), uH − IH

h uh)H

+(∆−1
H (yH − IH

h yh) + ∆−1
H IH

h d2
h,−∆H(yH − IH

h yh) + IH
h d1

h)H

= − ν (g′(uH) − IH
h g′(uh), uH − IH

h uh)H − (yH − IH
h yh, yH − IH

h yh)H

+(∆−1
H (yH − IH

h yh), I
H
h d1

h)H − (∆−1
H IH

h d2
h, ∆H(yH − IH

h yh))H

+(∆−1
H IH

h d2
h, I

H
h d1

h)H

≤ −ν (g′(uH) − IH
h g′(uh), uH − IH

h uh)H

+1
2(‖∆−1

H IH
h d1

h‖2
H + ‖∆−1

H IH
h d2

h‖2
H + ‖IH

h d1
h‖2

H + ‖IH
h d2

h‖2
H)

≤ −ν δ′‖uH − IH
h uh‖2

H

+1
2(‖∆−1

H IH
h d1

h‖2
H + ‖∆−1

H IH
h d2

h‖2
H + ‖IH

h d1
h‖2

H + ‖IH
h d2

h‖2
H).

Therefore

(ν g′(uh) − ph, I
h
H(uH − IH

h uh))h < 0,

Multilevel methods in optimization 77

if (108) holds and the residuals d1
h and d2

h are sufficiently small.

Finally we show that the coarse-grid correction step does not produce

overshooting in the sense that (Ĵ ′(uh)h, Ĵ
′(unew

h)h)h ≥ 0. We consider

the case where g′(u) = u. We have the following

(Ĵ ′(uh)h, Ĵ
′(unew

h)h)h

= (ν uh − ph, ν (uh + Ih
H(uH − IH

h uh)) − (ph + Ih
H(pH − IH

h ph))h

= ‖ν uh − ph‖2
h + (ν uh − ph, I

h
H [ν (uH − IH

h uh) − (pH − IH
h ph)])h

= ‖ν uh − ph‖2
h − ‖IH

h (ν uh − ph)‖2
H ≥ 0,

where we use ‖IH
h ‖ ≤ 1.

Multilevel methods in optimization 78

6 Appendix: A 1D MG code for the Poisson prob-

lem in MATLAB

The following is a matlab multilevel algorithm for the solution of the

one-dimensional model problem Poisson equation on (0, 1) subject to

Dirichlet boundary conditions; see [13, 14] for details.

%------------------- main -----------------------------------

% mgvee.m

clear

% % V-cycle scheme to solve

% % - Delta u = f on [0,1]

% % with boundary values given by the function g(x).

% N is the number of subintervals

global N; N = 128; h = 1/N; tol = 10e-6;

% lmax determines the coarsest grid level; original grid = level 1

% e.g., lmax = 4 means one has to restrict

% to coarser grids 3 times

global lmax; lmax = 6;

% initial guess

j = 0:N; initguess = sin(20*pi*j*h); v = initguess;

%zeros(size(initguess));

% exact solution

vexact = sin(2*pi*j*h);

% right-hand side

f = 4*pi*pi*sin(2*pi*j*h);

% main engine

Multilevel methods in optimization 79

relaterr = 10; ctr = 0; rfin_norm_old=1.0; rfin_norm=1.0;

relaterr_old=1.0;

while rfin_norm > tol

[vnew,rfin_norm] = vcycle (v, f, 1);

% some output info

relaterr = norm(vexact-vnew,2)/(norm(vexact,2)+.1);

fprintf(’relative error is %6.10d\n’,relaterr);

conv_fact_r=rfin_norm/rfin_norm_old;

rfin_norm_old=rfin_norm;

fprintf(’convergence factor based on residual is %6.10d\n’,conv_fact_r);

v = vnew;

ctr = ctr +1;

end

fprintf(’The norm of the solution error is %6.10d\n’, norm(v-vexact,2))

fprintf(’The norm of the solution residual is %6.10d\n’, rfin_norm)

fprintf(’The number of iterations required to satisfy tolerance is %d\n’, ctr)

%--

% vcycle.m

function [vcycleout,rfin_norm] = vcycle (v, f, L)

global N;

global lmax;

% number of iterations in one level

numiter = 2;

v = wjacobi(v, f, numiter, L);

% if not in yet the coarsest grid, restrict

% if already in coarsest grid, relax and leave

if L ~= lmax

Multilevel methods in optimization 80

% should be rh instead of r2h, it is still fine grid

r2h = compresidual (v,f,L);

f2h = restrictfw (r2h,L); %output is now at level L+1

% zero initial guess

v2h = zeros(size(f2h));

% recursion:

v2h_new = vcycle (v2h, f2h, L+1);

else

v = wjacobi (v, f, numiter, L);

vcycleout = v; return

end

% prolongate error v2h_new

errh = prolongate(v2h_new-v2h, L+1); %output is now at level L

v = v + errh; %% error correction

% relax and then leave

v = wjacobi (v, f, numiter, L);

vcycleout = v;

rfin_norm = norm(compresidual(v,f,L),2);

% end

%--

% wjacobi.m

function wjreturn = wjacobi(v, f, k, L)

global N;

n = N / 2^(L-1); % size of the matrices

w = 2/3; % weight

h = 2^(L-1) / N; % size of the interval

for i = 1:k

tempans = .5 * (v(1:n-1) + v(3:n+1) + h*h*f(2:n));

vtemp = v;

vtemp(2:n) = tempans; % keep boundary values unchanged

v = (1-w)*v + w*vtemp; % new iterate (weighted jacobi)

end

wjreturn = v;

% end

Multilevel methods in optimization 81

%--

% compresidual.m

function residualout = compresidual (v, f, L)

global N;

n = N / 2^(L-1); % size of the matrices

h = 2^(L-1) / N; % size of the interval

vtemp = v;

tempans = (v(1:n-1) + v(3:n+1) - 2*v(2:n))/h/h;

vtemp(2:n) = tempans;

residualout = f + vtemp;

% end

%--

% restrictfw.m

function restrictionout = restrictfw (r, L)

% restriction by full weighting

global N;

n = N / 2^(L-1); % size of the matrices

c = r(1:2:end); % c has size n/2 +1

tempans = (r(2:2:n-2) + r(4:2:n) + 2 * r(3:2:n-1))/4;

c(2:n/2) = tempans;

restrictionout = c;

% end

%--

% prolongate.m

function prolonged = prolongate(v, L)

global N;

n = N / 2^(L-1); % size of the matrices

c=zeros(1,2*n +1);

c(1:2:end) = v; % entries of v are transferred as they are

c(2:2:end) = (v(1:n) + v(2:n+1))/2;

prolonged = c;

% end

Multilevel methods in optimization 82

7 Appendix: A 2D MG code for the Poisson prob-

lem in FORTRAN

The following is a FORTRAN 77 multilevel algorithm for the solution of the Poisson equa-

tion on a rectangle subject to Dirichlet boundary conditions; see [13, 14] for details.

PROGRAM CYCLEV

C

C MULTI-GRID ALGORITHM FOR THE SOLUTION OF THE POISSON PROBLEM:

C DELTA(U)=F

C

C EXPLANATIONS OF PARAMETERS:

C----------------------------

C

C NX1- NUMBER OF INTERVALS INX-DIRECTION ON THE COARSEST GRID

C NY1- NUMBER OF INTERVALS IN Y-DIRECTION ON THE COARSEST GRID

C H1- LENGTH OF EACH INTERVAL

C M- NUMBER OF LEVELS

C NU1- NUMBER OF RELAXATION SWEEPS IN EACH CYCLE BEFORE TRAN-

C SFER TO THE COARSER GRID

C NU2- NUMBER OF SWEEPS IN EACH CYCLE AFTER COMING BACK FROM

C THE COARSER GRID

C NCYC- NUMBER OF CYCLES

C IFAS- IFAS=1 FAS SCHEME, IFAS=0 MG SCHEME

C

C G(X,Y)- BOUNDARY VALUES AND INITIAL APPROXIMATION

C FOR THE SOLUTION U(X,Y) ARE GIVEN BY THE C FUNCTION G(X,Y)

C

C CORRECTION SCHEME BEGINS FROM THE FINEST GRID TO COARSEST GRID.

C

C

implicit real*8 (a-h,o-z)

EXTERNAL G,F,Z

COMMON Q(18000)

DIMENSION IST(200)

Multilevel methods in optimization 83

DATA NX1/2/,NY1/2/,H1/0.5/,M/5/,NU1/2/,NU2/2/,NCYC/10/

c

c-----set method IFAS=1 nonlinear method, IFAS=0 linear method c

IFAS=1

c

c-----set up: the grid

c

DO 1 K=1,M

K2=2**(K-1)

CALL GRDFN(K,NX1*K2+1,NY1*K2+1,H1/K2)

CALL GRDFN(K+M,NX1*K2+1,NY1*K2+1,H1/K2)

1 CONTINUE

WU=0.

c

c-----set up: the data (initial approx, rhs, bc, etc.) c

CALL PUTF(M,G,0)

CALL PUTB(M,G)

CALL PUTF(2*M,F,2)

ERRMX=1.0

IREL=0

c

c-----start cycling

c

DO 5 IC=1,NCYC

c-----store the previous relative error

ERROLD=ERRMX

c-----go up

DO 3 KM=1,M

K=1+M-KM

c-----pre-smoothing, NU1 times

DO 2 IR=1,NU1

2 CALL RELAX(K,K+M,WU,M,ERRM)

c-----store the relative error

IF(K.EQ.M) ERRMX=ERRM

c-----set initial zero approx. on the coarse grid

IF (K.NE.M.AND.IFAS.EQ.0) CALL PUTZ(K)

c-----compute residual res=b-Au (and transfer it to k-1)

c H H h h h

c r = I (f - L u)

Multilevel methods in optimization 84

c h

IF(K.GT.1) CALL RESCAL(K,K+M,K+M-1)

c

c-----set initial approx. on the coarse grid

IF (K.NE.1.AND.IFAS.EQ.1) CALL PUTU(K,K-1)

c-----compute the right-hand side

c H H h h h H H h

c f = I (f - L u) + L (I u)

c h h

IF(K.GT.1.AND.IFAS.EQ.1) CALL CRSRES(K-1,K+M-1)

3 CONTINUE

c

c-----go down

DO 5 K=1,M

DO 4 IR=1,NU2

4 CALL RELAX(K,K+M,WU,M,ERRM)

c-----interpolate the coarse solution (error function)

c to the next finer grid and add to the existing approximation

c

c h h h H H h

c u = u + I (u - I u)

c

IF(IFAS.EQ.1.AND.K.LT.M) CALL SUBTRT(K+1,K)

c

IF(K.LT.M) CALL INTADD(K,K+1)

c

c-----compute the convergence factor using the relative c error

IF(K.EQ.M) write(*,*) ’rho ’, errmx/errold

5 CONTINUE

C

C PRINT THE SOLUTION (FINEST GRID) C

999 CONTINUE

OPEN(UNIT=17,FILE=’TEST.DAT’,STATUS=’UNKNOWN’)

Multilevel methods in optimization 85

CALL KEY(M,IST,II,JJ,H)

JSTEP=17

IF(JJ.GT.9) JSTEP=INT(JJ/9.)+1

DO 90 I=1,II

90 WRITE(17,100) (Q(IST(I)+J),J=1,JJ,JSTEP)

c

c calculate the L00 error c

difmx=0.0

do 95 i=1,ii

x=(i-1)*h

do 95 j=1,jj

y=(j-1)*h

err=abs(q(ist(i)+j)-g(x,y))

difmx=max(difmx,err)

95 continue

write(*,*) ’l00 norm of the error =’,difmx

100 FORMAT(1X,257(1X,E8.2))

STOP

END

C

REAL*8 FUNCTION F(X,Y)

implicit real*8 (a-h,o-z)

PI=4.0D0 * DATAN(1.0D0)

PI2=PI*PI

F=-(2.0*PI2)*SIN(PI*X)*SIN(PI*Y)

RETURN

END

C

REAL*8 FUNCTION G(X,Y)

implicit real*8 (a-h,o-z)

PI=4.0D0 * DATAN(1.0D0)

PI2=PI*PI

G=SIN(PI*X)*SIN(PI*Y)

RETURN

END

C

SUBROUTINE GRDFN(K,M,N,HH)

implicit real*8 (a-h,o-z)

COMMON/GRD/NST(20),IMX(20),JMX(20),H(20)

DATA IQ/1/

NST(K)=IQ

Multilevel methods in optimization 86

IMX(K)=M

JMX(K)=N

H(K)=HH

IQ=IQ+M*N

RETURN

END

C

SUBROUTINE KEY(K,IST,M,N,HH)

implicit real*8 (a-h,o-z)

COMMON/GRD/NST(20),IMX(20),JMX(20),H(20)

DIMENSION IST(200)

M=IMX(K)

N=JMX(K)

IS=NST(K)-N-1

DO 1 I=1,M

IS=IS + N

1 IST(I)=IS

HH=H(K)

RETURN

END

C

SUBROUTINE PUTF(K,F,NH)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200)

CALL KEY (K,IST,II,JJ,H)

H2=H**NH

DO 1 I=1,II

DO 1 J=1,JJ

X=(I-1)*H

Y=(J-1)*H

1 Q(IST(I)+J)=F(X,Y)*H2

RETURN

END

C

SUBROUTINE PUTZ(K)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200)

CALL KEY(K,IST,II,JJ,H)

DO 1 I=1,II

Multilevel methods in optimization 87

DO 1 J=1,JJ

1 Q(IST(I)+J)=0.

RETURN

END

C

SUBROUTINE PUTU(KF,KC)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IUF(200), IUC(200)

CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY(KC,IUC,IIC,JJC,HC)

DO 1 IC=1,IIC

IF=2*IC-1

IFO=IUF(IF)

ICO=IUC(IC)

JF=-1

DO 1 JC=1,JJC

JF=JF+2

Q(ICO+JC)=Q(IFO+JF)

1 CONTINUE

RETURN

END

C

SUBROUTINE PUTB(K,F)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200)

CALL KEY (K,IST,II,JJ,H)

DO 1 I=1,II

X=(I-1)*H

Y=0.0

Q(IST(I)+1)=F(X,Y)

Y=(JJ-1)*H

Q(IST(I)+JJ)=F(X,Y)

1 CONTINUE

DO 2 J=1,JJ

Y=(J-1)*H

X=0.0

Q(IST(1)+J)=F(X,Y)

X=(II-1)*H

Q(IST(II)+J)=F(X,Y)

Multilevel methods in optimization 88

2 CONTINUE

RETURN

END

C

SUBROUTINE SUBTRT(KF,KC)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IUF(200),IUC(200)

CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY(KC,IUC,IIC,JJC,HC)

DO 1 IC=1,IIC

IF=2*IC-1

IFO=IUF(IF)

ICO=IUC(IC)

JF=-1

DO 1 JC=1,JJC

JF=JF+2

Q(ICO+JC)=Q(ICO+JC)-Q(IFO+JF)

1 CONTINUE

RETURN

END

C

SUBROUTINE INTADD(KC,KF)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION ISTC(200),ISTF(200)

CALL KEY(KC,ISTC,IIC,JJC,HC)

CALL KEY(KF,ISTF,IIF,JJF,HF)

HF2=HF*HF

DO 1 IC=2,IIC

IF=2*IC-1

JF=1

IFO=ISTF(IF)

IFM=ISTF(IF-1)

ICO=ISTC(IC)

ICM=ISTC(IC-1)

DO 1 JC=2,JJC

JF=JF+2

A=.5*(Q(ICO+JC)+Q(ICO+JC-1))

AM=.5*(Q(ICM+JC)+Q(ICM+JC-1))

Q(IFO+JF) = Q(IFO+JF)+Q(ICO+JC)

Multilevel methods in optimization 89

Q(IFM+JF) = Q(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))

Q(IFO+JF-1)=Q(IFO+JF-1)+A

1 Q(IFM+JF-1)=Q(IFM+JF-1)+.5*(A+AM)

RETURN

END

C

SUBROUTINE RESCAL(KF,KRF,KRC)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IUF(200),IRF(200),IRC(200)

CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY(KRF,IRF,IIF,JJF,HF)

CALL KEY(KRC,IRC,IIC,JJC,HC)

IIC1=IIC-1

JJC1=JJC-1

HF2=HF*HF

DO 1 IC=2,IIC1

ICR=IRC(IC)

IF=2*IC-1

JF=1

IFR=IRF(IF)

IF0=IUF(IF)

IFM=IUF(IF-1)

IFP=IUF(IF+1)

DO 1 JC=2,JJC1

JF=JF+2

S=Q(IF0+JF+1)+Q(IF0+JF-1)+Q(IFM+JF)+Q(IFP+JF)

1 Q(ICR+JC)=4.*(Q(IFR+JF)-S+4.*Q(IF0+JF))

RETURN

END

C

SUBROUTINE CRSRES(K,KRHS)

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200),IRHS(200)

CALL KEY(K,IST,II,JJ,H)

CALL KEY(KRHS,IRHS,II,JJ,H)

I1=II-1

J1=JJ-1

H2=H*H

DO 1 I=2,I1

Multilevel methods in optimization 90

IR=IRHS(I)

IO=IST(I)

IM=IST(I-1)

IP=IST(I+1)

DO 1 J=2,J1

A=-Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)

1 Q(IR+J)=-A-4.*Q(IO+J)

RETURN

END

C

SUBROUTINE RELAX(K,KRHS,WU,M,ERRM)

c-----Gauss-Seidel

implicit real*8 (a-h,o-z)

COMMON Q(18000)

DIMENSION IST(200),IRHS(200)

CALL KEY(K,IST,II,JJ,H)

CALL KEY(KRHS,IRHS,II,JJ,H)

I1=II-1

J1=JJ-1

ERR=0.

ERRQ=0.

ERRM=0.

H2=H*H

COEFF=4.

DO 1 I=2,I1

IR=IRHS(I)

IQ=IST(I)

IM=IST(I-1)

IP=IST(I+1)

DO 1 J=2,J1

A=Q(IR+J)-Q(IQ+J+1)-Q(IQ+J-1)-Q(IM+J)-Q(IP+J)

c-----residual norm L2

ERR=ERR+(A+COEFF*Q(IQ+J))**2

QOLD=Q(IQ+J)

Q(IQ+J)=-A/(COEFF)

ERRQ=ERRQ+(QOLD-Q(IQ+J))**2

c-----relative ’dynamic’ error norm max

Z=abs(QOLD-Q(IQ+J))

ERRM=MAX(ERRM,Z)

1 CONTINUE

Multilevel methods in optimization 91

ERR=SQRT(ERR)/H

ERRQ=SQRT(ERRQ)

WU=WU+4.**(K-M)

write(*,2) K,ERRQ,WU

2 FORMAT(’ LEVEL’,I2,’ RESIDUAL NORM=’,E10.3,’ WORK=’,F7.3)

RETURN

END

C

8 Appendix: A 2D MG code for an optimality sys-

tem in MATLAB

The following is a MATLAB multilevel algorithm for the solution of a linear optimality

system.

This section has been contributed by Ian Kopacka.

8.1 Problem Definition

Let us consider the following PDE constrained optimal control problem with tracking-

type cost functional:

min J(y, u) := 1
2
‖y − z‖2

L2 + ν
2
‖u‖2

L2

s.t. ∆y = u + f in Ω

y = 0 on ∂Ω

(109)

where Ω is an open, bounded subset of Rn with a piecewise Lipschitz continuous

boundary, ν is a positive constant and z, f ∈ L2(Ω). It is well known that the system

above has a unique solution. Object of this report is solving problem 109 numerically

on the one dimensional unit interval (0, 1) as well as on the two dimensional unit

square (0, 1) × (0, 1) using a multilevel method.

8.1.1 Optimality conditions

In order to derive the first order optimality conditions for problem 109 we define the

Lagrange functional

L(y, u, p) := J(y, u) + 〈∆y − u − f, p〉H−1,H1

0
.

Multilevel methods in optimization 92

The necessary optimality conditions are then given by

∇(y,u)L(y, u, p) = 0

∆y = u + f in Ω

y = 0 on ∂Ω

(110)

Derivation with respect to the state variable y yields the adjoint equation, derivation

with respect to the control variable u yields the optimality condition. Together with

the state equation they form the optimality system:

∆y − u = f (state equation) (111a)

∆p + y = z (adjoint equation) (111b)

νu − p = 0 (optimality condition) (111c)

8.2 Discretization

The domain Ω is discretized using equidistant grids with step length hk on the k-th

level. The grids are coarsened by doubling the step length i.e. hk−1 = 2hk, where

kmin ≤ k ≤ kmax.

8.2.1 One dimensional case

The unit interval Ω := (0, 1) is discretized using a step length hk := 2−k for k ∈ N,

k > 0. The inner grid points are defined by xj := j · hk for j = 1, . . . , nk, where

nk := 2k − 1. The Laplace-Operator is discretized using the standard three point-

finite difference discretization. Interpolation between two grids is done using linear

interpolation. The restriction is done using full weighting with the stencil 1
4
[1 2 1].

8.2.2 Two dimensional case

The unit square Ω := (0, 1)×(0, 1) is discretized using the same step length hk := 2−k

for k ∈ N, k > 0 in each direction. The inner grid points are defined by ((xi
1, x

j
2)) :=

(i · hk, j · hk) for i, j = 1, . . . , nk, where nk := 2k − 1. The Laplace-Operator is

discretized using the standard five point-finite difference star. Interpolation between

two grids is done using linear interpolation. The restriction is done using full weighting

with the stencil 1
16

1 2 1

2 4 2

1 2 1

.

Multilevel methods in optimization 93

8.3 Algorithm

Problem 109 is solved using a Full Approximation Scheme (FAS). In the fol-

lowing Algorithm Ik−1
k denotes the full-weighting restriction operator, Îk−1

k denotes

the straight-injection restriction operator and Ik
k−1 denotes the linear interpolation

operator.

Algorithm 11 FAS

1. Choose kmax > kmin ∈ N, y0, u0, p0 on the finest grid, νpre, νpost, γ ∈ N. Set

ω0 := (y0, u0, p0), k := kmax.

2. If k = kmin solve system directly.

3. Execute νpre pre-smoothing steps on the fine grid: ωl
k := S(ωl−1

k , fk, zk) for

l = 1, . . . , νpre.

4. Compute the residual of the state and the adjoint equation: rs,k := fk −
∆ky

νpre

k + u
νpre

k , ra,k := zk − ∆kp
νpre

k − y
νpre

k .

5. Restrict the residual to a coarser grid: rs,k−1 := Ik−1
k rs,k, ra,k−1 := Ik−1

k ra,k.

6. Set fk−1 := rs,k−1+∆k−1

(
Îk−1
k yk

)
−Îk−1

k uk, zk−1 := ra,k−1+∆k−1

(
Îk−1
k pk

)
+

Îk−1
k yk.

7. Call γ times FAS to solve

∆k−1yk−1 − uk−1 = fk−1

∆k−1pk−1 + yk−1 = zk−1

νuk−1 − pk−1 = 0

8. Coarse grid correction: Set y
νpre+1
k := y

νpre

k +Ik
k−1

(
yk−1 − Îk−1

k y
νpre

k

)
, p

νpre+1
k :=

p
νpre

k + Ik
k−1

(
pk−1 − Îk−1

k p
νpre

k

)
, u

νpre+1
k := 1

ν
p

νpre+1
k .

9. Execute νpost post-smoothing steps on the fine grid: ωl
k := S(ωl−1

k , fk, zk) for

l = νpre + 2, . . . , νpre + νpost + 1.

8.4 Smoothing

Smoothing is performed using a collective Gauss-Seidel type scheme, where the equa-

tion is solved for each point xi or (xi
1, x

j
2) respectively, fixing all other points and

looping over all indices i ∈ {1, . . . , n} or (i, j) ∈ {1, . . . , n}2 respectively. In the one

Multilevel methods in optimization 94

dimensional case the following smoothing is done successively for each index i. Here

yi denotes y(xi), p, u, f and z are treated analogously:

Ai := yi+1 + yi−1 − h2fi,

Bi := pi+1 + pi−1 − h2zi,

ui = 1
4ν+h4 (2Bi + h2Ai),

yi = 1
2
(Ai − h2ui),

pi = νui.

In the two dimensional case the smoothing is computed as follows. yi,j denotes

y(xi
1, x

j
2), p, u, f and z are treated analogously:

Ai,j := yi+1,j + yi−1,j + yi,j+1 + yi,j−1 − h2fi,j,

Bi,j := pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − h2zi,j,

ui,j = 1
16ν+h4 (4Bi,j + h2Ai,j),

yi,j = 1
4
(Ai,j − h2ui,j),

pi,j = νui,j.

8.5 Numerical results

All computations were done on a Pentium D, 3GHz personal computer using MATLAB

version 7.1.0.246 (R14), Service Pack 3.

8.5.1 Test problem 1

We consider the one dimensional domain Ω = (0, 1). We define f, z ∈ L2(Ω) by

f(x) := −4π2 sin(2πx) − x(x − 1),

z(x) := 2ν + sin(2πx).

The exact solution is then given by:

y∗(x) = sin(2πx),

u∗(x) = x(x − 1),

p∗(x) = νx(x − 1).

The parameters are ν = 1e−3, γ = 1, νpre = νpost = 2. The algorithm is terminated,

as soon as the relative residuals ress := ‖∆hy−u− f‖/‖f‖ and resa := ‖∆hp+ y−
z‖/‖z‖ fall below a tolerance ε. The tolerance is fixed with ε = 1e−6. The algorithm

is initialized with the oscillating functions y0(x) := u0(x) := p0(x) := sin(20πx).

Multilevel methods in optimization 95

Table 4: Results for test problem 1 with kmin = 2.

kmax iter time (s)

14 8 0.2500

15 8 0.4531

16 8 1.1406

17 8 2.4688

18 8 5.3438

The results in table 4 show the independence of the FAS on the grid, as well as linear

dependence of the computational cost on the number of grid points. Increasing kmax

by one means roughly doubling the number of inner grid points. It can be observed

that the CPU time doubles as well.

Figure 9 shows convergence results for the finest grid kmax = 18. It suggests

superlinear convergence of the state variable y and linear convergence of the control

u.

1 2 3 4 5 6 7
0.035

0.04

0.045

0.05

0.055

||y
k+1

−y*|| / ||y
k
−y*||

1 2 3 4 5 6 7
0.032

0.034

0.036

0.038

0.04

0.042

0.044

||u
k+1

−u*|| / ||u
k
−u*||

Figure 9: Convergence of state and control in test problem 1.

8.6 Test problem 2

Once again we consider the one dimensional domain Ω = (0, 1). We define f, z ∈
L2(Ω) by

f(x) :=

{
1 on (0.25, 0.75)

0 else
,

z(x) := max(0, 1 − 10(x − 0.5)2).

The parameters are ν = 1e−3, γ = 1, νpre = νpost = 2. The same stopping criterion

and initialization is used as in the previous test problem.

Multilevel methods in optimization 96

Table 5: Results for test problem 2 with kmin = 2.

kmax iter time (s)

10 8 0.3750

11 8 0.6875

12 8 1.2813

13 8 2.5000

14 8 4.9531

15 8 9.9375

16 8 20.0938

The results in table 5 show the independence of the FAS on the grid, as well as linear

dependence of the computational cost on the number of grid points.

8.6.1 Test problem 3

We consider the two dimensional domain Ω = (0, 1)×(0, 1). We define f, z ∈ L2(Ω)

by

f(x1, x2) := −4π2 sin(2πx1)(2 cos(2πx2) − 1) − sin(πx1)x2(x2 − 1),

z(x1, x2) := ν sin(πx1)(2 − π2x2(x2 − 1)) + sin(2πx1)(cos(2πx2) − 1).

The exact solution is then given by:

y∗(x1, x2) = sin(2πx1)(cos(2πx2) − 1),

u∗(x1, x2) = sin(πx1)x2(x2 − 1),

p∗(x1, x2) = ν sin(πx1)x2(x2 − 1).

The parameters are ν = 1e − 3, γ = 1, νpre = νpost = 2. Stopping criterion

for the algorithm is the same as in the one dimensional case. The algorithm is

initialized with the oscillating functions y0(x1, x2) := u0(x1, x2) := p0(x1, x2) :=

sin(20πx1)(cos(20πx2) − 1).

The results in table 6 again show the independence of the FAS on the grid, as

well as linear dependence of the computational cost on the number of grid points.

Increasing kmax by one means roughly multiplying the number of inner grid points by

a factor 4. It can be observed that the CPU time are also approximately multiplied

by 4.

Multilevel methods in optimization 97

0

0.5

1

0

0.5

1
−2

−1

0

1

2

y*(x
1
,x

2
)

0

0.5

1

0

0.5

1
−0.2

−0.1

0

0.1

u*(x
1
,x

2
)

Figure 10: Exact solutions y∗ and u∗ for test problem 3.

Table 6: Results for test problem 3 with kmin = 2.

kmax iter time (s)

6 9 0.1094

7 9 0.2656

8 10 1.5625

9 10 7.1406

10 10 30.4688

11 10 128.0781

8.6.2 Test problem 4

We consider the two dimensional domain Ω = (0, 1)×(0, 1). We define f, z ∈ L2(Ω)

by

f(x1, x2) :=

{
1 on (0.25, 0.75) × (0.25, 0.75)

0 else
,

z(x1, x2) := max(0, 1 − 10(x1 − 0.5)2) max(0, 1 − 10(x2 − 0.5)2).

The parameters are ν = 1e−3, γ = 1, νpre = νpost = 2. The same stopping criterion

and initialization is used as in the previous test problem.

As before the results displayed in table 7 verify grid independence and computational

cost of O(n).

8.6.3 Conclusion

In all test examples we could verify the grid independence of the FAS scheme and

the computational cost of O(n). In general we only had linear convergence of the

discrete L2 norm of the residuals and the functions themselves. Comparing the CPU

Multilevel methods in optimization 98

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

f(x
1
,x

2
)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

z(x
1
,x

2
)

Figure 11: f and z for test problem 4.

Table 7: Results for test problem 4 with kmin = 2.

kmax iter time (s)

4 8 0.1875

5 8 0.6250

6 9 2.3594

7 9 8.8906

8 10 39.1719

9 10 159.5625

times we can conclude that the problems with non-differentiable right hand sides f

and z, i.e. problems 2 and 4 were significantly harder to solve than the ”smooth”

problems 1 and 3.

8.7 MATLAB code

In this section we present the MATLAB code solving the two dimensional test problem
3 using FAS.

% MAIN PROGRAM

% multi-level scheme solving the optimal control problem

%

% min 1/2*|y-z|^2 + nu/2*|u|^2

% s.t. laplace y = u + f

%

% on the 2D domain (0,1)x(0,1).

clear fprintf(’\n\nMULTILEVEL ALGORITHM:\n’) fprintf(’build data

Multilevel methods in optimization 99

...’)

% grid:

% -----

% the domain (0,1)x(0,1) is discretized using an equidistant grid

% with (2^k-1) inner grid points per dimension on each level of

% the cycle. the mesh size is given by h = 1/(2^k). the finest

% grid is defined by k_max, the coarsest by k_min.

% the mesh sizes of the grids are therefore defined by:

% h = [1/(2^k_max),1/(2^(k_max-1)),...,1/(2^k_min)]

k_max = 10; % finest mesh size: 1/(2^k_max)

k_min = 2; % coarsest mesh size: 1/(2^k_min)

% parameters:

% -----------

gamma = 1; % number of recursive multilevel calls

pre = 2; % number of pre-smoothing steps

post = 2; % number of post-smoothing steps

tolerance = 1e-9; % tolerance for stopping criterion

counter_max = 20; % maximal number of cycles

% initialize values:

% ------------------

% build finest grid:

h = 2^(-k_max); % mesh size

h_inv = 1/h; grid = linspace(h,1-h,2^k_max -1)’; [xgrid,ygrid] =

meshgrid(grid);

% weighting parameter in cost functional:

nu = 1e-3;

% right-hand sides:

f = -4*pi*pi*sin(2*pi*xgrid).*(2*cos(2*pi*ygrid) - 1) - ...

sin(pi*xgrid).*(ygrid.*ygrid - ygrid);

z = nu*sin(pi*xgrid).*(2 - pi*pi*(ygrid.*ygrid - ygrid)) +...

sin(2*pi*xgrid).*(cos(2*pi*ygrid) - 1);

% norms of right hand sides (for relative residual):

norm_f_inv = 1/norm(f,’fro’); norm_z_inv = 1/norm(z,’fro’);

% exact solutions:

y_exact = sin(2*pi*xgrid).*(cos(2*pi*ygrid)-1); u_exact =

sin(pi*xgrid).*(ygrid.*ygrid - ygrid); p_exact = nu*u_exact;

% initial guess:

Multilevel methods in optimization 100

y = sin(20*pi*xgrid).*(cos(20*pi*ygrid)-1); p =

sin(20*pi*xgrid).*(cos(20*pi*ygrid)-1); u =

sin(20*pi*xgrid).*(cos(20*pi*ygrid)-1);

% initialize residual:

rel_resid_state = norm(neg_lap02(y,h_inv*h_inv) + f + u,...

’fro’)*norm_f_inv;

rel_resid_adj = norm(neg_lap02(p,h_inv*h_inv) + z - y,...

’fro’)*norm_z_inv;

% initialize counter for cycles:

counter = 0; fprintf(’done!\n’)

% start multilevel scheme:

% ------------------------

fprintf(’start mutilevel scheme ...\n’) start_time = cputime; while

((rel_resid_state > tolerance) | (rel_resid_adj > tolerance) &...

(counter <= counter_max))

% call recursive multilevel scheme:

[y,p,u] = multilevel_recursive_oc01(y,p,u,f,z,nu,gamma,...

pre,post,k_max,k_min);

% increase counter:

counter = counter + 1;

% compute relative residuals:

rel_resid_state = norm(neg_lap02(y,h_inv*h_inv) + f + u,...

’fro’)*norm_f_inv;

rel_resid_adj = norm(neg_lap02(p,h_inv*h_inv) + z - y,...

’fro’)*norm_z_inv;

fprintf(’ iter %4i, relres_state = %6.4e, relres_adj = %6.4e\n’,...

counter,rel_resid_state,rel_resid_adj);

fprintf(’ |y - y_ex| = %6.4e\n’,norm(y-y_exact,’fro’)*h*h);

fprintf(’ |u - u_ex| = %6.4e\n’,norm(u-u_exact,’fro’)*h*h);

end fprintf(’done!\n’) elapsed_time = cputime - start_time;

% output:

fprintf(’results:\n’)

fprintf(’ no. of cycles: %4i\n’,counter)

fprintf(’ relative residual of state eq.: %6.4e\n’,rel_resid_state)

fprintf(’ relative residual of adj. eq. : %6.4e\n’,rel_resid_adj)

fprintf(’ elapsed time (s): %8.4f\n’,elapsed_time)

fprintf(’data:\n’)

fprintf(’ no. of inner grid points on finest grid: %6i\n’,...

Multilevel methods in optimization 101

(2^k_max-1)^2)

fprintf(’ no. of inner grid points on coarsest grid: %6i\n’,...

(2^k_min-1)^2)

fprintf(’ k_min, k_max : %2i, %2i\n’, k_min,k_max)

fprintf(’ gamma = %2i, nu1 = %2i, nu2 = %2i\n’,gamma,pre,post)

%%%

% RECURSIVE MULTILEVEL SOLVER

%

% [y,p,u] = multilevel_recursive_oc01(y0,p0,u0,f,z,nu,gamma,pre,post,k,k_min)

%

% input parameters:

% y0......initial guess for state

% p0......initial guess for lagrangean multiplier

% u0......initial guess for control

% f.......right hand side of state equation

% z.......desired state

% nu......weighting parameter in cost functional

% gamma...number of recursive calls

% pre.....number of pre-smoothing steps

% post....number of post-smoothing steps

% k.......number corresponding to grid (h = 1/2^k)

% k_min...coarsest grid

% output parameter:

% y.......state

% p.......lagrangean multiplier

% u.......control

function [y,p,u] = ...

multilevel_recursive_oc01(y0,p0,u0,f,z,nu,gamma,pre,post,k,k_min)

% mesh size:

h_inv = 2^k; h = 1/h_inv;

% if on coarsest grid, then solve exactly:

if k <= k_min

% build matrix:

n_temp = 2^k-1;

e = ones(n_temp,1)*h_inv;

Multilevel methods in optimization 102

A = spdiags([e -2*e e],-1:1,n_temp,n_temp);

% 2D (positive) Laplace-matrix A:

I_h = speye(n_temp)*h_inv;

A = kron(I_h,A) + kron(A,I_h); % n2 x n2

clear e I_h

% solve exactly:

yp = [A,-1/nu.*speye(n_temp*n_temp);speye(n_temp*n_temp),A]\...

[f(:);z(:)];

y = reshape(yp(1:n_temp*n_temp),n_temp,n_temp);

p = reshape(yp(n_temp*n_temp+1:end),n_temp,n_temp);

u = p./nu;

return

% otherwise smooth, compute residual, restrict, call recursive

% multilevel scheme, compute coarse-grid-correction and smooth

% again:

else

% initialize solution:

y = y0;

p = p0;

u = u0;

% perform multigrid scheme gamma times:

for rv = 1:gamma

% coarse mesh size:

H_inv = 2^(k-1);

H = 1/H_inv;

% pre-smoothing:

[y,p,u] = smooth_oc01(y,p,u,f,z,nu,pre);

% compute residual:

resid_state = f + neg_lap02(y,h_inv*h_inv) + u;

resid_adj = z + neg_lap02(p,h_inv*h_inv) - y;

% restrict to coarser grid:

resid_state_coarse = restrict02(resid_state);

resid_adj_coarse = restrict02(resid_adj);

% compute straight injection:

y_strinj_coarse = restrict_strinj_2D(y);

Multilevel methods in optimization 103

p_strinj_coarse = restrict_strinj_2D(p);

u_strinj_coarse = restrict_strinj_2D(u);

% right hand side of coarse problem:

f_coarse = resid_state_coarse - ...

neg_lap02(y_strinj_coarse,H_inv*H_inv) - u_strinj_coarse;

z_coarse = resid_adj_coarse - neg_lap02(p_strinj_coarse,...

H_inv*H_inv) + y_strinj_coarse;

% apply recursive multilevel scheme:

[y_coarse,p_coarse,u_coarse] = ...

multilevel_recursive_oc01(y_strinj_coarse,...

p_strinj_coarse,u_strinj_coarse,f_coarse,z_coarse,...

nu,gamma,pre,post,k-1,k_min);

% coarse-grid-correction:

y = y + interpolate02(y_coarse - y_strinj_coarse);

p = p + interpolate02(p_coarse - p_strinj_coarse);

u = 1/nu.*p;

% post-smoothing:

[y,p,u] = smooth_oc01(y,p,u,f,z,nu,post);

end

end

%%%

% COLLECTIVE GAUSS-SEIDEL SMOOTHING

%

% [y,p,u] = smooth_oc01(y,p,u,f,z,nu,cycles)

%

% input parameters:

% y........state

% p........lagrange multiplier

% u........control

% f........right hand side of state equation

% z........desired state

Multilevel methods in optimization 104

% nu.......weighting parameter in cost functional

% cycles...number of smoothing cycles

% output parameter:

% y........state after smoothing

% p........multiplier after smoothing

% u........control after smoothing

function [y,p,u] = smooth_oc01(y,p,u,f,z,nu,cycles)

% mesh size h:

[n,m] = size(f); h = 1/(n + 1); h2 = h*h;

% embed variables in zeros:

y = [zeros(1,n+2); zeros(n,1),y,zeros(n,1); zeros(1,n+2)]; p =

[zeros(1,n+2); zeros(n,1),p,zeros(n,1); zeros(1,n+2)];

% loop over number of cycles:

for rv_cycles = 1:cycles

% running variable over columns:

for rvc = 2:n+1

% running variable over rows:

for rvr = 2:n+1

Aij = y(rvr+1,rvc) + y(rvr-1,rvc) + y(rvr,rvc+1) + ...

y(rvr,rvc-1) - h2*f(rvr-1,rvc-1);

Bij = p(rvr+1,rvc) + p(rvr-1,rvc) + p(rvr,rvc+1) + ...

p(rvr,rvc-1) - h2*z(rvr-1,rvc-1);

u(rvr-1,rvc-1) = (4*Bij + h2*Aij)/(16*nu + h2*h2);

y(rvr,rvc) = (Aij - h2*u(rvr-1,rvc-1))/4;

p(rvr,rvc) = nu*u(rvr-1,rvc-1);

end

end

end

% eliminate the zero boundary values:

y = y(2:n+1,2:n+1); p = p(2:n+1,2:n+1);

%%%

% 2D LINEAR INTERPOLATION OPERATOR

%

Multilevel methods in optimization 105

% fine = interpolate02(coarse)

%

% input parameters:

% coarse......matrix of dimension (2^(k-1)-1)x(2^(k-1)-1)

% output parameter:

% fine........matrix of dimension (2^k-1)x(2^k-1)

function fine = interpolate02(coarse)

% initialize vector:

[m,n] = size(coarse); fine = zeros(2*m + 1,2*m + 1);

% set on coarse grid:

fine(2:2:end-1,2:2:end-1) = coarse;

% interpolate in x-direction:

fine(2:2:end-1,1:2:end-2) = 0.5.*coarse; fine(2:2:end-1,3:2:end) =

fine(2:2:end-1,3:2:end) + 0.5.*coarse;

% interpolate in y-direction:

fine(1:2:end-2,:) = 0.5.*fine(2:2:end-1,:); fine(3:2:end,:) =

fine(3:2:end,:) + 0.5.*fine(2:2:end-1,:);

%%%

% 2D FULL WEIGHTING RESTRICTION OPERATOR

%

% coarse = restrict02(fine)

%

% input parameters:

% fine........matrix of dimension (2^k-1)x(2^k-1)

% output parameter:

% coarse......matrix of dimension (2^(k-1)-1)x(2^(k-1)-1)

function coarse = restrict02(fine)

coarse = fine(2:2:end-1,2:2:end-1)./4 + ...

(fine(1:2:end-2,2:2:end-1) + fine(3:2:end,2:2:end-1) + ...

fine(2:2:end-1,1:2:end-2) + fine(2:2:end-1,3:2:end))./8 + ...

(fine(1:2:end-2,1:2:end-2) + fine(3:2:end,3:2:end) + ...

fine(1:2:end-2,3:2:end) + fine(3:2:end,1:2:end-2))./16;

Multilevel methods in optimization 106

%%%

% 2D STRAIGHT INJECTION RESTRICTION OPERATOR

%

% coarse = restrict_strinj_2D(fine)

%

% input parameters:

% fine........matrix of dimension (2^k-1) x (2^k-1)

% output parameter:

% coarse......matrix of dimension (2^(k-1)-1) x (2^(k-1)-1)

function coarse = restrict_strinj_2D(fine)

[n,m] = size(fine); coarse = fine(2:2:n-1,2:2:m-1);

%%%

% 2D FIVE POINT NEGATIVE LAPLACE OPERATOR

%

% v = neg_lap02(u,h_inv2)

%

% input parameters:

% u........matrix

% h_inv2...1/h^2, where h is the mesh size in both directions

% output parameter:

% v........matrix -Delta u, same size as u

function v = neg_lap02(u,h_inv2)

% compute negative laplacean:

vx = [2*u(:,1) - u(:,2), -u(:,1:end-2) + 2*u(:,2:end-1) - ...

u(:,3:end), -u(:,end-1) + 2*u(:,end)];

vy = [2*u(1,:) - u(2,:); -u(1:end-2,:) + 2*u(2:end-1,:) - ...

u(3:end,:); -u(end-1,:) + 2*u(end,:)];

v = (vx + vy)*h_inv2;

Multilevel methods in optimization 107

References

[1] N.S. Bakhvalov, On the convergence of a relaxation method with natural con-

straints on the elliptic operator, USSR Computational Math. and Math. Phys.,

6 (1966), pp. 101.

[2] A. Borz̀ı, On the convergence of the MG/OPT method, PAMM, Proceedings

GAMM Annual Meeting - Luxembourg 2005, 5(1)(2005), pp. 735–736.

[3] A. Borz̀ı, Space-time multigrid methods for solving unsteady optimal control

problems, to appear in the Proceedings of the Second Sandia Workshop on

PDE-Constrained Optimization: Toward Real-time and Online PDE-constrained

Optimization, May 19-21, 2004, Bishop’s Lodge, Santa Fe, New Mexico. Work-

shop organizing committee: Larry Biegler, Omar Ghattas, Matthias Heinken-

schloss, David Keyes, Bart van Bloemen Waanders.

[4] A. Borz̀ı, High-order discretization and multigrid solution of elliptic nonlin-

ear constrained optimal control problems, J. Comp. Appl. Math., 200 (2007),

pp. 67–85.

[5] A. Borz̀ı, Multigrid methods for parabolic distributed optimal control problems,

J. Comp. Appl. Math., 157 (2003), pp. 365–382.

[6] A. Borz̀ı and G. Borz̀ı, An algebraic multigrid method for a class of elliptic

differential systems, SIAM J. Sci. Comp., 25(1) (2003), pp. 302–323.

[7] A. Borz̀ı and G. Borz̀ı, An efficient algebraic multigrid method for solving opti-

mality systems, Computing and Visualization in Science, 7(3/4) (2004), pp. 183–

188.

[8] A. Borz̀ı and K. Kunisch, The numerical solution of the steady state solid fuel ig-

nition model and its optimal control, SIAM J. Sci. Comp., 22(1) (2000), pp. 263–

284.

[9] A. Borz̀ı and K. Kunisch, A globalization strategy for the multigrid solution of

elliptic optimal control problems, Optimization Methods and Software, 21(3)

(2006), 445-459.

[10] A. Borz̀ı, K. Kunisch, and D.Y. Kwak, Accuracy and convergence properties of

the finite difference multigrid solution of an optimal control optimality system,

SIAM J. Control Opt., 41(5) (2003), pp. 1477-1497.

Multilevel methods in optimization 108

[11] J.H. Bramble, Multigrid Methods, Pitman research notes in mathematical

series, Longman Scientific & Technical, 1993.

[12] J.H. Bramble, J.E. Pasciak, and J. Xu, The analysis of multigrid algorithms

with nonnested spaces or noninherited quadratic forms, Math. Comp., 56 (1991),

pp. 1–34.

[13] A. Brandt, Multi-Level Adaptive Technique (MLAT) for Fast Numerical Solu-

tion to Boundary-Value Problems. In: H. Cabannes and R. Temam (eds.), Pro-

ceedings of the Third International Conference on Numerical Methods in Fluid

Mechanics, Paris 1972. Lecture Notes in Physics 18, Springer-Verlag, Berlin,

1973.

[14] A. Brandt, Multi-Level Adaptive Solutions to Boundary-Value Problems, Math.

Comp., 31 (1977), pp. 333-390.

[15] A. Brandt, S. McCormick and J. Ruge, Multigrid Methods for Differential Eigen-

problems, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 244-260.

[16] A. Brandt, Multi-grid techniques: 1984 guide with applications to fluid dynamics.

GMD-Studien. no 85, St. Augustin, Germany, 1984.

[17] A. Brandt, Rigorous Local Mode Analysis of Multigrid. Lecture at the 2nd Euro-

pean Conference on Multigrid Methods, Cologne, Oct. 1985. Research Report,

The Weizmann Institute of Science, Israel, Dec. 1987.

[18] A. Brandt and J. Greenwald, Parabolic Multigrid Revisited. In: Hackbusch-

Trottenberg [32].

[19] A. Brandt and D. Sidilkover , Multigrid solution to steady-state two-dimensional

conservation laws, SIAM Journal on Numerical Analysis, 30 (1993), pp. 249-274.

[20] Th. Dreyer, B. Maar, V. Schulz, Multigrid optimization in applications, J. Com-

put. Appl. Math., 120 (2000), pp. 67–84.

[21] R.P. Fedorenko, A relaxation method for solving elliptic difference equations.

USSR Computational Math. and Math. Phys., 1 (1962), pp. 1092.

[22] R.P. Fedorenko, The rate of convergence of an iterative process. USSR Compu-

tational Math. and Math. Phys., 4 (1964), pp. 227.

[23] J. Goodman and A.D. Sokal, Multigrid Monte Carlo for lattice field theories,

Phys. Rev. Lett., 56 (1986), pp. 1015.

Multilevel methods in optimization 109

[24] W. Hackbusch, A multi-grid method applied to a boundary problem with variable

coefficients in a rectangle. Report 77-17, Institut für Angewandte Mathematik,

Universität Köln, 1977.

[25] W. Hackbusch, On the computation of approximate eigenvalues and eigenfunc-

tions of elliptic operators by means of a multi-grid method, SIAM J. Numer.

Anal., 16 (1979), pp. 201-215.

[26] W. Hackbusch, Parabolic Multi-Grid Methods. In: R. Glowinski and J.L. Lions

(eds.), Computing Methods in Applied Sciences and Engineering, VI. Proc. of the

sixth international symposium, Versailles, Dec.1983, North-Holland, Amsterdam,

1984.

[27] W. Hackbusch, Multi-Grid Methods and Applications. Springer-Verlag, Heidel-

berg, 1985.

[28] W. Hackbusch, Elliptic Differential Equations, Springer-Verlag, New York, 1992.

[29] W. Hackbusch and A. Reusken, Analysis of a damped nonlinear multilevel

method, Numer. Math., 55 (1989), pp. 225–246.

[30] W. Hackbusch and U. Trottenberg (eds.), Multi-Grid Methods, Proceedings,

Köln-Porz, Nov. 1981, Lecture Notes in Mathematics 960, Springer-Verlag,

Berlin, 1982.

[31] W. Hackbusch and U. Trottenberg (eds.), Multigrid Methods II, II. Proc. of the

European Conference on Multigrid Methods, Cologne, Oct. 1985, Lecture Notes

in Mathematics 1228, Springer-Verlag, Berlin, 1986.

[32] W. Hackbusch and U. Trottenberg (eds.), Multigrid Methods III, III. Proc. of

the European Conference on Multigrid Methods, Bonn, Oct. 1990, Birkhäuser,

Berlin, 1991.

[33] Van Emden Henson, Multigrid for Nonlinear Problems: an Overview, presented

by Van Emden Henson at the SPIE 15th Annual Symposium on Electronic Imag-

ing, Santa Clara, California, January 23, 2003.

[34] K. Ito and K. Kunisch, Asymptotic properties of receding horizon optimal control

problems, SIAM J. Control Optim., 40(5) (2002), pp. 1585–1610.

[35] R.M. Lewis and S.G. Nash, Model problems for the multigrid optimization of

systems governed by differential equations, in SIAM Journal on Scientific Com-

puting.

Multilevel methods in optimization 110

[36] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equa-

tions, Springer, Berlin, 1971.

[37] H.D. Mittelmann and H. Weber, Multi-Grid Methods for Bifurcation Problems,

SIAM J. Sci. Stat. Comput., 6 (1985), pp. 49.

[38] W.A. Mulder, A new multigrid approach to convection problems, Journal of

Computational Physics, 83 (1989), pp. 303-323.

[39] S.G. Nash, Newton-type minimization via the Lanczos method, SIAM J. Numer.

Anal., 21(4) (1984), pp. 770–788.

[40] S.G. Nash, A multigrid approach to discretized optimization problems, Opti-

mization Methods and Software, 14 (2000), pp. 99–116 .

[41] J.W. Ruge and K. Stüben, Algebraic Multigrid (AMG), In ”Multigrid Methods”

(S. McCormick, ed.), Frontiers in Applied Mathematics, Vol. 5, SIAM, Philadel-

phia 1986.

[42] P. Spellucci, Numerische Verfahren der nichtlinearen Optimierung, ISNM

Birkhäuser, 1993.

[43] K. Stüben, Algebraic Multigrid (AMG): An Introduction with Applications, GMD

Report 53, March 1999.

[44] K. Stüben and U. Trottenberg, Multigrid Methods: Fundamental Algorithms,

Model Problem Analysis and Applications. In: Hackbusch-Trottenberg [30].

[45] E. Süli, Convergence of finite volume schemes for Poisson’s equation on nonuni-

form meshes, SIAM J. Numer. Anal., 28 (1991), pp. 1419–1430.

[46] S. Ta’asan, Multigrid Methods for Locating Singularities in Bifurcation Problems.

SIAM J. Sci. Stat. Comput., 11 (1990), pp. 51-62.

[47] S. Ta’asan, Introduction to shape design and control; Theoretical tools for prob-

lem setup; Infinite dimensional preconditioners for optimal design. In: Inverse

Design and Optimisation Methods, VKI LS 1997-05.

[48] X.-C. Tai and J. Xu, Global and uniform convergence of subspace correction

methods for some convex optimization problems, Math. Comp., 71 (2002),

pp. 105–124.

[49] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, Lon-

don, 2001.

Multilevel methods in optimization 111

[50] S. Vandewalle and R. Piessens, Efficient Parallel Algorithms for Solving Initial-

Boundary Value and Time-Periodic Parabolic Partial Differential Equations,

SIAM J. Sci. Stat. Comput., 13 (1992), pp. 1330–1346.

[51] P. Wesseling, A survey of Fourier smoothing analysis results. In: Hackbusch-

Trottenberg [32].

[52] D. Young, Iterative Solution of Large Linear Systems, Academic Press, New

York, 1971. (Reprinted by Dover, 2003.)

	Introduction
	Multilevel methods for linear problems
	Iterative methods and the smoothing property
	Iterative methods as minimization schemes
	The twolevel scheme and the approximation property
	The multilevel scheme

	Multilevel methods for nonlinear problems
	The FAS multilevel method
	MGOPT: A multilevel optimization scheme
	Convergence of the MGOPT method
	The full multilevel method

	Multilevel schemes for optimality systems
	Optimality systems
	Elliptic optimal control problems
	Finite difference discretization
	Smoothing iteration
	A FAS multilevel scheme
	Local Fourier convergence analysis
	Parabolic optimal control problems
	Local Fourier smoothing analysis
	Receding horizon approach

	Globalization issues
	Second-order conditions for a minimum
	Globalization of the FAS scheme

	Appendix: A 1D MG code for the Poisson problem in MATLAB
	Appendix: A 2D MG code for the Poisson problem in FORTRAN
	Appendix: A 2D MG code for an optimality system in MATLAB
	Problem Definition
	Optimality conditions

	Discretization
	One dimensional case
	Two dimensional case

	Algorithm
	Smoothing
	Numerical results
	Test problem 1

	Test problem 2
	Test problem 3
	Test problem 4
	Conclusion

	MATLAB code

	References

