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Optimal control problems

Control-constrained nonlinear elliptic optimal control problems
Consider a two-dimensional material plate Q whose state is described by
the temperature distribution y.

Assume thermal radiation (G(y) < 0) or positive temperature feedback
(G(y) > 0) due to chemical reactions.

We may control y to come close to a given target profile z € L2(f), by
acting with a (boundary or) distributed source term u, the control

function.
minyeu,, J(y,u) = %”y - ZH%Z(Q) + %”U”%Z(Q)
Ay+G(y) = u+f in Q
= 0 on 0N
Usg = {u € L2(Q) | ur(x) < u(x) < uy(x) a.e. in Q} UNI
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Optimal control problems

Optimality system

Optimal solutions are characterized by the following optimality system

Ay+G(y)—u= f inQQ,
y= 0 on 09,
Ap+G'(y)p+y= z inQ,
p= 0 on09Q,
(vu—p,v—u)> 0 forall ve Uy.

The last equation gives the optimality condition. It is equivalent to
. 1 .
u = max{ug, min{ug, —p(v)}} inQ, v>0
v

Nondifferentiability !
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Optimal control problems

Optimality system (continue)

The case with v = 0 is characterized by the following system

Ay+G(y)—u= f in Q,
y= 0 on 0%,

Ap+G(y)p+y= =z in Q,
p= 0 on 0€2,

p= min{0,p+uv—u}+max{0,p+u—uy} inQ.

Nondifferentiability prevents the use of classical Newton or gradient
techniques, requiring more sophisticated methods based on generalized
differentiability concepts.

We propose an alternative MG approach where differentiation is not
required.
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FD Discretization

Finite-difference framework
Consider the finite-difference framework [Hackbusch,Siili].
Let Q be rectangular domain. Introduce the discrete L3-scalar product
(Vs wh) iz = b2 Y, cq, V(X) wi(x), with norm [valo = (vi, vh)ig?

First-order backward and forward partial derivatives of v in the x;
direction are denoted by 9. and 9;', respectively.

Assume sufficiently smooth functions v € C"(Q), k=0, 1_7 ..., and
denote with (Ruv)(x) = v(x) the restriction operator on Q. We have
The second-order five-point Laplacian

Ay =007 +0505

The fourth-order nine-point Laplacian

W W
Dy = (1= $50700) 9700 +(1— 150707) 9505
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FD Discretization

A priori accuracy estimate

In the linear case, G(y) = gy with g <0 and U,q = L%(Q). We have
the following discrete optimality system

Apyn +8yn—pPn/v = f
Appr+gpn+yn = zn

Theorem

Let y € CK2(Q), k = 2,4, and p € C'*2(Q), | = 2,4, be solutions to
the optimality system, and let y, and py be solutions to the discrete
optimality system. Then there exists a constant c, depending on £, and
independent of h, such that

|vn — Ruyl + Iph = Ruplg < c (P llyllEeaay e = 1PlEaa):

Results of numerical experiments give evidence that it appears to hold UL

also in the presence of nonlinearity and of constraints.

Alfio Borzi University of Graz

Multigrid solution of optimali i ized by high-order schemes



FD Discretization

Discretization of the optimality system
The one-dimensional expanded form of Apv(x) is

1
12h2
This scheme results in a system which is neither diagonally dominant nor
of non-negative type [Bramble Hubbard]. Nevertheless it satisfies a max
principle.
We can express the action of A (resp. A) on the function vj in the
following compact form

1
Ath|,'j = ﬁ ( Z Cst Vst — C,'J'V,'j).

S,tEw,-j,s,tséi,j

(=v(x =2h) + 16 v(x — h) — 30 v(x) + 16 v(x + h) — v(x + 2h)).

and for convenience set

— y 2 _ P 2
Aj = g Cayst —h°fy and By = E Cst Pst — h°zjj
S, t€wy, s,tA1 s,t€wy, 5,41 Y
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FD Discretization

Discretization of the optimality system (continue)

We have the following set of equations at /,j for the three scalar
variables y;;, pjj, and wj:

A;j—cijfy;j+h2 G(y,-j)fh2u,-j 0
Bj — cfpy + h* G'(ys) ps +h’y; = 0
0

(vuij — pij) - (vij — uj) > for all v, € Usgp,

Solving these equations at each grid point in a given order results in a
robust smoother.
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Multigrid scheme

Smoothing

» Compute the inverse of the Jacobian for the y, p system

1 —cj + h2G'(y;) 0
i 7 detdy \ —h*(1+G"(yy) py) —cf +h*G'(yy)
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Multigrid scheme

Smoothing

» Compute the inverse of the Jacobian for the y, p system

= ( —cff + G’ (yy) 0 )
ij detJ; \ —m(1+G"(yy) py) —c +hG'(yy)

> Define a local Newton update for y;; and pj; at /,j
( yii(ug) ) _ ( Vi >+J71 ( ri (uij) )
pij(uij) Pij i\ rf ’

rf(ug) = —(Ay — cf v + h* G(yg) — h° uy)

rf = —(Bj — cf pj + h* G'(y5) pi + h° yy)

Where
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Multigrid scheme

Smoothing (continue)

> Find u} such that J'(y(u), u) = vu; — p;(u;) = 0.

. (L+G"(ys) py) h*\
Y= (” det Jj X
[pi — L <h2(1+G”( i) pi) (A — ¢ 4 R? G( )))
Pij d et Jj Yij) Pij) \Aij — € Yij Yij
b (=16 00) (By — oy + # G'g) s + 1 yi) )]
ij
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Multigrid scheme

Smoothing (continue)

> Find u} such that J'(y(u), u) = vu; — p;(u;) = 0.

. (L+G"(ys) py) h*\
Y= (” det Jj X
[pi — L <h2(1+G”( i) pi) (A — ¢ 4 R? G( )))
Pij d et Jj Yij) Pij) \Aij — € Yij Yij
b (=16 00) (By — oy + # G'g) s + 1 yi) )]
ij

> Set (projection)

upy if Ui > Uy

uj = u}j- if uL,J < u,?‘j < upjj
up if o uf <y UNI
» Update state and adjoint variables v q(ui) and p;
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Multigrid scheme

Multigrid FAS-V(m;y, my)-Cycle [Brandt]
Set Bl(wl(o)) ~ A[! (e.g., iterating with S; starting with Wl(o)). For
k=2,...,L define By in terms of Bx_1 as follows.

1. Set the starting approximation W/EO).

2. Pre-smoothing. Define W,El) for I=1,...,mq, by
W/El) = Sk(W,EI_l), fk)

3. Coarse grid correction.
Set w{™ ™ = w!™ 1k (we_q — 1 w™) where
w1 = Boa (O wl™) (171 (=A™ + A1 (™)
4. Post-smoothing. Define W,E/) forl=m;+2,--- . m+my+1, by
W/E/) = Sk(w,sl_l), fx)-
5. Set Bk(W,EO)) fo = W,Em1+m2+l). [__cRaz]
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Multigrid scheme

Local Fourier analysis

Estimates for convergence factors and smoothing factors (linear case)

Ay Ahpk T Buy. Ahpk T
(m,m) v 7 p(TG ) Iz (TG, )
(11) 100* 05362 02429 05020  0.1939

(2,2) 107*  0.5362 0.1233 0.5020 0.0851
(1,1)  107® 0.6089  0.3457  0.5491  0.2772
(2,2) 107% 0.6089 0.1933 0.5491 0.1255
Ahyv Ahp Ahyv Ahp
(m,m) v b p(T6YH  n p(TGEY)

(11) 10" 05346 02413 05346  0.2413
(22) 107* 05346 01215 05346  0.1215
(1L1)  107® 05787 03094 05787  0.3094
(22) 10°® 05787 01566 05787  0.1566
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A control-constrained nonlinear optimal control problem

Ay +y* = u+f,
Dp+4y’p+y = z
(vu—p,v—u) > 0 forallve Uy

Uy ={u e 2(Q)| —1/2<u(x) <1/2 ae. inQ}
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Results of experiments

Fourth-order scheme versus second-order scheme for both equations

Apy: App |
14 Mesh |yh — Rhy|0 |uh — Rhu|0 |yh — RhZ|0 P CPU s

103 256>  0.19(-8) 0.11(-7) 039(-1) 0.100 1.23
1073 10242 0.76(-11)  0.43(-10)  0.39(-1)  0.115 1359
10-% 2562 0.55(-9) 0.39(-6) 0.39(-4) 0.116 1.28
1076 10242  0.21(-11)  0.15(-8) 0.39(-4)  0.117 13.50
| Apy: App |
1% Mesh |yh — Rhy|0 |Uh — Rhu|o |yh - RhZ|0 14 CPU s
103 256  0.24(-4) 0.13(-3) 039(-1) 004 0.8l

10-3 10242 0.15(-5) 0.86(-5) 039(-1)  0.03  10.79

105 2562 0.71(-5) 0.48(-2) 042(-4) 003 082

10-6 10242 0.43(-6) 0.30(-3) 0.39(-4)  0.04 13.29
UNI
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Results of experiments

Mixed fourth-order/second-order schemes

Ay Dpp ’
v Mesh |yh - Rhy|0 |uh - Rhu|0 |yh - RhZ|0 1% CPU s
1073 2562  0.54(-7) 0.99(-5) 0.39(-1) 0.115 1.26

1073 1024>  0.35(-8) 0.62(-6) 0.39(-1) 0.114 12.68
10-% 2562 0.18(-8) 0.77(-6) 0.39(-4) 0.116 1.26
1078 10242  0.11(-9) 0.25(-7) 0.39(-4) 0.117 1281

| Any: Dwp |
1% Mesh |yh — Rhy|0 |Uh — Rhu|o |yh - RhZ|0 14 CPU s
103 2567  0.24(-4) 0.12(-3) 0.39(-1) 0.04 082

10-3 10242 0.15(-5) 0.80(-5) 0.39(-1)  0.03 1234
105 2562 0.71(-5) 0.48(-2) 042(-4) 003 1.00
10-6 10242 0.43(-6) 0.30(-3) 0.39(-4)  0.04 1582
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Bang-bang control

The case ¥ = 0 and box constraints u; = —1 and uy = 1, and a non
attainable target function given by z(x1, x2) = sin(4mrxy)

Any Awp Any: Ayp
Mesh p CPU s p CPU s
128 x 128 0.45 0.35 0.40 0.25
256 x 256 0.45 1.39 0.52 1.01
512 x 512 0.45 5.10 0.50 3.95
1024 x 1024 | 0.45 21.29 | 0.45 15.98
2048 x 2048 | 0.45 87.28 | 0.45 64.07
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State constraints

A state-constrained elliptic optimal control problem

min,er2(Q) J(y, u) 2lly = 222 ) + 5llulliz0

Ay = u+f in Q
y = 0 on 09
yo =y =< WH in Q

The solution approach through Lagrange multipliers associated with the
state constraints leads to difficulties:

» The Lagrange multipliers associated with the state constraints are
regular Borel measures.

» Methods relying on Lagrange multipliers must be adapted.

Remedy: Lavrentiev-type or Moreau-Yosida regularizations. UNI
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State constraints

Regularized state-constrained optimal control problem

minueL?(Q) Jy,u) = %HY_ZH%z(Q) =+ %HUH%?(Q)
Ay = u+f in Q
3% 0 on 02

YH inQ2, A>0

IN I

yo < y=lu

Set v =y — Au. It becomes a ‘control-constrained’ optimal control

problem
minyer2(Q) Jy,v) = %Hy - ZH%Z(Q) + ﬁ”y - VHi?(Q)
Ay —y/A+v/X = f in Q
y = 0 on 0f)
o <v < yy in Q
» The associated Lagrange multipliers are L2(Q). -lalﬂ
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State constraints

Optimality system

The objective functional J(y, v) is strictly convex and lower
semicontinuous. One can prove existence and uniqueness of the optimal
solution.

This solution is characterized by the following optimality system
Ay —y/X+v/A

Ap—p/A+(y—z)+k(y—v) =
(p/A—k(y—v),t—v) > 0 forallte Vy

where k = /)2 and
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State constraints

Smoothing
» Compute the Jacobian for the y, p system

R T A C A 0o
Voo detdy \ —nP(1+k) —(cf+5) )]
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State constraints

Smoothing
» Compute the Jacobian for the y, p system

2
1 —(cf+5) 0 2
Voo detdy \ —nP(1+k) —(cf+5) )]

> Define a local Newton update for y;; and pj; at /,j

(2 )=o)+ ().
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State constraints

Smoothing
» Compute the Jacobian for the y, p system

2
1 —(cf+5) 0 2
Voo detdy \ —nP(1+k) —(cf+5) )]

> Define a local Newton update for y;; and pj; at /,j
( yii (Vi) ) _ ( Vi )+J”1 ( r,j;(Vij) >
pii(vij) Pij I\ r(vy)
> Find vj; such that 202 — k (y;(v) — vj) = 0. Set
YHjj if V,';f > YHjj

vi=<¢ vi if oy <vi <ymwy
yL’j if Vi;f S}’LU
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State constraints

Smoothing

» Compute the Jacobian for the y, p system

J*l_ 1 _(C5+%2) 0
i detdy \ —RP(1+k) —(ch+ B )

> Define a local Newton update for y;; and pj; at /,j

(2 )=o)+ ().

. * i (Vi) * *
» Find v such that p’TJ — k(yi(v;) — vjj) = 0. Set

YHjj if V,';f Z}’H,'j

vij = v if oy < Vi < YHij

Yijj if V,';f < YiLij-
> Set pj = py(vj) and y; = y;(vyj) iz
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State constraints

Preliminary numerical results

Consider z(x1, x2) = sin(27x;) sin(7mx2) and y;(x) = —1/2 and
yi(x) =1/2. Mesh 513 x 513
Convergence factors choosing v = \2

A 107! 1072 107® 107* 10°°

p 003 0.04 010 0.10 0.09
p 009 007 012 0.08 0.08

2nd-order
4th-order

Further results for p with v = 107% and A = 1073

Mesh ‘ 257 x 257 513 x 513 1025 x 1025

2nd-order 0.12 0.10 0.10
4th-order 0.15 0.12 0.09
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State constraints

Solution

state. control
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