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Abstract

High(-mixed)-order finite difference discretization of optimality systems arising from elliptic nonlinear constrained optimal control
problems are discussed. For the solution of these systems, an efficient and robust multigrid algorithm is presented. Theoretical and
experimental results show the advantages of higher-order discretization and demonstrate that the proposed multigrid scheme is able
to solve efficiently constrained optimal control problems also in the limit case of bang-bang control.
© 2006 Elsevier B.V. All rights reserved.

MSC: 49K20; 65N06; 65N12; 65N55

Keywords: Optimal control problems; Optimality systems; Finite differences; Multigrid methods

1. Introduction

Recent theoretical and experimental results give evidence that multigrid methods allow to solve elliptic optimal
control problems with optimal computational complexity and are robust with respect to changes of values of the
optimization parameters; see, e.g. [2–5,10,13,27]. These results refer to multigrid methods applied to second-order
discretizations of elliptic optimality systems. Less is known on higher-order discretization of optimality systems and
their solution by multigrid methods.

Concerning discretization, in the case of optimal control problems without constraints on the control, second-order
discretization results in second-order accurate optimal solutions; see [3,4] for the case of finite differences discretization
and [1,21] for the case of finite element discretization. Further, in [4,25] it is shown that, in the presence of constraints
on the control, second-order discretization results also in second-order accurate solution for the state variable and
3
2 -accurate solution of the control. However, in this case special techniques [17,22] are available that allow to recover
second-order accurate optimal controls.

In this paper, higher-order finite differences discretization of optimality systems are defined to approximate un-
constrained and constrained nonlinear optimal control problems. Based on the so-called first optimize then discretize
approach, we first derive the first-order optimality conditions for a minimum in a continuous setting and then discretize
the resulting coupled differential system by using a second-order or a higher fourth-order discretization scheme. The
advantage of this approach is the possibility of choosing different order of discretization for the different equations
defining the optimality system, allowing to investigate the influence of the accuracy of the state and of the adjoint
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variables on the overall accuracy of the optimal solution. Notice that choosing the same discretization scheme for the
state and adjoint equations corresponds also, in our case, to the first discretize and then optimize approach. While we do
not address adaptivity in this paper, we think that this study may provide a contribution to the research on adaptivity for
constrained optimal control problems. In fact, it gives insight on the dependence of the accuracy of optimal solutions on
the degree of approximation of the state equation as opposed to that of the adjoint equation, suggesting that adaptivity
should be driven by errors related to the state equation.

Motivated by the need of solving optimality systems discretized by mixed-order schemes and by previous successful
applications, we discuss the development and analysis of a multigrid method for the optimality systems mentioned
above. The multigrid method proposed in this paper is of the full-approximation-storage (FAS) type and uses a smoothing
iteration resulting from our previous experience on multigrid methods for singular [3] and constrained [4] optimal control
problems, and from the theoretical investigation presented in [5]. This smoothing procedure appears to be robust with
respect to changes of the value of the optimization parameter allowing, in particular, to investigate bang-bang type
control phenomena [11]. The resulting multigrid scheme shows typical mesh-independent convergence factors.

The main results presented in this paper are: (1) An a priori accuracy estimate for higher-order finite difference
discretization of linear optimality systems for the unconstrained case; (2) Development of a multigrid algorithm for
a class of higher-order finite differences optimality systems; (3) Formulation of a smoothing iteration for nonlinear
control-constrained optimal control problems; (4) Twogrid Fourier analysis of convergence of the proposed multigrid
solver; (5) Numerical investigation of the influence of mixed higher-order schemes on the optimal solution.

For the discussion that follows, we introduce a nonlinear optimal control problem with constrained distributed control
in Section 2. For detailed guidelines of how to extend the present approach to the case of boundary control problems
see [4]. In Section 3, accuracy of finite differences approximation to solutions of optimal control problems is discussed
considering a linear model. For the discretization of the elliptic operator, the standard five-point and a nine-point stencils
are chosen. Correspondingly, optimal accuracy estimates are obtained. In Section 5, a nonlinear multigrid scheme is
formulated. The nonlinear approach is appropriate because of the presence of nonlinearity and suitable in order to
implement the inequality constraint at all levels of the multigrid process. The main effort in the development of the
present solver is in the construction of a relaxation scheme which satisfies the constraints imposed on the control
function. Because of the constraints, the optimality condition is not differentiable in the classical sense and a smoother
based on local Newton steps as in [3] cannot be defined. For this reason, we present an alternative approach which
avoids differentiation of the optimality condition. In Section 6, for a linear model and without constraints, we obtain
sharp convergence factor estimates for the multigrid scheme applied to optimality systems discretized by mixed-order
schemes.

Results of numerical experiments are reported in Section 7 that demonstrate the ability of our algorithm to solve
constrained optimal control problems also in the limit case of bang-bang control. Further results give evidence that
higher-order approximation of the state equation is more advantageous than higher-order approximation of the adjoint
equation. In particular, we show that fourth-order optimal solutions, including the control function, can be obtained
even when the constraints are active. A section of conclusions completes this exposition.

2. Nonlinear constrained optimal control problems

As a model problem for our investigation we consider a material plate defining a two-dimensional convex domain
�. For the state y of the material we choose the temperature distribution which is maintained equal to zero along the
boundary. We assume thermal radiation or positive temperature feedback due to chemical reactions represented by the
term G(y); see, e.g. [23]. For later convenience we let the presence of a source f defined on �. This system is governed
by the following equation:{�y + G(y) = f in �,

y = 0 on ��.
(1)

In particular, we consider nonlinearity of the form G(y) = � yq . In the case � < 0 and q = 4 the nonlinear term
represents the Stefan–Boltzmann law of radiation emitting from the surface of the plate. The case � > 0 and q > 1,
describes positive energy production and the corresponding problem (1) is not coercive and may not admit solutions,
similarly to the problem discussed in [3]. The latter case is more challenging and for the numerical experiments we
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choose � = 1 and q = 4. Results of numerical experiments demonstrate that coercivity of the state equation is not
essential in our multigrid approach.

The setting above suggests that we may control the temperature distribution y to come close to a given target profile
z ∈ L2(�) by acting with an additional distributed source term u, the control function. The corresponding optimal
control problem is formulated as follows:⎧⎪⎨⎪⎩

minu∈UadJ (y, u)

�y + G(y) = u + f in �,

y = 0 on ��,

(2)

where we assume that u ∈ Uad, Uad ⊂ L2(�) being the set of admissible controls given by

Uad = {u ∈ L2(�) |u(x)�u(x)�u(x) a.e. in �}, (3)

where u and u are elements of L∞(�). For the formulation of optimal control problems where the control acts only in
a part of the whole domain see [4].

The cost functional J is of the tracking type and is given by

J (y, u) = 1

2
‖y − z‖2

L2(�)
+ �

2
‖u‖2

L2(�)
, (4)

where ��0 is the weight of the cost of the control.
Existence of solutions to (2)–(4) can be established under suitable conditions for various forms of the nonlinearity;

see, e.g. [3,12,20]. Take G ∈ C∞ monotonically decreasing function with G(0) = 0. Results for singular optimal
control problems can be found in, e.g., [18,20].

Optimal solutions are characterized by the following optimality system

�y + G(y) = u + f in �,

y = 0 on ��,

�p + G′(y) p = −(y − z) in �,

p = 0 on ��,

(�u − p, v − u)�0 for all v ∈ Uad.

(5)

We refer to the first differential equation of (5) as the state equation and to the second one as the adjoint equation.
Notice that the last equation in (5) giving the optimality condition is equivalent to (see [19])

u = max

{
u, min

{
u,

1

�
p(u)

}}
in �, � > 0. (6)

The nondifferentiability of this equation prevents the use of the classical Newton approach, requiring more sophisticated
techniques [16,24] based on a generalized differentiability concept. In Section 5, we follow an alternative approach
where differentiation of (6) is not required.

We complete this section recalling that the solution to (2)–(4) with �=0 is characterized by the following differential
system:

�y + G(y) = u + g in �,

y = 0 on ��,

�p + G′(y) p = −(y − z) in �,

p = 0 on ��,

p = min{0, p + u − u} + max{0, p + u − u} in �.

(7)
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3. High-order finite difference discretization

While linear finite element approximations [1,21,22,25] and second-order finite difference approximations [3–5] have
been previously investigated, much less is known for higher-order discretization of optimality systems. In this section
we discuss higher-order finite differences discretization for a linear optimality system with � > 0 and no constraints.

Consider a sequence of grids {�h}h>0 given by

�h = {x ∈ R2 : xi = si h, si ∈ Z} ∩ �.

We assume that � is a rectangular domain and that the values of the mesh size h are chosen such that the boundaries
of � coincide with grid lines. For grid functions vh and wh defined on �h we introduce the discrete L2-scalar product

(vh, wh)L2
h
= h2

∑
x∈�h

vh(x)wh(x),

with associated norm |vh|0 = (vh, vh)
1/2
L2

h

. We also need |vh|∞ = maxx∈�h
|vh(x)|.

First-order backward and forward partial derivatives of vh in the xi direction are denoted by �−
i and �+

i , respectively,
and given by

�−
i vh(x) = vh(x) − vh(x − î h)

h
and �+

i vh(x) = vh(x + î h) − vh(x)

h
,

where î denotes the i coordinate direction vector and vh is extended by 0 on grid points outside of �; see [15]. In this
framework, the discrete H 1-product is given by

|vh|1 =
(

|vh|20 +
2∑

i=1

|�−
i vh|20

)1/2

.

The spaces L2
h and H 1

h consist of the sets of grid functions vh endowed with |vh|0, respectively, |vh|1, as norm. We
need the following lemma [28].

Lemma 1 (Poincaré–Friedrichs inequality for finite differences). For any grid function vh, there exists a constant c∗,
independent of vh and h, such that

|vh|20 � c∗
2∑

i=1

|�−
i vh|20. (8)

(Note: for � = (0, 1) × (0, 1), c∗ = 1
4 .)

Functions in L2(�) and H 1(�) are approximated by grid functions defined through their mean values with respect
to elementary cells [x1 − h/2, x1 + h/2] × [x2 − h/2, x2 + h/2]; see [15] for more details. For sufficiently smooth
functions v ∈ Ck(�̄) (resp. f ∈ Ck(�)), k = 0, 1, ..., we denote with (Rhv)(x) = v(x) (resp. (R̃hf )(x) = f (x)) the
restriction operator on �̄h (resp. �h).

The (standard) second-order five-point approximation to the Laplacian with homogeneous Dirichlet boundary con-
ditions is defined by

�̃h = �+
1 �−

1 + �+
2 �−

2 .

We have the following consistency result

|�̃hRhv − R̃h�v|∞ �c h2‖v‖
C4(�̄)

, (9)

see, e.g. [15].
As mentioned in [15], the five-point formula above is optimal in the sense that there is no compact nine-point

formula which provides an order of accuracy higher than two. Indeed, Collatz’s compact nine-point scheme provides



ARTICLE IN PRESS
A. Borzì / Journal of Computational and Applied Mathematics ( ) – 5

fourth-order accuracy when used in combination with a five-point representation of the right-hand side. In the case
of optimality systems the use of the compact nine-point scheme requires a five-point representation of the control
u ∈ C2(�) in the state equation and of y in the adjoint equation. However, we can show that in cases where constraints
are active, the control u may result not sufficiently smooth to allow Collatz’s approach and in these cases the accuracy
of the compact nine-point optimal control solution collapses to second order. For this reason, we use the extended
nine-point schema considered in [6,26] which is suitable for less smooth controls. We have the following fourth-order
nine-point approximation to the Laplacian

�h =
(

1 − h2

12
�+

1 �−
1

)
�+

1 �−
1 +

(
1 − h2

12
�+

2 �−
2

)
�+

2 �−
2 . (10)

For more insight, the one-dimensional expanded form of this operator is given by(
1 − h2

12
�+

1 �−
1

)
�+

1 �−
1 v(x) = 1

12h2 (−v(x − 2h) + 16 v(x − h) − 30 v(x) + 16 v(x + h) − v(x + 2h)).

At grid points with distance h from the boundary, the operator �h must be modified. In [6] it is shown that the
approximation of the Laplacian near the boundary need be only O(h2) without destroying the overall fourth-order
accuracy of the scheme. Thus the five-point �̃h operator could be used (in particular to implement boundary controls
as in [4]). However, on coarse grids we find that the following asymmetric fourth-order approximation of the second
partial derivative is more accurate. For x ∈ �h next to the left-hand side boundary we have [26]

�2v

�x2
1

≈ 1

12h2 (10 v(x1 − h) − 15 v(x1) − 4 v(x1 + h) + 14 v(x1 + 2h) − 6 v(x1 + 3h) + v(x1 + 4h)). (11)

Schemes (10) and (11) result in a matrix of coefficients which is neither diagonally dominant nor of non-negative
type [6]. Nevertheless, in the case that �̃h is used close to the boundary, it is proved in [6] that the resulting problem
satisfies a maximum principle. The same proof applies with few modifications to the case when (11) is used instead
(change the second row of the matrix A in (2.6) of [6] and verify that the required property for AG in (2.15) of [6]
holds). Further we have that

|�hRhv − R̃h�v|∞ �c h4‖v‖
C6(�̄)

, (12)

where c is independent of v and h.
Next, an a priori estimate of the accuracy of solutions to a linearized version of the optimality system (5) without

constraints on the control is discussed. Set G(y)=gy with g�0 and Uad =L2(�). The last equation in (5) then becomes
�u−p = 0, which we can use in the first equation of the system to eliminate the control variable u. After discretization
we have the following discrete optimality system:

�hyh + g yh − ph/� = f̃h, (13)

�hph + g ph + yh = z̃h, (14)

where f̃h = R̃hf and z̃h = R̃hz.
Now consider the inner product of (13) by � yh and of (14) by ph and take the sum of the two resulting equations.

We obtain

� (�hyh, yh)L2
h
+ (�hph, ph)L2

h
+ � g |yh|20 + g |ph|20 = � (f̃h, yh)L2

h
+ (z̃h, ph)L2

h
,

which implies that

� (−�hyh, yh)L2
h
+ (−�hph, ph)L2

h
− � g |yh|20 − g |ph|20 �� |(f̃h, yh)L2

h
| + |(z̃h, ph)L2

h
|.

By construction (10), we have that (−�hvh, vh)L2
h
�(−�̃hvh, vh)L2

h
for all functions vh. Because (−�̃hvh, vh)L2

h
=∑2

i=1 |�−
i vh|20 and using Lemma 1, we obtain

� (1 + c∗|g|) |yh|20 + (1 + c∗|g|) |ph|20 �c∗ � |(f̃h, yh)L2
h
| + c∗ |(z̃h, ph)L2

h
|.
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Applying the Cauchy–Schwarz and Cauchy inequalities on the right-hand side of this expression results in

� |yh|20 + |ph|20 �c (� |f̃h|20 + |z̃h|20), (15)

where c = c∗/(2(1 + c∗|g|) − c∗). We remark that the same inequality is obtained if we use �̃h in place of �h in (13)
and/or (14).

Using (15), we are now able to determine the degree of accuracy of the optimal solution. For this purpose, notice
that (13)–(14) hold true with yh and ph replaced by their respective error functions, and with f̃h and z̃h replaced by the
truncation error for �h (resp. �̃h) estimated by (12) (resp. by (9)). Further notice that dividing (15) by � and recalling
that uh = ph/�, we obtain the estimate for the control from |yh|20 + � |uh|20 �c (|f̃h|20 + |z̃h|20/�). These statements are
summarized in the following theorem.

Theorem 1. Let y ∈ Ck+2(�̄), k = 2, 4, and p ∈ Cl+2(�̄), l = 2, 4, be solutions to (5) (with G = gy, g�0, and no
constraints on the control), and let yh and ph be solutions to (13) and (14). Then there exists a constant c, depending
on �, and independent of h, such that

|yh − Rhy|20 + 1

�
|ph − Rhp|20 �c

(
h2k ‖y‖2

Ck+2(�̄)
+ h2l 1

�
‖p‖2

Cl+2(�̄)

)
.

This estimate holds for linear optimality systems in the unconstrained case. Results of numerical experiments
demonstrate its validity in the case of unconstrained optimal control problems with elliptic semilinear equations as
governing equations. Unexpectedly, we obtain results of computation that give evidence that the estimate above may
hold also in the case of controls with active constraints; see Section 7.

Extension of the results stated in Theorem 1 to nonlinear constrained optimal control problems appears difficult and
unsatisfactory especially in the finite-difference framework. The analysis presented in [4] can be extended to the present
setting obtaining first-order accuracy estimate for the control with constraints. The lack of a Aubin–Nitsche duality
argument for finite differences prevents improvement of these estimates as it is possible in a finite element context.

4. Smoothing iteration for nonlinear constrained optimal control problems

In this and the following section we discuss a multigrid approach to the solution of the optimality system (5) with
the discretization given above. A multigrid scheme combines two solution strategies: An iterative (smoothing) scheme
(like Jacobi or Gauss–Seidel) that is effective in reducing high-frequency components of the solution error and a coarse-
grid correction method that is efficient in solving the low-frequency error components. In this section we formulate
our iterative scheme for the most general setting considered in this paper. The smoothing property of this scheme is
discussed in Section 6.

Let x ∈ �h, where x = (ih, jh) and i, j index the grid points, e.g., lexicographically. Denote with �ij the set
of grid index pairs s, t of the stencil of �h (resp. �̃h) centered at i, j . (For example, for �̃h at 0, 0 we have �ij =
{0, 0; 1, 0; −1, 0; 0, 1; 0, −1}.) Correspondingly, denote with cst (resp. c̃st ), s, t ∈ �ij , the s, t coefficient of the
stencil (multiplied by h2) centered at i, j . (In the example we have c00 = −4, c10 = 1, etc.) Using this notation, we can
express the action of �h (resp. �̃h) on the function vh in the following compact form:

�hvh|ij = 1

h2

⎛⎝ ∑
s,t∈�ij , s,t 	=i,j

cst vst − cij vij

⎞⎠ .

Consider (32) and (33) at x, we have∑
s,t∈�ij , s,t 	=i,j

c
y
st yst − c

y
ij yij + h2 G(yij ) − h2 uij = h2f̃ij , (16)

∑
s,t∈�ij , s,t 	=i,j

c
p
st pst − c

p
ij pij + h2 G′(yij ) pij + h2 yij = h2 z̃ij , (17)

(�uij − pij ) · (vij − uij )�0 for all vh ∈ Uadh, (18)
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where Uadh={u ∈ L2
h(�h) |u(x)�u(x)�u(x) in �h} and f̃ and z̃ represent fh and zh including the defect corrections,

discussed later in (35) and (36). Notice that for convenience we distinguish between the coefficient cst for the y and p
variables by writing c

y
st and c

p
st , respectively.

To ease notation we set

Aij =
∑

s,t∈�ij , s,t 	=i,j

c
y
st yst − h2f̃ij and Bij =

∑
s,t∈�ij , s,t 	=i,j

c
p
st pst − h2z̃ij .

Here Aij and Bij are considered constant during the update of the variables at i, j . Summarizing, we have the following
system for the three scalar variables yij , pij , and uij :

Aij − c
y
ij yij + h2 G(yij ) − h2 uij = 0, (19)

Bij − c
p
ij pij + h2 G′(yij ) pij + h2 yij = 0, (20)

(�uij − pij ) · (vij − uij )�0 for all vh ∈ Uadh. (21)

In the linear case and no constraints on the control, this system can be solved immediately and its solution gives an
update to yij , pij , and uij defining a collective (all-at-once) Gauss–Seidel step as in [5]. In the nonlinear case without
constraints, the solution of the system above is replaced by a local Newton update as in [3]. When constraints are
present, the direct application of a classical Newton scheme is not possible because of the presence of the inequality
constraint. In the following, we discuss another approach generalizing ideas in [4] that avoids differentiation of (21).

First, consider (19)–(20). The inverse of the Jacobian of these two equations is given by

J−1
ij = 1

det Jij

( −c
p
ij + h2G′(yij ) 0

−h2(1 + G′′(yij ) pij ) −c
y
ij + h2G′(yij )

)
, (22)

where det Jij = (−c
y
ij +h2G′(yij ))(−c

p
ij +h2G′(yij )). Notice that h can be chosen sufficiently small to guarantee that

det Jij 	= 0. Also notice that second-order necessary conditions for a minimum require that (1 + G′′(yij ) pij )�0.
For given uij , a local Newton update for the state and the adjoint variables ŷij and p̂ij at i, j is given by(

ŷij

p̂ij

)
=
(

yij

pij

)
+ J−1

ij

(
r
y
ij

r
p
ij

)
, (23)

where r
y
ij = −(Aij − c

y
ij yij + h2 G(yij ) − h2 uij ) and r

p
ij = −(Bij − c

p
ij pij + h2 G′(yij ) pij + h2 yij ) denote the

residual of (19) and (20), respectively. Notice that r
y
ij depends explicitly on uij . This fact allows us to write p̂ij as a

function of uij as follows:

p̂ij (uij ) = pij + 1

det Jij

(
h2(1 + G′′(yij ) pij ) (Aij − c

y
ij yij + h2 G(yij ))

)
+ 1

det Jij

(
(c

y
ij − h2G′(yij )) (Bij − c

p
ij pij + h2 G′(yij ) pij + h2 yij )

)
.

− 1

det Jij

(1 + G′′(yij ) pij ) h4 uij . (24)

Now to obtain first the update for uij , replace p̂ij in the inequality constraint. From �ũ − p̂(ũ) = 0 at i, j , we have the
auxiliary variable

ũij =
(

� + (1 + G′′(yij ) pij ) h4

det Jij

)−1

×
[
pij + 1

det Jij

(
h2(1 + G′′(yij ) pij ) (Aij − c

y
ij yij + h2 G(yij ))

)
+ 1

det Jij

(
(c

y
ij − h2G′(yij )) (Bij − c

p
ij pij + h2 G′(yij ) pij + h2 yij )

)]
.
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Then, the new value for uij resulting from the relaxation step is given by

uij =
{

uij if ũij �uij ,

ũij if uij < ũij < uij ,

uij if ũij �uij .

(25)

With uij given, we can use (23) to obtain new values for yij and pij . This completes the description of the iteration
step.

This step satisfies the inequality constraints. In fact, assume that ũij > u; then from (25) we have uij =uij . Therefore
(vij − uij )�0 for any v ∈ Uadh. By inspection of (24) we see that p̂ij (ũij ) < p̂ij (uij ). On the other hand we have

�uij − p̂ij (uij ) < �ũij − p̂ij (ũij ) = 0.

Similarly, if ũij < u we take uij = uij and we have that �uij − p̂ij (uij ) > 0 together with (vij − uij )�0 for any
v ∈ Uadh. Therefore (�u − p) · (v − u)�0 for all v ∈ Uadh. In case � = 0, it can be proved that the smoothing step
defined above satisfies (7). Because of the ‘projection’ (25), the present iteration can be considered as belonging to the
class of projected Gauss–Seidel schemes [9].

It should be clear that the formulation of the collective iterative scheme presented above applies also when �̃h is
used instead of �h in one or both of the elliptic equations of our optimality system, replacing Aij (resp. Bij ) with Ãij

(resp. B̃ij ) and c
y
ij (resp. c

p
ij ) with c̃

y
ij (resp. c̃

p
ij ).

5. Multigrid schemes for nonlinear constrained optimal control problems

The multigrid algorithm presented here is based on the FAS [7] framework. This is a natural choice in the treatment
of nonlinear problems, however, the present approach remains valid for the class of nonlinear multigrid (NMGM)
methods discussed in [14]. Our choice is also motivated by the need of imposing constraints on the control variable
which requires that this variable together with the state and the adjoint functions, and not their errors, be available at
all levels. Another important aspect of the FAS scheme is that nonlinearities can be treated without the need of global
linearization.

To illustrate the FAS method, consider first a generic nonlinear problem

Ah(uh) = fh, (26)

where Ah(·) represents a nonlinear discrete operator on �h.
Denote with u

(l)
h = Sh (u

(l−1)
h , fh) an appropriate smoothing scheme and suppose to apply m1-times this iteration

to (26) starting with the current approximation u
(0)
h to obtain the approximate solution ũh = u

(m1)
h . Now, the desired

correction eh to ũh is defined by Ah(ũh + eh) = fh. This correction can be defined as the solution to

Ah(ũh + eh) − Ah(ũh) = rh, (27)

where rh = fh − Ah(ũh) is the residual associated to ũh.
Next, assume to represent problem (27) on the coarser grid �H where H = 2h. To represent ũh + eh on the coarse

grid we write

uH := İ H
h ũh + eH . (28)

Since İ H
h ũh and ũh should represent the same function but on different grids, the standard choice of the fine-to-coarse

restriction operator İ H
h is straight injection. We can think of representing eh by a coarse function eH because eh is

smooth due to the action of Sh.
Now to formulate (27) on the coarse grid replace Ah(·) by AH (·), ũh by İ H

h ũh, and rh by IH
h rh = IH

h (fh −Ah(ũh)).
Here IH

h is a conveniently chosen restriction operator. We get the following (FAS) equation:

AH (uH ) = IH
h (fh − Ah(ũh)) + AH (İH

h ũh). (29)
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This equation is also written in the form AH (uH ) = IH
h fh + �H

h where

�H
h = AH (İH

h ũh) − IH
h Ah(ũh).

The term �H
h is the fine-to-coarse defect or residual correction such that at convergence the solution to (29) coincides

with the fine grid solution in the sense that uH = İ H
h uh. With uH obtained solving (29) and from (28) we have

eH = uH − İ H
h ũh.

Therefore we can obtain a correction to the fine-grid approximation as follows uh = ũh + Ih
H eH where Ih

H is a coarse-
to-fine interpolation operator.

Therefore, we obtain the following FAS coarse-grid correction step:

uh = ũh + Ih
H (uH − İ H

h ũh). (30)

To damp possible high-frequency errors arising through the coarse-grid correction process, (30) is followed by m2-times
smoothing iteration.

A typical choice (in two dimensions) for Ih
H is bilinear interpolation and requiring that (IH

h u, v)H = (u, Ih
H v)h for

all u ∈ L2
h and v ∈ L2

H , a full-weighting restriction operator for IH
h results. These operators are given in stencil form

as follows

Ih
H = 1

4

[1 2 1
2 4 2
1 2 1

]
and IH

h = 1

16

[1 2 1
2 4 2
1 2 1

]
. (31)

In general, the solution of the coarse-grid problem (29) is obtained by defining a sequence of nested grids (also
referred to as levels) �k = �hk

of mesh size hk = h1/2(k−1), k = 1, ..., L, where k = L is the finest level and h1 is the
mesh size of the coarsest grid. We can now denote all operators and functions in terms of the index k and define the
multigrid FAS scheme as follows.

Multigrid FAS-(m1, m2) method for solving Ak(uk) = fk .

1. If k = 1 solve Ak(uk) = fk directly (e.g., repeated application of Sk);
2. Pre-smoothing steps on the fine grid: u

(l)
k = Sk(u

(l−1)
k , fk), l = 1, ..., m1;

3. Computation of the residual: rk = fk − Aku
(m1)
k ;

4. Restriction of the residual: rk−1 = I k−1
k rk;

5. Set uk−1 = İ k−1
k u

(m1)
k ;

6. Set fk−1 = rk−1 + Ak−1(uk−1);
7. Call m times FAS-(m1, m2) to solve Ak−1(uk−1) = fk−1;
8. Coarse-grid correction: u

(m1+1)
k = u

(m1)
k + I k

k−1(uk−1 − İ k−1
k u

(m1)
k );

9. Post-smoothing steps on the fine grid: u
(l)
k = Sk(u

(l−1)
k , fk), l = m1 + 2, ..., m1 + m2 + 1;

Notice that we can perform m two-grid iterations at each working level. For m= 1 we have a V-cycle and for m= 2 we
have a W-cycle; m is called the cycle index [29]. Our numerical experience shows that in case of constrained control
problems the use of W-cycles results in a more robust multigrid iteration. In general, one application of the multigrid
FAS-(m1, m2) scheme will not suffice. It must be repeatedly applied until a given tolerance is reached.

Now we specialize our description to problem (5) with the discretization scheme discussed above. We have the
following system:

�kyk + G(yk) − uk = fk , (32)

�kpk + G′(yk) pk + yk = zk , (33)

(�uk − pk) · (vk − uk)�0 for all vk ∈ Uadk , (34)

where Uadk = {u ∈ L2
k(�k) |u(x)�u(x)�u(x) in �k}.
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Consider a current approximation to the solution of this system denoted by wk = (yk, pk, uk) and apply m1-times the
iterative scheme described in the previous section, so that the main components of the error that are left are smooth. Then
we start a coarse-grid correction procedure to solve for these components. First, a coarse grid problem is constructed
on the grid with mesh size hk−1 given by

�k−1yk−1 + G(yk−1) − uk−1 = I k−1
k fk + �(y)k−1

k , (35)

�k−1pk−1 + G′(yk−1) pk−1 + yk−1 = I k−1
k zk + �(p)k−1

k , (36)

(�uk−1 − pk−1) · (vk−1 − uk−1)�0 for all vk−1 ∈ Uadk−1,

where �(y)k−1
k and �(p)k−1

k are fine-to-coarse defect corrections defined by

�(y)k−1
k = �k−1İ

k−1
k yk + G(İ k−1

k yk) − İ k−1
k uk − I k−1

k (�kyk + G(yk) − uk), (37)

�(p)k−1
k = �k−1İ

k−1
k pk + G′(İ k−1

k yk) İ k−1
k pk + İ k−1

k yk

− I k−1
k (�kpk + G′(yk) pk + yk). (38)

Here İ k−1
k is straight injection and I k

k−1, I k−1
k are as in (31). Notice that the variational inequality defining the optimality

condition has the same form on all grids.
Once the coarse grid problem is solved, which gives wk−1 = (yk−1, pk−1, uk−1), the coarse-grid correction follows:

ynew
k = yk + I k

k−1 (yk−1 − İ k−1
k yk), (39)

pnew
k = pk + I k

k−1 (pk−1 − İ k−1
k pk), (40)

unew
k = uk + I k

k−1 (uk−1 − İ k−1
k uk). (41)

This is followed by m2 post-smoothing steps.
The application of N-times the FAS scheme is denoted by N-FAS. One can choose a starting working grid with a

level number K �L which is coarser than the finest grid where the solution is desired. In this case one applies N cycles
of the FAS scheme on level K and then the solution is interpolated on the next finer grid. The interpolation provides a
first approximation for the FAS iteration on this finer level and so on until the finest grid is reached. The combination
of the nested iteration technique and the FAS scheme is called the full multigrid (FMG) method.

6. Local Fourier analysis

As mentioned in the previous section, the motivation for combining an iterative scheme with a coarse-grid correction
is that these two schemes are effective on two complementary parts of the spectrum of the solution error. Therefore, we
can think of characterizing the convergence properties of these two schemes and their combination by considering their
representation on the Fourier space. This is indeed possible for linear or linearized problems without constraints. In
these cases, a discrete operator in the physical space is represented by its Fourier symbol in the Fourier space, that is, its
formal eigenvalue on the space of Fourier (eigen-)functions. This is advantageous to characterize important properties
of the operator on the original physical space. For example, an iterative scheme whose symbol has an absolute value
which is strictly smaller than one correspondingly to a part of the whole spectrum of Fourier modes is a converging
iteration for those error components having frequencies of this part of spectrum.

We now proceed with a rigorous local Fourier analysis [8,29] to investigate the convergence properties of the two
grid method applied to a linearized version of the optimality system (5) with no constraints on the control. This analysis
represents an extension of previous work for second-order discretization [5] and can be extended to the three grid
method following [30]. Results of numerical experiments presented in the following section show that the estimates
given below may remain also valid in nonlinear constrained cases.

For the purpose of illustration, we consider the case where the Laplacian of the state equation is represented by the
fourth-order accurate �h and the Laplacian of the adjoint equation is the second-order �̃h. It is straightforward to repeat
the discussion for the other configurations and estimates are given for all of them.
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First, let us recall the local Fourier setting; see [29] for more details. Consider a sequence of (infinite) grids,
�k = {(ihk, jhk), i, j ∈ Z}. On these grids we define the Fourier components:

�k(�, x) = ei	1x1/hk ei	2x2/hk .

For any low frequency � = (	1, 	2) ∈ [−
/2, 
/2)2, we consider

�(0,0) := (	1, 	2), �(1,1) := (	1, 	2),

�(1,0) := (	1, 	2), �(0,1) := (	1, 	2),

where

	i =
{

	i + 
 if 	i < 0,

	i − 
 if 	i �0.

We have �(�(0,0), ·) = �(�(1,1), ·) = �(�(1,0), ·) = �(�(0,1), ·) for �(0,0) ∈ [−
/2, 
/2)2 and (x1, x2) ∈ �k−1. That is,
we have a quadruples of distinct Fourier components that coincide (aliases) on �k−1.

Denote with � = (�1, �2) and consider � ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}; then on �k−1 we have �k(�
�, x) =

�k−1(2�(0,0), x). The four components �k(�
�, ·) are called harmonics. Their span is denoted with

E	
k = span[�k(�

�, ·) : � ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}].
Purpose of this analysis is to investigate the action of the smoothing and coarse-grid correction operators on couples

(ey, ep) defined by

ey(x) =
∑
�,�

Y�,� �k(�
�, x) and ep(x) =

∑
�,�

P�,� �k(�
�, x).

Here (ey, ep) represent the error functions for yh and ph and W�,� = (Y�,�, P�,�) denote the corresponding Fourier

coefficients. With this decomposition of the error, the action of one smoothing step can be expressed as W
(1)

�,�
=

Ŝ(�, �)W
(0)

�,�
where Ŝ(�, �) is the Fourier symbol [29] of the smoothing operator. To determine Ŝ(�, �), recall that

the functions �k(�
�, x) are eigenfunctions of any discrete operator described by a difference stencil on the �k grid.

Therefore, we have Sk�k(�
�, x) = Ŝk(�, �)�k(�, x) that is, the symbol of Sk is its (formal) eigenvalue.

Now, consider one collective Gauss–Seidel iteration step applied to the following problem:

�hyh + g yh − ph/� = fh, (42)

�̃hph + g ph + yh = zh. (43)

In this case, one smoothing step at x corresponds to an update which sets the residuals at x equal to zero. In terms of
Fourier modes �, Ŝk(�) is given by[ 1

12 [−(e−2i	1 + e−2i	2) + 16 (e−i	1 + e−i	2) − 60] + h2 g −h2
k/�

h2
k (e−i	1 + e−i	2 − 4) + h2

k g

]−1

×
[− 1

12 [−(e−2i	1 + e−2i	2) + 16 (e−i	1 + e−i	2)] 0
0 −(ei	1 + ei	2)

]
.

The smoothing property of Sk measures the action of this iteration on the high-frequency error components and can
be defined as follows:

�(Sk) = sup{r(Ŝk(�)) : � ∈ {�(1,1), �(1,0), �(0,1)}}, (44)

where r denotes the spectral radius and �(·) is the smoothing factor which can be evaluated for any choice of values of
h and �.

The next step is to construct the Fourier symbol of the twogrid coarse-grid correction operator

CGk−1
k = [Ik − I k

k−1 (Ak−1)
−1 I k−1

k Ak].
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We denote the corresponding symbol by

ĈG
k−1
k (�) = [Îk − Î k

k−1(�) (Âk−1(2�))−1 Î k−1
k (�) Âk(�)].

The symbol of the coarse grid operator Âk−1(�) is⎡⎢⎢⎣
1

6 h2
k−1

[−(cos(4	1)+ cos(4	2))+16 (cos(2	1)+ cos(2	2))−30]+g −1/�

1
2(cos(2	1)+ cos(2	2))−4

h2
k−1

+g

⎤⎥⎥⎦ ,

(notice the different symbols for the different discretization of the Laplacian) and similarly one constructs Âk(�)

corresponding to the four harmonics, that is,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l(�(0,0)) 0 0 0 −1/� 0 0 0
0 l(�(1,1)) 0 0 0 −1/� 0 0
0 0 l(�(1,0)) 0 0 0 −1/� 0
0 0 0 l(�(0,1)) 0 0 0 −1/�
1 0 0 0 l̃(�(0,0)) 0 0 0
0 1 0 0 0 l̃(�(1,1)) 0 0
0 0 1 0 0 0 l̃(�(1,0)) 0
0 0 0 1 0 0 0 l̃(�(0,1))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

l(��) = 1

6 h2
k

[−(cos(2	�1
1 ) + cos(2	�2

2 )) + 16 (cos(	�1
1 ) + cos(	�2

2 )) − 30] + g

and

l̃(��) = 2(cos(	�1
1 ) + cos(	�2

2 )) − 4

h2
k

.

The symbol of restriction operator is

Î k−1
k (�) =

[
I (�(0,0)) I (�(1,1)) I (�(1,0)) I (�(0,1)) 0 0 0 0

0 0 0 0 I (�(0,0)) I (�(1,1)) I (�(1,0)) I (�(0,1))

]
,

where

I (��) = 1
4 (1 + cos(	�1

1 ))(1 + cos(	�2
2 )).

For the prolongation operator we have Î k
k−1(�) = Î k−1

k (�)T.
Finally, the symbol of the two grid method is given by

T̂ G
k−1
k (�) = Ŝk(�)m2 ĈG

k−1
k (�) Ŝk(�)m1 .

This is an 8 × 8 matrix corresponding to the four pairs (Y�,�, P�,�),
� ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}. In this framework the convergence factor is defined as follows:

(T Gk−1
k ) = sup{r(T̂ G

k−1
k (�)) : � ∈ [−
/2, 
/2)2}.

We can state the following theorem.
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Table 1
Convergence factors and smoothing factors; h = 1

64 , g = 20

�hy, �hp Local Fourier analysis

(m1, m2) � �(Sk) (T Gk−1
k

)

(1,1) 10−4 0.5362 0.2429
(2,2) 10−4 0.5362 0.1233
(1,1) 10−8 0.6089 0.3457
(2,2) 10−8 0.6089 0.1933

�hy, �̃hp Local Fourier analysis
(1,1) 10−4 0.5346 0.2413
(2,2) 10−4 0.5346 0.1215
(1,1) 10−8 0.5787 0.3094
(2,2) 10−8 0.5787 0.1566

�̃hy, �hp Local Fourier analysis
(1,1) 10−4 0.5346 0.2413
(2,2) 10−4 0.5346 0.1215
(1,1) 10−8 0.5787 0.3094
(2,2) 10−8 0.5787 0.1566

�̃hy, �̃hp Local Fourier analysis
(1,1) 10−4 0.5020 0.1939
(2,2) 10−4 0.5020 0.0851
(1,1) 10−8 0.5491 0.2772
(2,2) 10−8 0.5491 0.1255

Theorem 2. Under the assumption that all multigrid components are linear and that (Ak−1)
−1 exists and Ŝk(�) :

E	
k × E	

k → E	
k × E	

k for all � ∈ [−
/2, 
/2)2, we have a representation of the twogrid operator T Gk−1
k on E	

k × E	
k

by a 8 × 8 matrix given by

T̂ G
k−1
k (�) = Ŝk(�)m2 ĈG

k−1
k (�) Ŝk(�)m1 ,

and for given mesh with mesh-size hk and given weight of the cost �, the convergence factor estimate for the twogrid
scheme applied to (42)–(43) is given by

(T Gk−1
k ) = sup{r(T̂ G

k−1
k (�)) : � ∈ [−
/2, 
/2)2}.

In Table 1, values of �(Sk) and of (T Gk−1
k ) corresponding to the setting hk = 1

64 and � ∈ {10−4, 10−8} and g = 20
are reported. These values are reported for all possible configuration of discretization schemes and are found to be
similar. Almost identical values are obtained for g ∈ [−200, 200]. The values of � and  are slightly worse for coarse
hk ∈ [ 1

16 , 1
4 ] and remain close to the values given in Table 1 for finer meshes. In all cases, it is verified that (Ak−1) is

not singular as required in Theorem 2.
These results show robustness of the multigrid solver with respect to values of � and suggest mesh independence.

The values reported for �(Sk) are quite close to the value of the smoothing factor of the Gauss–Seidel scheme applied
to the Poisson problem, suggesting that the iteration constructed in Section 4 is a good smoother. The convergence
factors estimates reported in Table 1 predict typical multigrid convergence behavior of the proposed multigrid scheme
applied to linear unconstrained problems.

7. Numerical experiments

We present a numerical investigation of the approximation properties of the finite-difference schemes discussed
above and of the computational performance of the proposed multigrid method to solve constrained optimal control
problems. Results of three series of experiments are reported. For all cases we choose G(y)=y4 and �=(0, 1)×(0, 1).
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First, we remark that in unconstrained cases using fourth-order schemes with typical smooth test functions, O(h4)

accuracy is obtained. Further, we can show that second-order accuracy is obtained whenever the second-order discrete
Laplacian is used to approximate the state and/or the adjoint equations.

Next, the question arises of how the fourth-order discretization performs in less regular cases. For this purpose, we
consider the case of unconstrained control with a setting such that the continuous solution is less regular than the degree
required from Theorem 1. In the second series of experiments, we choose a problem with constrained control with
� > 0. In this experiment and the previous one, we find that higher-order approximation of the state equation is more
advantageous than higher-order approximation of the adjoint equation in the sense that more accurate solutions are
obtained. This in turn demonstrates a tight relationship between accuracies of approximation of the state and control
functions.

In the last series of experiments we consider a bang-bang control situation which demonstrates that our multigrid
scheme can be advantageously used to investigate the setting � = 0 with constraints on the control.

Results of experiments are reported concerning the tracking functional |yh − R̃hz|0 depending on the value of the
cost of the control �. We also report values of the observed convergence factor defined as the “asymptotic” value of
the ratio between the discrete L2-norm of the residuals resulting from two successive multigrid cycles on a given mesh
[14]. For the coarsest grid we have h1 = 1

8 and we use up to nine levels. We use m1 = m2 = 2 smoothing steps and
the FMG version of the FAS algorithm with initial level K = 3. For all experiments, the starting guess is the zero
function. In the FMG process we apply three FAS cycles for working levels less than L. The stopping criterion is
|rh(y)|0 + |rh(p)|0 < 10−10 which is usually attained before 10 cycles at the finest grid.

7.1. Case I: an unconstrained optimal control problem

We discuss an unconstrained control problem with a state y /∈ C6(�̄) whose regularity is less than that required for
Theorem 1 to have fourth-order accuracy. This function was proposed by Schaffer in [26] to test convergence behavior
of fourth-order schemes. Schaffer’s function is defined as follows. Take T (x1, x2) = x2 − x2

1 + x1 − 3
4 and define the

following discontinuous function

C(x1, x2) =
{

1, T (x1, x2) > 0,

−1, T (x1, x2)�0.

As exact solution for the state equation we choose y(x1, x2) = exp(C(x1, x2) T (x1, x2)
6). Notice that y /∈ C6(�̄)

because it has a jump discontinuity in the 6th derivatives along the parabola T (x1, x2) = 0. Further we take f = �y

and u = G(y). Correspondingly, the exact adjoint variable solution is given by p = �G(y) and as target function we
have z = y + �p + G′(y) p. For this experiment we use the V-cycle setting.

Results for this case are reported in Table 2. First, notice that the measured convergence factors for this case resemble
those of multigrid for Poisson’s problem and lie slightly below those predicted by the local Fourier analysis of Section
6. Also notice that CPU times scale linearly with 1/h2. So for this case see mesh independent convergence. We also
remark that the CPU time for the fourth-order scheme is approximately 30% more than that required by the second-
order scheme while providing four orders of magnitude better accuracy. Further notice that as � is decreased more
favorable tracking errors are obtained. Concerning accuracy errors, we do not always obtain fourth-order convergence
by refinement, especially when h is sufficiently small. On the other hand, when second-order approximation of the
Laplacian is used we see O(h2) convergence. The use of the higher-order scheme is advantageous as far as this scheme
is used to represent the state equation, since much better accuracy of the optimal solutions is obtained in this case.
However, the results reported in Table 2 show that the requirements on the regularity of the optimal solution stated in
Theorem 1 are necessary to guarantee higher-order accuracy.

7.2. Case II: a constrained optimal control problem

Now, a constrained optimal control problem is considered. The exact solution for this case is constructed as follows.
Define

f = −u + �y + G(y),

z = y + �p + G′(y) p, (45)
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Table 2
Convergence results for Case I

� mesh |yh − Rhy|0 |ph − Rhp|0 |uh − Rhu|0 |yh − R̃hz|0  CPU s

�hy, �hp

10−4 128 × 128 0.39(−9) 0.49(−11) 0.49(−7) 0.57(−3) 0.086 0.25
10−4 256 × 256 0.27(−10) 0.31(−12) 0.31(−8) 0.57(−3) 0.085 0.87
10−4 512 × 512 0.18(−11) 0.21(−13) 0.21(−9) 0.58(−3) 0.085 2.98
10−4 1024 × 1024 0.17(−12) 0.11(−14) 0.11(−10) 0.58(−3) 0.082 10.81

10−8 128 × 128 0.28(−10) 0.25(−14) 0.25(−6) 0.57(−7) 0.075 0.15
10−8 256 × 256 0.65(−12) 0.15(−15) 0.15(−7) 0.57(−7) 0.080 0.82
10−8 512 × 512 0.32(−13) 0.11(−16) 0.11(−8) 0.58(−7) 0.085 2.92
10−8 1024 × 1024 0.86(−14) 0.16(−17) 0.16(−9) 0.58(−7) 0.085 10.84

�hy, �̃hp

10−4 128 × 128 0.48(−7) 0.33(−9) 0.33(−5) 0.57(−3) 0.086 0.15
10−4 256 × 256 0.12(−7) 0.84(−10) 0.84(−6) 0.57(−3) 0.085 0.78
10−4 512 × 512 0.30(−8) 0.21(−10) 0.21(−6) 0.58(−3) 0.086 2.87
10−4 1024 × 1024 0.75(−9) 0.53(−11) 0.53(−7) 0.58(−3) 0.082 9.84

10−8 128 × 128 0.31(−10) 0.26(−14) 0.26(−6) 0.57(−7) 0.070 0.20
10−8 256 × 256 0.40(−11) 0.14(−15) 0.14(−7) 0.57(−7) 0.090 0.75
10−8 512 × 512 0.97(−12) 0.21(−16) 0.21(−8) 0.58(−7) 0.090 2.87
10−8 1024 × 1024 0.24(−12) 0.63(−17) 0.63(−9) 0.58(−7) 0.085 9.87

�̃hy, �hp

10−4 128 × 128 0.14(−5) 0.16(−7) 0.16(−3) 0.57(−3) 0.046 0.12
10−4 256 × 256 0.35(−6) 0.42(−8) 0.42(−4) 0.57(−3) 0.043 0.64
10−4 512 × 512 0.88(−7) 0.10(−8) 0.10(−4) 0.58(−3) 0.042 2.34
10−4 1024 × 1024 0.22(−7) 0.26(−9) 0.26(−5) 0.58(−3) 0.042 9.43

10−8 128 × 128 0.61(−8) 0.42(−11) 0.42(−3) 0.54(−7) 0.060 0.18
10−8 256 × 256 0.15(−8) 0.10(−11) 0.10(−3) 0.57(−7) 0.060 0.68
10−8 512 × 512 0.39(−9) 0.26(−12) 0.26(−4) 0.58(−7) 0.050 2.28
10−8 1024 × 1024 0.99(−10) 0.66(−13) 0.66(−5) 0.58(−7) 0.046 7.84

�̃hy, �̃hp

10−4 128 × 128 0.13(−5) 0.17(−7) 0.17(−3) 0.57(−3) 0.040 0.15
10−4 256 × 256 0.34(−6) 0.43(−8) 0.43(−4) 0.57(−3) 0.041 0.48
10−4 512 × 512 0.86(−7) 0.10(−8) 0.10(−4) 0.58(−3) 0.040 2.10
10−4 1024 × 1024 0.21(−7) 0.26(−9) 0.26(−5) 0.58(−3) 0.040 7.56

10−8 128 × 128 0.61(−8) 0.42(−11) 0.42(−3) 0.54(−7) 0.036 0.10
10−8 256 × 256 0.15(−8) 0.10(−11) 0.10(−3) 0.57(−7) 0.040 0.45
10−8 512 × 512 0.39(−9) 0.26(−12) 0.26(−4) 0.58(−7) 0.040 2.10
10−8 1024 × 1024 0.99(−10) 0.66(−13) 0.66(−5) 0.58(−7) 0.040 7.10

where

y(x1, x2) = sin(2
x1) sin(2
x2),

p(x1, x2) = � sin(2
x1) sin(2
x2),

u(x1, x2) = max{−1/2, min{1/2, p(x1, x2)/�}}.
With this setting the control is active as it can be seen in Fig. 1. We use W-cycles.

Results of numerical experiments with Case II are reported in Table 3 for every second grid refinement. In this case
the exact state and adjoint optimal solutions possess the degree of smoothness required in Theorem 1 in order to have
fourth-order accuracy assuming no constraints. On the other hand, because of active constraints the control can be only
H 1. The numerical results reported in Table 3 (top) demonstrate that using fourth-order schemes for the state and adjoint
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Fig. 1. Numerical solution for Case II, � = 10−6. The state (left) and the control (right); 256 × 256 mesh.

Table 3
Convergence results for Case II

� mesh |yh − Rhy|0 |ph − Rhp|0 |uh − Rhu|0 |yh − R̃hz|0  CPU s

�hy, �hp

10−3 64 × 64 0.49(−6) 0.68(−8) 0.28(−5) 0.39(−1) 0.113 0.14
10−3 256 × 256 0.19(−8) 0.27(−10) 0.11(−7) 0.39(−1) 0.100 1.23
10−3 1024 × 1024 0.76(−11) 0.10(−12) 0.43(−10) 0.39(−1) 0.115 13.59

10−6 64 × 64 0.14(−6) 0.80(−9) 0.99(−4) 0.39(−4) 0.262 0.28
10−6 256 × 256 0.55(−9) 0.31(−11) 0.39(−6) 0.39(−4) 0.116 1.28
10−6 1024 × 1024 0.21(−11) 0.12(−13) 0.15(−8) 0.39(−4) 0.117 13.50

�hy, �̃hp

10−3 64 × 64 0.49(−6) 0.39(−6) 0.16(−3) 0.39(−1) 0.112 0.10
10−3 256 × 256 0.54(−7) 0.24(−7) 0.99(−5) 0.39(−1) 0.115 1.26
10−3 1024 × 1024 0.35(−8) 0.15(−8) 0.62(−6) 0.39(−1) 0.114 12.68

10−6 64 × 64 0.14(−6) 0.86(−9) 0.10(−3) 0.39(−4) 0.275 0.12
10−6 256 × 256 0.18(−8) 0.62(−11) 0.77(−6) 0.39(−4) 0.116 1.26
10−6 1024 × 1024 0.11(−9) 0.20(−12) 0.25(−7) 0.39(−4) 0.117 12.81

�̃hy, �hp

10−3 64 × 64 0.39(−3) 0.50(−5) 0.20(−2) 0.39(−1) 0.04 0.05
10−3 256 × 256 0.24(−4) 0.31(−6) 0.12(−3) 0.39(−1) 0.04 0.82
10−3 1024 × 1024 0.15(−5) 0.19(−7) 0.80(−5) 0.39(−1) 0.03 12.34

10−6 64 × 64 0.14(−3) 0.10(−5) 0.78(−1) 0.16(−3) 0.130 0.17
10−6 256 × 256 0.71(−5) 0.40(−7) 0.48(−2) 0.42(−4) 0.03 1.00
10−6 1024 × 1024 0.43(−6) 0.24(−8) 0.30(−3) 0.39(−4) 0.04 15.82

�̃hy, �̃hp

10−3 64 × 64 0.39(−3) 0.54(−5) 0.22(−2) 0.39(−1) 0.04 0.07
10−3 256 × 256 0.24(−4) 0.33(−6) 0.13(−3) 0.39(−1) 0.04 0.81
10−3 1024 × 1024 0.15(−5) 0.21(−7) 0.86(−5) 0.39(−1) 0.03 10.79

10−6 64 × 64 0.14(−3) 0.10(−5) 0.78(−1) 0.16(−3) 0.120 0.03
10−6 256 × 256 0.71(−5) 0.40(−7) 0.48(−2) 0.42(−4) 0.03 0.82
10−6 1024 × 1024 0.43(−6) 0.24(−8) 0.30(−3) 0.39(−4) 0.04 13.29
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Table 4
Convergence results for Case III

V-cycle �hy �hp �̃hy, �̃hp

mesh  CPU s  CPU s

128 × 128 0.45 0.35 0.40 0.25
256 × 256 0.45 1.39 0.52 1.01
512 × 512 0.45 5.10 0.50 3.95
1024 × 1024 0.45 21.29 0.45 15.98
2048 × 2048 0.45 87.28 0.45 64.07

W-cycle
128 × 128 0.12 0.60 0.23 0.37
256 × 256 0.19 2.09 0.27 1.48
512 × 512 0.31 7.85 0.28 6.09
1024 × 1024 0.39 31.45 0.25 24.87
2048 × 2048 0.30 131.85 0.30 97.25

equations, fourth-order convergent optimal solutions can be obtained also in the presence of active constraints. In fact,
the values of the norms |yh − Rhy|0, |ph − Rhp|0, and in particular of |uh − Rhu|0 scale as a factor of approximately
162 every second mesh refinement. This is a surprising result, especially regarding the control function, considering
the known accuracy estimates for control-constrained problems [4,17,22,25] and the limitation in the regularity of the
control function due to the presence of constraints.

In the other configurations, where the second-order scheme is used to approximate the state and/or the adjoint
equations, second-order convergence of solutions (including the control) is obtained. That is, the values of the norms
|yh −Rhy|0, |ph −Rhp|0, and |uh −Rhu|0 scale as a factor of approximately 16 every second mesh refinement. In this
case we observe that higher-order approximation of the state equation is more advantageous than better approximation
of the adjoint operator. In fact, while the order of convergence is the same, the magnitude of values of the error norms
is much larger with the (�̃hy, �hp) scheme than with the (�hy, �̃hp) scheme.

Regarding convergence of the multigrid scheme for the present constrained case, convergence factors close to those
predicted by Fourier analysis are obtained; see Table 3.

7.3. Case III: bang-bang control

We complete this numerical investigation by presenting results of computation for the case �= 0 and box constraints
u = −1 and u = 1. We consider the nonlinear setting above with homogeneous Dirichlet boundary conditions and a
target function given by

z(x1, x2) = sin(4
x1).

Notice that this function is not everywhere zero on the boundary of � and therefore it is not attainable by any control.
With this choice, a bang-bang type control solution is obtained. The purpose of this experiment is to demonstrate the
ability of the multigrid algorithm to solve bang-bang optimal control problems. We also consider Case III to compare
the V- and W-cycles which appear to have different behavior (Table 4). In this case, the tracking ability is limited by the
presence of constraints and for all experiments reported below we have |yh − R̃hz|0 ≈ 0.70. A numerical solution for
Case III is depicted in Fig. 2. Clearly, this is a limit case for our algorithm and the resulting convergence factors worsen.
Nevertheless, especially for the V-cycle we notice mesh independency. The W-cycle provides better convergence rates
as the V-cycle even if an unpredictable dependence on the mesh-size can be observed. However, notice that the V-cycle
has a favorable computational cost with respect to the W-cycle.
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Fig. 2. Numerical solution for the bang–bang problem. The state (left) and the control (right); 256 × 256 mesh.

8. Conclusions

Accuracy estimates and convergence behavior for higher- and mixed-order finite-difference discretization of optimal-
ity systems were discussed. For the solution of these systems, an efficient and robust multigrid algorithm for nonlinear
constrained optimal control problems was presented. Results of numerical experiments showed that fourth-order ac-
curate optimal solutions, including the control function, can be obtained also when constraints are active. In general,
we found that higher-order approximation of the state equation is more advantageous than better approximation of the
adjoint operator. Further results demonstrated the ability of the multigrid scheme in solving constrained optimal control
problems also in the limit case of bang-bang control.
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