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Abstract. A framework for designing robust smooth-
ing procedures for control- and state-constrained opti-
mal control problems is presented. The focus is on min-
imization problems governed by elliptic partial differen-
tial equations with additional pointwise constraints on
the control variable or on the state variable, respectively.
The basic principle for the construction of the present
smoothers is the solution of the corresponding optimal-
ity systems at grid-point level. A new approach is pre-
sented to cope with the lack of differentiability due to
the presence of the constraints.

1 Introduction

We present a general framework for the design of smoothers
for the multigrid solution of elliptic optimal control prob-
lems. These are constrained minimization problems gov-
erned by elliptic partial differential equations [2,14,19].
Specifically, we address the solution of optimal control
problems by means of the corresponding optimality sys-
tems representing the first-order necessary conditions for
a minimum and assume that these critical points also
satisfy the second-order necessary conditions for (local)
minima; for details regarding these conditions in a multi-
grid context see [6]. For a general and detailed descrip-
tion of multigrid methods see, e.g., [20].

Previous experience shows that multigrid algorithms
based on present smoothing strategy can solve optimal
control problems with optimal computational complex-
ity and appear to be robust with respect to the choice of
values of the optimization parameters; see [3]-[6]. Among
others, representative examples demonstrating these facts
can be found in [4] for the case of singular optimal con-
trol problems and in [5] for the case of linear control-
constrained optimal control problems. In the latter case,
the resulting multigrid algorithm allowed to investigate
bang-bang control and, for the first time, to show the oc-
currence of chattering of control in an elliptic problem.
For more details see [5].

In this paper we discuss an extension of techniques
developed in [5] to the case of control-constrained semi-
linear elliptic optimal control problems and introduce an
appropriate setting for the construction of smoothers for
state-constrained optimal control problems.

The multigrid approach to optimal control problems
is, apart from a few contributions, rather recent. Our
framework is the one-shot multigrid strategy as first pro-
posed in [1]. Related approaches can be found in [9]
within the successive quadratic programming method,
and in [11] where the optimality conditions are refor-
mulated as fixed-point problem and solved by multigrid
methods. A one-shot multigrid algorithm means solv-
ing the optimality system for the state, the adjoint, and
the control variables in parallel in the multigrid process.
This is in contrast to solving sequentially for the state
and the adjoint equations and then updating the control
variables along with the gradients provided by the op-
timality condition. Notice that this ‘gradient’ approach
was also used in [1] to design the smoothers. This strat-
egy has disadvantages: it cannot be applied to singu-
lar optimal control problems and, in general, it results
in less robust multigrid schemes. The present approach
of collectively solve for all three optimization variables
overcomes these difficulties.

In the next two sections a control-constrained and
a state-constrained optimal control problems are formu-
lated. In the Sections 4 and 5 the construction of ap-
propriate multigrid smoothers for these problems is de-
scribed in detail. In Section 6, results of numerical exper-
iments are presented. A section of conclusions completes
this paper.

2 A control-constrained optimal control problem

Optimal control problems are defined for the purpose
of determining the optimal way to influence equilibrium
or dynamical systems towards a given task. An optimal
control problem consists of a governing system, a descrip-
tion of the control mechanism, and a criterion defining
the cost functional, that models the purpose of the con-
trol and describes the cost of its action. The formula-
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tion of an optimal control problem is then to minimize
the cost functional under the constraint given by the
modeling equations. The necessary conditions for such a
minimum result in a set of coupled equations called the
optimality system. In this and in the next section we de-
scribe a control- and a state-constrained optimal control
problems. For a more general and detailed discussion on
optimal control problems see, e.g., [2,14,19].

For the purpose of illustration, consider a material
plate defining a two-dimensional convex domain Ω. Let
the state y of the material represents the temperature
distribution which is maintained equal to zero along the
boundary. Assume the presence of a given heating source
f defined on Ω and thermal radiation or positive temper-
ature feedback due to chemical reactions are represented
by the term G(y). This system is governed by the fol-
lowing equation{

∆y + G(y) = f in Ω,
y = 0 on ∂Ω.

(1)

With the setting above we may think of controlling
the temperature distribution y to come close to a given
target profile z ∈ L2(Ω) by acting with an additional
distributed source term u, the control function. Notice
that the given target function needs not be as regular
as the state function and it does not need satisfy the
boundary conditions for the state.

An optimal control problem governed by (1) is for-
mulated as follows



minu∈Uad
J(y, u),

∆y + G(y) = u + f in Ω,
y = 0 on ∂Ω.

(2)

In the control-constrained case we assume that u ∈ Uad,
Uad ⊂ L2(Ω) being the convex closed set of admissible
controls as follows

Uad = {u ∈ L2(Ω) |uL(x) ≤ u(x) ≤ uH(x) a.e. in Ω},(3)

where we choose uL and uH elements of L2(Ω). Other
choices are possible. For a discussion on optimal control
problems where the control acts only in a subdomain of
Ω; see [5].

The cost functional J is of the tracking type and is
given by

J(y, u) =
1
2
‖y − z‖2L2(Ω) +

ν

2
‖u‖2L2(Ω), (4)

where ν ≥ 0 is the weight of the cost of the control.
Existence and uniqueness of solutions to (2)–(4) can

be established under suitable conditions for various forms
of the nonlinearity; see, e.g., [4,10,15]. However, for some
interesting applications depending on G (e.g., [4]) mul-
tiple (local) optimal solutions may exist. In these cases
the multigrid schemes discussed in this paper converge
to one of the local minima; see [6].

Optimal solutions are characterized by the following
optimality system

∆y + G(y) = u + f in Ω,
y = 0 on ∂Ω,

∆p + G′(y) p = −(y − z) in Ω,
p = 0 on ∂Ω,

(νu− p, v − u) ≥ 0 for all v ∈ Uad.

(5)

We refer to the first differential equation of (5) as the
state equation and to the second one as the adjoint equa-
tion. The solution to (2)–(4) with ν = 0 is characterized
by (5) with the inequality constraint being replaced by
p = min{0, p + u− uL}+ max{0, p + u− uH}.

The inequality in (5) gives the optimality condition.
It prevents the use of a standard Newton scheme because
of the lack of differentiability. In particular, it is not pos-
sible to define a smoother based on local Newton steps.
We follow an alternative approach where differentiation
is not required.

3 A state-constrained optimal control problem

In a state-constrained optimal control problem, bounds
are given to the admissible set of values of the state
variable. Similarly to the setting above we have





minu∈L2(Ω) J(y, u),
∆y + G(y) = u + f in Ω,

y = 0 on ∂Ω,
yL ≤ y ≤ yH a.e. in Ω,

where yL and yH are continuous functions, and J(y, u)
is given as in (4). Existence and uniqueness of solutions
to state-constrained semilinear elliptic optimal control
problems depends on the given constraints and on the
nonlinearity. For a nonempty solution set, uniqueness
can be proved for sufficiently regular G such that the
state operator is monotone; see, e.g., [17].

The solution approach to state-constrained optimal
control problems through Lagrange multipliers associ-
ated with the state constraints leads to difficulties [16].
In particular, the fact that the Lagrange multipliers as-
sociated with the state constraints are only regular Borel
measures prevents us from using known approximation
techniques. In fact, to the best of our knowledge, (at
least in a finite difference context) no approximation
methods for such a class of functions is available. The
remedy is to introduce appropriate regularization; see
[16] and references given there. In the following, we con-
sider the Lavrentiev-type approach because it elegantly
accommodates in our framework. The Lavrentiev-type
regularization consists in approximating the pointwise
state constraints yL(x) ≤ y(x) ≤ yH(x) by the following

yL(x) ≤ y(x)− λu(x) ≤ yH(x) a.e. in Ω,

where λ > 0 is a small parameter. As a result, the
associated Lagrange multipliers can be assumed to be
functions in L2(Ω) [16]. The following regularized state-
constrained optimal control problem results




minu∈L2(Ω) J(y, u) := 1
2 ||y − z||2L2(Ω) + ν

2 ||u||2L2(Ω)

∆y + G(y) = u + f,
y = 0,

yL ≤ y − λu ≤ yH .

Now, introduce the auxiliary variable v = y−λu and ex-
press the control function u in terms of v. The regularized
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state-constrained optimal control problem becomes




minv∈L2(Ω) J(y, v) := 1
2 ||y − z||2L2(Ω) + ν

2λ2 ||y − v||2L2(Ω)

∆y + G(y)− y/λ + v/λ = f,
y = 0,

yL ≤ v ≤ yH .

Notice that after the transformation, an optimal con-
trol problem is obtained having a ‘control-constrained’
structure. The solution to this problem is characterized
by the following optimality system

∆y + G(y)− y/λ + v/λ = f in Ω,
y = 0 on ∂Ω,

∆p + G′(y)p− p/λ + (y − z) + γ (y − v) = 0 in Ω,
p = 0 on ∂Ω,

(p/λ− γ (y − v), t− v) ≥ 0,

(6)

where γ = ν/λ2 and the inequality must hold for all
t ∈ Vad, and Vad is defined by

Vad = {v ∈ L2(Ω) | yL(x) ≤ v(x) ≤ yH(x) a.e. in Ω}.

4 A smoother for control-constrained optimal
control problems

For illustration, we focus on finite difference approxima-
tions, however the present approach can be extended to
other discretization techniques. Assume that Ω is a rect-
angular domain and consider a sequence of grids indexed
by k = 1, . . . , L, {Ωhk

}k with mesh sizes hk such that
the boundaries of Ω coincide with grid lines. Here k = L
denotes the finest level and h1 is the mesh size of the
coarsest grid. Correspondingly, with k we also index the
operators and variables defined on Ωk = Ωhk

.
The multigrid smoothing schemes presented here are

used within the full approximation storage (FAS) [7]
method. This is a natural choice in the treatment of non-
linear and constrained problems since the optimization
variables and not their errors are represented at all lev-
els. We can define the multigrid FAS scheme for a generic
nonlinear problem Ak(uk) = fk, where Ak(·) represents
a nonlinear discrete operator on Ωk, as follows.

– Multigrid FAS-(m1,m2) method.
(i) If k = 1 solve Ak(uk) = fk directly (e.g., repeated

application of Sk).
(ii) Pre-smoothing steps on the fine grid:

u
(l)
k = Sk(u(l−1)

k , fk), l = 1, . . . ,m1;

(iii) Computation of the residual: rk = fk −Aku
(m1)
k ;

(iv) Restriction of the residual: rk−1 = Ik−1
k rk;

(v) Set uk−1 = İk−1
k u

(m1)
k ;

(vi) Set fk−1 = rk−1 + Ak−1(uk−1)
(vii) Call m times FAS-(m1,m2) to solve

Ak−1(uk−1) = fk−1;

(viii) Coarse-grid correction:

u
(m1+1)
k = u

(m1)
k + Ik

k−1(uk−1 − İk−1
k u

(m1)
k );

(ix) Post-smoothing steps on the fine grid:

u
(l)
k = Sk(u(l−1)

k , fk), l = m1+2, . . . , m1+m2+1;

The variational inequality defining the optimality con-
dition has the same form on all grids.

We choose Ik
k−1 to be bilinear interpolation and for

İk−1
k and Ik−1

k we take injection and full-weighting re-
striction, respectively. These operators are given in sten-
cil form as follows

Ik
k−1 =

1
4




1 2 1
2 4 2
1 2 1


 and Ik−1

k =
1
16




1 2 1
2 4 2
1 2 1


 . (7)

Notice that we can perform m two-grid iterations at
each working level. For m = 1 we have a V -cycle and
for m = 2 we have a W -cycle; m is called the cycle in-
dex [20]. Our numerical experience shows that in case of
constrained control problems the use of W -cycles results
in a more robust multigrid iteration.

In the following, ∆hk
denotes the discretization of

Laplacian by any finite differences stencil satisfying a
maximum principle. Homogeneous Dirichlet boundary
conditions are included in the definition of ∆hk

. For a
generic hk we use h instead.

We now give a detailed derivation of a smoothing
scheme for (5). Let h = hk and x ∈ Ωh, where x =
(ih, jh) and (i, j) index the grid points, e.g., lexicograph-
ically. Denote with ωij the set of grid index pairs s, t of
the stencil of ∆h centered at (i, j). Correspondingly, de-
note with cst, s, t ∈ ωij , the s, t entry of the stencil of
the discretized Laplacian (multiplied by h2) centered at
(i, j). Using this notation, we can express the action of
∆h on the function vh in the following compact form

∆hvh|ij =
1
h2

(
∑

s,t∈ωij , s,t 6=i,j

cst vst − cijvij),

where cij > 0.
Consider the discretization of (5) at x, we have

∑
s, t ∈ ωij
s, t 6= i, j

cst yst − cij yij + h2 G(yij)− h2 uij = h2f̃ij (8)

∑
s, t ∈ ωij
s, t 6= i, j

cst pst−cij pij +h2 G′(yij) pij +h2 yij = h2 z̃ij(9)

(νuij − pij) · (vij − uij) ≥ 0 for all v ∈ Uadh, (10)

where Uadh = {u ∈ L2
h(Ωh) |uL(x) ≤ u(x) ≤ uH(x) in Ωh}

and f̃ and z̃ represent fh and zh including the defect cor-
rections resulting by coarsening in nonlinear multigrid
schemes [20]. We set

Aij =
∑

s,t∈ωij , s,t 6=i,j

cst yst − h2f̃ij

and
Bij =

∑

s,t∈ωij , s,t 6=i,j

cst pst − h2z̃ij .
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Here Aij and Bij are considered constant during the
update of the variables at (i, j). Summarizing, we have
the following system at (i, j) for the three scalar variables
yij , pij , and uij :

Aij − cij yij + h2 G(yij)− h2 uij = 0, (11)

Bij − cij pij + h2 G′(yij) pij + h2 yij = 0, (12)
(νuij − pij) · (vij − uij) ≥ 0 (13)

for all v ∈ Uadh.
After discretization, it is required that the inequal-

ity constraint holds pointwise. This is an equivalent but
more convenient discretization than expressing the in-
equality in terms of the discrete L2 product.

Next, we discuss a Newton-based step which gener-
alizes ideas in [4,5] and avoids differentiation of (13).
Consider the inverse of the Jacobian of (11)–(12) with
respect to the variables yij , pij , it is given by

J−1
ij =

1
detJij

( −cij + h2G′(yij) 0
−h2(1 + G′′(yij) pij) −cij + h2G′(yij)

)

where det Jij = (−cij +h2G′(yij))(−cij +h2G′(yij)). By
computing the reduced Hessian (see, e.g., [6]) one finds
that second-order necessary conditions for a minimum
require (1 + G′′(yij) pij) ≥ 0.

For given uij , a local Newton update for the state
and the adjoint variables ŷij and p̂ij at (i, j) is given by
(

ŷij

p̂ij

)
=

(
yij

pij

)
+ J−1

ij

(
rij(uij)

sij

)
, (14)

where rij and sij denote the residuals of (11) and (12),
respectively. Here rij(uij) = −(Aij−cij yij +h2 G(yij)−
h2 uij) depends explicitly on uij . This fact allows us to
write p̂ij as a function of uij as follows

p̂ij(uij) = pij

− 1
detJij

{h2(1 + G′′(yij) pij) rij(uij)

+(cij − h2G′(yij)) sij} (15)

Now in order to obtain the update for uij , replace p̂ij in
the inequality constraint (13). Define the reduced cost
functional Ĵ(u) = J(y(u), u) and recall that the optimal
control solution to (2)–(4) is characterized by Ĵ ′(u, v −
u) = (ν u−p(u), v−u) ≥ 0 for all v ∈ Uad. In the absence
of constraints the optimal control satisfies ν u−p(u) = 0.
Therefore we consider the solution to ν ũ − p̂(ũ) = 0 at
(i, j) with p̂(u) given by (15). This provides the auxiliary
variable (that represents the updated control without
constraints)

ũij = (ν +
(1 + G′′(yij) pij) h4

detJij
)−1 ×

{pij +
1

det Jij
(h2(1 + G′′(yij) pij)×

(Aij − cij yij + h2 G(yij)))

+
1

det Jij
((cij − h2G′(yij)) ×

(Bij − cij pij + h2 G′(yij) pij + h2 yij)}

In the presence of constraints, the new value for uij re-
sulting from the relaxation step is obtained by projection
of ũij onto Uadh as follows

uij =





uHij if ũij ≥ uHij

ũij if uLij < ũij < uHij

uLij if ũij ≤ uLij .
(16)

With uij given by (16), we use (14) to update yij and
pij .

This completes the description of the smoothing step.
One can verify that it satisfies the inequality constraints.
In fact, assume that ũij > uHij ; then from (16) we have
uij = uHij . Therefore (vij − uij) ≤ 0 for any v ∈ Uadh.
By inspection of (15) we see that p̂ij(ũij) < p̂ij(uij). On
the other hand we have

νuij − p̂ij(uij) < νũij − p̂ij(ũij) = 0.

Similarly, if ũij < uLij we take uij = uLij and we have
that νuij − p̂ij(uij) > 0 together with (vij − uij) ≥ 0 for
any v ∈ Uadh. Therefore (νu − p) · (v − u) ≥ 0 for all
v ∈ Uadh. In the case ν = 0 similar arguments hold.

Because of the ‘projection’ (16), the present iteration
can be considered as belonging to the class of projected
Gauss-Seidel schemes [8].

5 A smoother for state-constrained optimal
control problems

Next, the construction of the smoother for the regular-
ized state-constrained optimality system given by (6) is
discussed. Consider the following discretized state and
adjoint equations

∑
s, t ∈ ωijs, t 6= i, j

cst yst − (cij + h2/λ) yij + h2 G(yij)

+(h2/λ) vij = h2f̃ij ,

∑
s, t ∈ ωijs, t 6= i, j

cst pst − (cij + h2/λ) pij + h2 G′(yij) pij

+(1 + γ)h2 yij − γ h2 vij = h2 z̃ij .

These two equations are written in a compact form as
follows.

Aij − αij yij + h2 G(yij) + (h2/λ) vij = 0, (17)

Bij − αij pij + h2 G′(yij) pij + (1 + γ) h2 yij

−γ h2vij = 0, (18)

where αij = cij +h2/λ. In addition, we have the inequal-
ity

(pij/λ− γ yij + γ vij) · (tij − vij) ≥ 0

for all t ∈ Vadh = {v ∈ L2
h(Ωh) | yL ≤ v ≤ yH a.e. in Ωh}.

Now consider the Jacobian of the system (17)–(18)
with respect to yij , pij , that is,

Jij =
( −αij + h2 G′(yij) 0

(1 + γ)h2 + h2 G′′(yij) pij −αij + h2 G′(yij)

)
.
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Hence, the following local Newton update for yij and pij

at (i, j) results
(

ŷij

p̂ij

)
=

(
yij

pij

)
+ J−1

ij

(
rij(vij)
sij(vij)

)
, (19)

where rij(vij) and sij(vij) denote the residuals of (17)
and (18), respectively. Both residuals depend explicitly
on the control variable vij . Therefore the update above
defines the values ŷij(vij) and p̂ij(vij) as functions of vij .

Similarly to the control-constrained case, we now de-
note with ṽij the solution to the linear equation

pij(vij)/λ− γ yij(vij) + γ vij = 0.

It is given by ṽij = Nij/Dij where

Nij = −(λ(αijBij + (1 + γ)Aijh
2 −Aijαijγλ

− h2(Bij −Aijγλ + ((1 + γ)h2 − αijγλ)yij)G′(yij)

− h4γλyijG
′(yij)2 + h2AijpijG

′′(yij)

− αijh
2pijyijG

′′(yij) + h2G(yij)(h2(1 + γ)

− αijγλ + h2γλG′(yij) + h2pijG
′′(yij))))

and

Dij = h4 (1 + γ)− 2 αij h2 γ λ + α2
ij γ λ2

+ 2 h2 γ λ (h2 − αij λ)G′(yij)

+ h4 γ λ2 G′(yij)2 + h4 pij G′′(yij).

Now recall that the update to vij must satisfy the
constraints yL(xij) ≤ vij ≤ yH(xij). Therefore a feasible
update is given by

vij =





yHij if ṽij ≥ yHij

ṽij if yLij < ṽij < yHij

yLij if ṽij ≤ yLij .
(20)

Updates for the adjoint and state variables are then given
by pij = p̂ij(vij) and yij = ŷij(vij), respectively, as de-
fined by (19).

In the linear unconstrained case, local Fourier anal-
ysis results show that the smoothing schemes (14)–(16)
and (19)–(20) have typical smoothing factor values (µ ≈
0.5) and this value is weakly dependent on ν. This prop-
erty is especially important when solving for very small
choices of ν where other methods may fail.

6 Numerical experiments

We report results of numerical experiments to discuss the
computational performance of the smoothing schemes
(14)–(16) and (19)–(20) by considering the convergence
behavior of resulting multigrid algorithms. We use W-
FAS-cycles [7] with one pre- and post-smoothing of the
symmetric (i.e. a forward and a backward sweeps) ver-
sion of the smoothers described above with lexicographic
ordering (for details regarding coarsening of the varia-
tional inequality see [5] and [18]). W-cycles appear to
be superior in the case of active constraints [5]; for the
present isotropic problems ordering is not essential for
convergence. In the figures we plot the log of the sum

Fig. 1. Control-constrained case. The optimal control for
ν = 10−7.
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Fig. 2. Control-constrained case. Convergence history for
smoothing only (dashed line) and multigrid W(1,1)-cycle;
ν = 10−7.

of L2-norm of the state and adjoint equation residuals.
Notice that similar results are obtained with different
meshes. Let Ω = (0, 1)2 and the finest mesh is 257× 257
and six levels are employed. All unknown variables are
initialized to be zero and we choose G(y) = −y4 (see
[15]) and f = 0 .

First we consider the following control-constrained
problem. Let z(x1, x2) = sin(2πx1) sin(3πx2) and ν =
10−7. With this setting and uL(x) = −1/2 and uH(x) =
1/2 the constraints are active in large parte of the do-
main. This fact can be seen in Figure 6; in Figure 6 we
observe typical slow convergence of the smoothing itera-
tion and ‘textbook’ multigrid convergence of the multi-
grid cycle. Similar results are obtained with different
choices of values of the optimization parameter.
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Table 1. Convergence factors choosing ν = λ2.

mesh λ = 10−3 λ = 10−4 λ = 10−5

257× 257 0.06 0.06 0.07
513× 513 0.07 0.07 0.08

1025× 1025 0.07 0.07 0.07

Fig. 3. State-constrained case. The optimal state for ν =
10−7 and λ = 10−3.

Next, consider the following state-constrained opti-
mal control problem. Take z(x1, x2) = sin(2πx1) sin(πx2)
and yL(x) = −1/2 and yH(x) = 1/2. Results for the
choice ν = 10−7 and λ = 10−3 are reported in Figures
6 & 6. In Figure 6, the constrained state solution is de-
picted. Convergence history is reported in Figure 6. We
notice an increase of the value of the sum of the L2-
norm of the residuals during the first few iterations of
the smoothing scheme. This behavior results from an in-
crease of the residual of the state equation, while the
residuals of the adjoint and control equations decrease
monotonically. On the other hand, we observe typical
convergence behavior of the multigrid scheme based on
the proposed smoother.

The results reported in Table 1 show typical multi-
grid convergence factors that are mesh independent. These
values are obtained choosing ν ≈ λ2. With ν held fixed
and decreasing λ the resulting convergence factors worsen.

7 Conclusion

An unified approach to the design of multigrid smoothers
for constrained optimal control problems was presented.
This approach defines collective smoothing steps that
combine local Newton update with projection through
the gradient of the reduced cost functional to overcome
the lack of differentiability due to the presence of in-
equality constraints.

Results of numerical experiments were presented to
show that the resulting multigrid schemes provide typ-
ical multigrid computational efficiency in the case of
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Fig. 4. State-constrained case. Convergence history for
smoothing only (dashed line) and multigrid W(1,1)-cycle;
ν = 10−7 and λ = 10−3.

control-constrained optimal control problems. In the state-
constrained case, multigrid efficiency is obtained when-
ever the value of the weight of the cost of the control ν
is of the same order as λ2. Deterioration of convergence
behavior may occur when the Lavrentiev regularization
parameter λ becomes too small with respect to ν.

It can be expected that improved robustness with re-
spect to λ might be achieved when including appropriate
multigrid techniques for variational inequalities as given
in, e.g., [13,18,21].
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